
LU Factorization

Solving Ax = b

Familiar idea for solving Ax = b is to use Gaussian elimination to
transform Ax = b to a triangular system

What is a triangular system?

◮ Upper triangular matrix U ∈ R
n×n: if i > j then uij = 0

◮ Lower triangular matrix L ∈ R
n×n: if i < j then ℓij = 0

Question: Why is triangular good?

Answer: Because triangular systems are easy to solve!

Solving Ax = b

Suppose we have Ux = b, then we can use “back-substitution”

xn = bn/unn

xn−1 = (bn−1 − un−1,nxn)/un−1,n−1

...

xj =



bj −
n
∑

k=j+1

ujkxk



 /ujj

...

Solving Ax = b

Similarly, we can use forward substitution for a lower triangular
system Lx = b

x1 = b1/ℓ11

x2 = (b2 − ℓ21x1)/ℓ22
...

xj =

(

bj −

j−1
∑

k=1

ℓjkxk

)

/ℓjj

...

Solving Ax = b

Back and forward substitution can be implemented with doubly
nested for-loops

The computational work is dominated by evaluating the sum
∑j−1

k=1
ℓjkxk , j = 1, . . . , n

We have j − 1 additions and multiplications in this loop for each
j = 1, . . . , n, i.e. 2(j − 1) operations for each j

Hence the total number of floating point operations in back or
forward substitution is asymptotic to:

2

n
∑

j=1

j = 2n(n + 1)/2 ∼ n2

Solving Ax = b

Here “∼” refers to asymptotic behavior, e.g.

f (n) ∼ n2 ⇐⇒ lim
n→∞

f (n)

n2
= 1

We often also use “big-O” notation, e.g. for remainder terms in
Taylor expansion

f (x) = O(g(x)) if there exists M ∈ R>0, x0 ∈ R such that
|f (x)| ≤ M|g(x)| for all x ≥ x0

In the present context we prefer “∼” since it indicates the correct
scaling of the leading-order term

e.g. let f (n) ≡ n2/4 + n, then f (n) = O(n2), whereas f (n) ∼ n2/4

Solving Ax = b

So transforming Ax = b to a triangular system is a sensible goal,
but how do we achieve it?

Observation: If we premultiply Ax = b by a nonsingular matrix M

then the new system MAx = Mb has the same solution

Hence, want to devise a sequence of matrices M1,M2, · · · ,Mn−1

such that MA ≡ Mn−1 · · ·M1A ≡ U is upper triangular

This process is Gaussian Elimination, and gives the transformed
system Ux = Mb

LU Factorization

We will show shortly that it turns out that if MA = U, then we
have that L ≡ M−1 is lower triangular

Therefore we obtain A = LU: product of lower and upper
triangular matrices

This is the LU factorization of A

LU Factorization

LU factorization is the most common way of solving linear systems!

Ax = b ⇐⇒ LUx = b

Let y ≡ Ux , then Ly = b: solve for y via forward substitution3

Then solve for Ux = y via back substitution

3y = L−1b is the transformed right-hand side vector (i.e. Mb from earlier)
that we are familiar with from Gaussian elimination

LU Factorization

LU factorization is the most common way of solving linear systems!

Ax = b ⇐⇒ LUx = b

Let y ≡ Ux , then Ly = b: solve for y via forward substitution1

Then solve for Ux = y via back substitution

1y = L−1b is the transformed right-hand side vector (i.e. Mb from earlier)
that we are familiar with from Gaussian elimination

LU Factorization

Next question: How should we determine M1,M2, · · · ,Mn−1?

We need to be able to annihilate selected entries of A, below the
diagonal in order to obtain an upper-triangular matrix

To do this, we use “elementary elimination matrices”

Let Lj denote j th elimination matrix (we use “Lj” rather than “Mj”
from now on as elimination matrices are lower triangular)

LU Factorization

Let X (≡ Lj−1Lj−2 · · · L1A) denote matrix at the start of step j ,
and let x(:,j) ∈ R

n denote column j of X

Then we define Lj such that

Ljx(:,j) ≡





















1 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...
0 · · · 1 0 · · · 0
0 · · · −xj+1,j/xjj 1 · · · 0
...

