Introduction

Maksim Bolonkin

Moscow State University

- $\bullet\,$ Course compiled from scratch $\rightarrow\,$ inherent incoherency
- $\bullet\,$ Diverse group of students \to possibly redundant topics
- $\bullet\,$ Not enough time to rewrite slides $\rightarrow\,$ using slides from other sources (in English)
- Trying my best \rightarrow expecting same from you
- Putting slide credits wherever possible (some sources might be lost)

"Computational and numerical tools" (known as "Optimization and numerical methods" in your curriculum)

What this course is about:

- Some of the most relevant computational and numerical tools commonly used in research and engineering
- Tools = algorithms and implementations

"**Computational and numerical tools**" (known as "*Optimization and numerical methods*" in your curriculum)

What this course is about:

- Some of the most relevant computational and numerical tools commonly used in research and engineering
- Tools = algorithms and implementations

What this course is **not** about:

- Minimal math component: some math for understanding, rare derivations, almost no analysis/proofs
- Not a programming course: you are expected to know basic programming
- Breadth, not depth

This course consists of **lectures and programming seminars**. Usualy one lecture (Tuesday) and one seminar (Thursday) will be every week with rare exceptions.

Lecture notes and video links will be posted online: https://github.com/maksimbolonkin/cs170-2020

Homeworks: basic and advanced version will be posted online

Getting your grade:

- Grade "5"
 - + Solve the advanced homework (automatic grade)
 - + Solve the basic homework (80%) and attend the oral examination
- Grade "4"
 - + Solve the basic homework (80%) and attend the oral examination
- Grade "3"
 - + Attend the classes and solve the basic homework (50%)
- Non-passable grade
 - Attendance below threshold, no solved homeworks, failed oral exam
 - Severe violation of an honor principle

Any work you are submitting must be your own. Collaboration without sharing any code is acceptable.

In case I am **suspicious** of plagiarism in your assignments (in full or partialy, based on in-person grading), I reserve the right to not accept your solutions as well as give you a non-passable grade for the course. Plagiarized work will not be counted towards any positive grades.

Burden of proof is entirely on you: I do not have to prove that your work is plagiarized, you have to prove it is not.

Corollary: In case you decided to plagiarize your peer's solution, make sure you understand it thoroughly.

Expected programming tools for this course:

- Matlab/Octave
- Python + Jupyter Notebooks (Recommended)

I have Anaconda packages for Windows downloaded.

Why Python?

Python has well supported scientific libraries

- NumPy supports wide variety of matrix operations
- SciPy a lot of computational methods implemented
- MatPlotLib library for plotting and visualizing
- Scikit-Image, Scikit-Learn, etc.
- Very good documentation

Why Python?

Python has well supported scientific libraries

- NumPy supports wide variety of matrix operations
- SciPy a lot of computational methods implemented
- MatPlotLib library for plotting and visualizing
- Scikit-Image, Scikit-Learn, etc.
- Very good documentation

Jupyter Notebooks:

- Convenient tool for coding and debugging
- Good for reproducible research
- Getting more and more popular

	Vew Inset Cell Kernel Wildon's Help		
		Stated	Python 2 (
8 + × 8	6 + + # B C Mardon 1 B		
	Lecture 1. Computational error, sources of errors		
In [12]:	import sumpy as sp		
	and primal prima		
	mal = 1915 100m = 18.0 detal = egicandom.sermallisc = mal, scale=signa, size=00 detal = egic.(Datallumax = 10.3fistists = 10.3fistist variance = 10.3fis"\(detal.max(), detal.min(), prime()Datallumax = 10.3fistist = 10.3fistist variance = 10.3fis"\(detal.max(), detal.min(),	np.var(data)	1)))
	mu2 = 100.0 deta2 = np.random.nermallicc = mu2. scale=sigms. size=N) print("bit2yamax = 40.27\nmin = 40.27\ntrue variance = 40.37'\(data2.max(), data2.min(), n	p.ver(data2)	10
	Deal me. 1000000000001.000 tras 100000000001.000 tras 201000 Bas2 ma. 44.722 tras 41200 tras 41200 tras 5100 tras 51000 tras 5100 tras 51000 tras 5100 tras 5100 tras 5100 tras 51000 tras 51000		
	<pre>var = var(acce_vas(1a(deta)) print("War(lact)) var = war(acce_bh(f(deta)) var = war(acce_bh(f(deta)) var = war(acce_bh(f(deta))) </pre>		
	Vanilla Variance = 698833796966930048.000000 Shift Variance = 100.143925		
16 (15))	var = variance_vasilis(data2) griat("vasilis Variance = Ktori(var)) griat("vasilis Variance = Ktori(var))		

