
Advanced Homework

To earn the grade without passing final oral examination you need
to solve and explain at least 80% of the problems. Any attempts
of cheating will be noted and will negatively affect your final grade
including loosing the right for exam-free grade.

1. Fitting a planet’s orbit.
A planet follows an elliptical orbit, which can be represented in a Cartesian
(x, y) coordinate system by the equation

b0 + b1x+ b2y + b3xy + b4y
2 = x2

(a) Use a linear least-squares fit for the parameters b0, b1, b2, b3, b4 , given
the following observations of the planet’s position: The rest of the

x 1.02 0.95 0.87 . . .
y 0.39 0.32 0.27 . . .

data is in the file problem1/q1a data.txt. Plot the data as points
and the resulting continuous curve. What is the norm of residual?

(b) The observation data is nearly rank-deficient, which implies that the
matrix ATA is nearly singular and hence the parameter fit will be
sensitive to perturbations in the data (i.e. the least-squares fit is
poorly conditioned in this case). To show this, compute the best fit
to the perturbed data x̂ = x + ∆x and ŷ = y + ∆y, where ∆x,∆y
are given in the file problem1/q1b data.txt. Overlay the two sets
of observations and corresponding orbits on the same plot.

Use numpy.loadtxt to get data from text files.

2. Find your circle.
In the directory for the problem you will find bunch of images (numbered
2- 5) with CD-discs on them, just like on the figure.

You need to read the grayscale image and perform edge detection:

(a) Calculate the gradient Ix and Iy

(b) Caculate the magnitude of the gradient I2x + I2y

(c) Perform thresholding so that roughly 10-20% of points left

(d) Binarized version (above threshold assigned to 1, below - to 0) is the
image we are going to process
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We can assume that there are two generative models contributing to this
image: one model is a circle parametrized by coordinates of the center
xc, yc and it’s radius r. You can assume that distances of the points from

the center are distributed as e
−d2
σ where d is the distance amd σ is the

variance. Another model that contributes to the image is random noise
uniformly distributed with probability of a point being a noise is 10%.

Use EM-algorithm to fit the circle. You can use initial values for σ = 128
and for the circle radius r = 190, and center of the image as the initial
center of the circle. Plot separately the image with the predicted circle on
top of it and point assignment map (black-and-white image with value of
the pixel proportional to probability of lying on the circle). Are there any
failed fits? If yes, what is the reason for failure?

You might find the results (algebraic algorithm) from the paper Gander
W., Golub G., Strebe R. Least-Squares Fitting of Circles and El-
lipses useful. Copy of the paper is in the problem data directory.

3. Auto-regressive time series prediction.
Suppose that x is an N -vector representing time series data. The (one
step ahead) prediction problem is to guess xt+1 , based on x1, . . . , xt. We
will base our prediction x̂t+1 of xt+1 on the previous M values, xt, xt −
1, . . . , xt−M+1. (The number M is called the memory length of our pre-
dictor). When the prediction is a linear function,

x̂t+1 = β1xt + β2xt−1 + · · ·+ βMxt−M+1

it is called an auto-regressive predictor. (It is possible to add an offset to
x̂t+1, but we will leave it out for simplicity.) Of course we can only use
our auto-regressive predictor for M ≤ t ≤ N − 1. Some very simple and
natural predictors have this form. One example is the predictor x̂t+1 = xt,
which guesses that the next value is the same as the current one. Another
one is x̂t+1 = xt+(xt−xt−1), which guesses what xt+1 is by extrapolating
a line that passes through xt and xt−1.
We judge a predictor (i.e., the choice of coefficients βi) by the mean-square
prediction error

J =
1

N −M

N−1∑
t=M

(x̂t+1 − xt+1)2

A sophisticated choice of the coefficients βi is the one that minimizes J .
We will call this the least-squares auto-regressive predictor.
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(a) Find the matrix A and the vector b for which J = ||Aβ−b||2
N−M . This

allows you to find the coefficients that minimize J , i.e., the auto-
regressive predictor that minimizes the mean-square prediction error
on the given time series. Be sure to check the dimensions of A and b.

(b) For M = 2, . . . , 12, find the coefficients that minimize the mean-
square prediction error on the time series x train given in
time series data.npz. The same file has a second time series x test
that you can use to test or validate your predictor on. Give the values
of the mean-square error on the train and test series for each value
of M . What is a good choice of M? Also find J for the two simple
predictors described above.

Hint. Be sure to use the scipy.linalg.toeplitz function, it’ll make your
life easier.

4. Image reconstruction using low light.
In the homework files, you will find a directory called problem4/objects

that contains several photos of a still-life scene with different objects.
One is a regular photo and the other three are low-light photos that were
illuminated in different colors.
Each pixel in the image can be represented as a three-component vector
p = (R,G,B) for the red, green, and blue components. Let pAk be the kth
pixel of the regular photo, and let pBk , pCk , and pDk be the kth pixel of the
three low-light photos. Here, k is indexed from 0 up to MN − 1.

(a) Consider reconstructing the regular photo from the three low-light
photos. The regular photo pixel could be obtained from the low-light
photo pixels using

pAk = FBpBk + FCpCk + FDpDk + pconst (1)

where FB , FC , FD are 3× 3 matrices and pconst is a vector. Write a
program to find the least-squares fit for the 30 components of all the
parameters (three matrices and a vector). Specifically, your program
should minimize the objective function:

S =
1

MN

MN−1∑
k=0

|| − pAk + FBpBk + FCpCk + FDpDk + pconst||2 (2)

Calculate S for the fitted values FB , FC , FD, and pconst. Reconstruct
a regular image using the pixel values given by 1. Compare it to the
original regular image.

(b) Apply obtained parameters to reconstruct image from problem4/bears.
Compare the result quantitatively with the original regular image
(find mean squared error over all pixels).

5. Going down the hill
Define a noisy Rosenbrock function:

f(x, y) = R(x, y) + ε(x, y) = (a− x)2 + b(y − x2)2 + ε(x, y)
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Set the following constants: a = 1, b = 100.
Calculate noise at every point as normally distributed with zero mean and
standard deviation of 0.001 of the real value at this point

ε(x, y) ∼ N (0, 0.001R(x, y)) .

Implement Nelder–Mead method1 and any gradient-based method of your
choice. Optimize the function defined above with starting point at (2,−1)
and set convergence tolerance at 10−10. Compare two methods: final
result, number of steps, number of function calls. Implement two versions
of the gradient method: one with analytically obtained gradient, another
with gradient calculated numerically, compare with Nelder-Mead method.
Visualize the process (not in real-time, just plot level lines and points of
the optimization process).

6. The Good, the Bad, and the Ugly
Dealing with noisy annotations is a common problem in computer vision,
especially when using crowd- sourcing tools, like Amazon’s Mechanical
Turk. For this problem, you’ve collected photo aesthetic ratings for 150
images. Each image is labeled 5 times by a total of 25 annotators (each
annotator provided 30 labels). Each label consists of a continuous score
from 0 (unattractive) to 10 (attractive). The problem is that some users
do not understand instructions or are trying to get paid without attending
to the image. These “bad” annotators assign a label uniformly at random
from 0 to 10. Other “good” annotators assign a label to the i-th image
with mean µi and standard deviation σ (σ is the same for all images).
Your goal is to solve for the most likely image scores and to figure out
which annotators are trying to cheat you.
Notation:

• xij ∈ [0; 10]: the score for i-th image from the j-th annotator

• mj ∈ 0, 1: whether each j-th annotator is ”good” (mj = 1) or ”bad”
(mj = 0)

• P (xij |mj = 0) = 1
10 : iniform distribution of scores from bad annota-

tors

• P (xij |mj = 1;µi, σ) = 1√
2πσ2

exp(− 1
2
(xij−µi)2

σ2 ): normal distribution

for good annotators

• P (mj ;β) = β: prior probability for being a good annotator

You are given a data file problem3/annotation data.mat containing

• annotator ids(i) provides the ID of the annotator for the i-th an-
notation entry

• image ids(i) provides the ID of the image for the i-th annotation
entry

• annotation scores(i) provides i-th annotation

1https://en.wikipedia.org/wiki/Nelder-Mead method
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Derive and implement EM algorithm to solve for all variables. You will
need to initialize the probability that each annotator is good (set initial
value to 0.5 to each annotator).

Report the indices of ”bad” annotators (for which mj is most likely 0),
estimated value of σ, plot the estimated means µi of the image scores.

Notes:

• Useful function: scipy.stats.norm.pdf

• Be aware of numerical issues when calculating the joint probabili-
ties, which could be close to zero. Instead you might want to use
logarithmic scale if needed.