Any questions?

Why bother?

- Computation allows exploring models without analytical solution
- This is usually the case for real-world problems
- Advances in hardware and software make it easier to use computational models

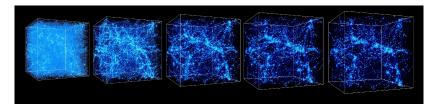
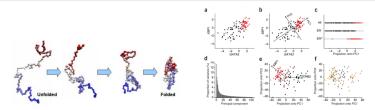
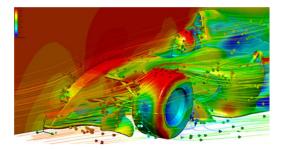




Figure: Galaxy formation (cosmicweb.uchicago.edu)

Figure: Protein unfolding simulation and analysis of gene expression

Figure: Fluid dynamics simulation

In 2000 January-February issue of *Computing in Science and Engineering* editors selected 10 algorithms that influenced science and engineering in 20th century.

1 Metropolis algorithm for Monte Carlo

1946: John von Neumann, Stan Ulam, and Nick Metropolis

- 2 Simplex method for linear programming 1947: George Dantzig, at the RAND Corporation
- **3 Krylov subspace iteration methods**

1950: Magnus Hestenes, Eduard Stiefel, and Cornelius Lanczos

4 **The decompositional approach to matrix computations** 1951: Alston Householder of Oak Ridge National Laboratory

Top 10 Algorithms of 20th Century

5 The Fortran optimizing compiler

1957: John Backus, IBM

6 QR algorithm for computing eigenvalues 1959–61: J.G.F. Francis

7 Quicksort algorithm for sorting

1962: Tony Hoare

8 Fast Fourier transform

1965: James Cooley of the IBM T.J. Watson Research Center and John Tukey of Princeton University and AT&T Bell Laboratories

9 Integer relation detection

1977: Helaman Ferguson and Rodney Forcade of Brigham Young University

10 Fast multipole method

1987: Leslie Greengard and Vladimir Rokhlin of Yale University

In 2016 editors of the CiSE updated the list of top 10 algorithms, adding the following:

- $1\,$ Newton and quasi-Newton methods
- 2 Jpeg
- 3 PageRank
- 4 Kalman filter

What we are going to cover in this course:

• Data fitting

Some topics: linear least squares, non-linear least squares, maximum likelihood, maximum a posteriori, expectation maximization

Optimization

Some topics: gradient-free optimization, gradient descent, non-linear optimization, heuristics

• Dimensionaity reduction and component analysis Some topics: PCA, ICA, t-SNE, LDA

• Signal Processing Some topics: signals, filters, DFT

Randomized methods

Some topics: random number sampling, Monte-Carlo methods, RANSAC

Differential equations

Some topics: numerical solutions for Ordinary Differential Equations (ODE), Partial Differential Equations (PDE)

• Replacing difficult problem by simplified problem with the same or close enough solution

```
\begin{array}{l} \mbox{Infinite} \rightarrow \mbox{Finite} \\ \mbox{Differential} \rightarrow \mbox{Algebraic} \\ \mbox{Continuous} \rightarrow \mbox{Discrete} \\ \mbox{Non-linear} \rightarrow \mbox{Linear} \end{array}
```

• • •

- Solution obtained only approximates the exact solution of the original problem
 - Approximation before computation (empirical measurements, previous computation)
 - Approximation during computation (covered in next part)
 - Final result accuracy reflects all those errors, possibly amplified by an agorithm/problem