7. Why so serious?
You are given two set of frames (sampled at 30fps) with still human heads.
Your task is to estimate the pulse of the person. You may use the algorithm
described in the paper by Poh, Ming-Zher, Daniel J. McDuff, and Rosalind
W. Picard (provided in the problem directory) with necessary adaptation
(due to difference in data).

8. Going down the hill-2
Implement Conjugate Gradient Descent method and Coordinate Descent
method and use both to find the minimum of Matyas function2. Start at
one of the corners of the recommended input domain. Compare perfor-
mance for all four corners.

9. What happens in Monte-Carlo stays in Monte-Carlo
In class practice we used simulation to compute the integral using Monte-
Carlo methid with uniform sampling. Now, suppose, we need to evaluate
the following complex integral:

I =

∫ ∞
0

x4 sin(
√

ln(x+ 1)e−x

2 + (x− 4)2
dx

A clever way to apply Monte-Carlo technique would be to split the in-
tegrand as h(x)fX(x), where fX(x) would represent a pdf of some ran-
dom variable. In that case we could sample Xi from fX(x) and calculate

I ≈ 1
N

∑N
i=1 h(Xi)

• Use 1
2+(x−4)2 to create your pdf fX . Implement Metropolis algorithm

to sample from fX . Run the simulation 50 times for 150,000 points.
Report the value of Î and of that V ar[Î]

• Use xe−x to create your pdf fX . Implement Metropolis algorithm
to sample from fX . Run the simulation 50 times for 150,000 points.
Report the value of Î and of that V ar[Î].

10. Too much noise in here
Image noisy.jpg is obtained from the original image by adding random

2https://www.sfu.ca/ ssurjano/matya.html

5



Gaussian noise with variance 100 (on the scale 0-255). Use Markov Ran-
dom Fields to restore the image. Report MSE and SSIM with the original
image.
Useful function: skimage.measure.compare ssim.

11. Blend with the crowd
In the paper “Poisson Image Editing” by Perez et al. (copy is in the
data directory) authors suggest a method for seamless images blending.
The idea is to cut out a piece of one image, paste it into another image
and make it look smooth. For every sample we have a source image, a

destination image, and a mask. Even though the method is coming from
solving a Poisson equation (second order PDE with boundary condition),
it all boils down to solving a linear system of equations Ax = b where A
is a matrix representing coefficients of discretized PDE, x is the blended
image we seek, and b is the vector containing two types of values:

(a) For rows of A which correspond to pixels that are not under the
mask, b will simply contain the already known value from ’target’
and the row of A will be a row of an identity matrix. Basically,
this is our system of equations saying ”do nothing for the pixels we
already know”.

(b) For rows of A which correspond to pixels under the mask, we will
specify that the gradient (actually the discrete Laplacian) in the out-
put should equal the gradient in ’source’, according to the final equa-
tion in the webpage:

4xi,j−xi−1,j−xi+1,j−xi,j−1−xi,j+1 = 4si,j−si−1,j−si+1,j−si,j−1−si,j+1

The right hand side are measurements from the source image. The
left hand side relates different (mostly) unknown pixels in the output
image. At a high level, for these rows in our system of equations we
are saying “For this pixel, I don’t know its value, but I know that
its value relative to its neighbors should be the same as it was in the
source image”.
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In the data directory you have a set of images with corresponding masks,
text file specifying offsets (how much to translate the ’source’ pixels when
copying them to ’target’ in the form [y, x] where positive values mean
shifts down and to the right, respectively), and a reference starters code
in Matlab (that code is making corresponding image matrices, shifting the
mask and the source image). Your task is as easy as it can be: implement
Poisson Image editing method and apply it to sample images.
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Code snippet for loading and showing image in Python:

import skimage . i o as i o
import matp lo t l i b . pyplot as p l t

# t h i s w i l l load g r a y s c a l e image , r e s u l t i s array MxN
im gray = i o . imread ( ’ f i l ename . jpg ’ , a s g ray = True )

# t h i s w i l l load RGB image , r e s u l t i s array MxNx3
im gray = i o . imread ( ’ f i l ename . jpg ’ )

# t h i s w i l l p l o t RGB image from array A
# ( must be MxMx3 and in the range [ 0 , 1 ] )
i o . imshow (A)
p l t . show ( )

# t h i s w i l l p l o t matrix A (MxN in the range [ 0 ; 1 ] )
# as g r a y s c a l e image
i o . imshow (A, cmap=’gray ’ )
p l t . show ( )
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