. . .
...

...
. . .

...
0 · · · −xnj/xjj 0 · · · 1









































x1j
...
xjj

xj+1,j

...
xnj





















=





















x1j
...
xjj
0
...
0





















LU Factorization

To simplify notation, we let ℓij ≡ xij
xjj

in order to obtain

Lj ≡





















1 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...
0 · · · 1 0 · · · 0
0 · · · −ℓj+1,j 1 · · · 0
...

. . .
...

...
. . .

...
0 · · · −ℓnj 0 · · · 1





















LU Factorization

Using elementary elimination matrices we can reduce A to upper
triangular form, one column at a time

Schematically, for a 4× 4 matrix, we have








× × × ×

× × × ×

× × × ×

× × × ×









L1
−→









× × × ×

0 × × ×

0 × × ×

0 × × ×









L2
−→









× × × ×

0 × × ×

0 0 × ×

0 0 × ×









A L1A L2L1A

Key point: Lk does not affect columns 1, 2, . . . , k − 1 of
Lk−1Lk−2 . . . L1A

LU Factorization

After n − 1 steps, we obtain the upper triangular matrix
U = Ln−1 · · · L2L1A

U =









× × × ×

0 × × ×

0 0 × ×

0 0 0 ×









LU Factorization

Finally, we wish to form the factorization A = LU, hence we need
L = (Ln−1 · · · L2L1)−1 = L−1

1 L−1
2 · · · L−1

n−1

This turns out to be surprisingly simple due to two strokes of luck!

First stroke of luck: L−1
j is obtained simply by negating the

subdiagonal entries of Lj

Lj ≡





















1 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...
0 · · · 1 0 · · · 0
0 · · · −ℓj+1,j 1 · · · 0
...

. . .
...

...
. . .

...
0 · · · −ℓnj 0 · · · 1





















, L
−1
j ≡





















1 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...
0 · · · 1 0 · · · 0
0 · · · ℓj+1,j 1 · · · 0
...

. . .
...

...
. . .

...
0 · · · ℓnj 0 · · · 1





















LU Factorization

Explanation: Let ℓj ≡ [0, . . . , 0, ℓj+1,j , . . . , ℓnj]
T so that

Lj = I− ℓje
T
j

Now consider Lj(I+ ℓje
T
j):

Lj(I+ℓje
T
j) = (I−ℓje

T
j)(I+ℓje

T
j) = I−ℓje

T
j ℓje

T
j = I−ℓj(e

T
j ℓj)e

T
j

Also, (eTj ℓj) = 0 (why?) so that Lj(I+ ℓje
T
j) = I

By the same argument (I+ ℓje
T
j)Lj = I, and hence

L−1
j = (I+ ℓje

T
j)

LU Factorization

Next we want to form the matrix L ≡ L−1
1 L−1

2 · · · L−1
n−1

Note that we have

L−1
j L−1

j+1 = (I+ ℓje
T
j)(I+ ℓj+1e

T
j+1)

= I+ ℓje
T
j + ℓj+1e

T
j+1 + ℓj(e

T
j ℓj+1)e

T
j+1

= I+ ℓje
T
j + ℓj+1e

T
j+1

Interestingly, this convenient result doesn’t hold for L−1
j+1L

−1
j , why?

LU Factorization

Similarly,

L−1
j L−1

j+1L
−1
j+2 = (I+ ℓje

T
j + ℓj+1e

T
j+1)(I+ ℓj+2e

T
j+2)

= I+ ℓje
T
j + ℓj+1e

T
j+1 + ℓj+2e

T
j+2

That is, to compute the product L−1
1 L−1

2 · · · L−1
n−1 we simply collect

the subdiagonals for j = 1, 2, . . . , n − 1

LU Factorization

Hence, second stroke of luck:

L ≡ L−1
1 L−1

2 · · · L−1
n−1 =




1
ℓ21 1
ℓ31 ℓ32 1
...

...
. . .

. . .

ℓn1 ℓn2 · · · ℓn,n−1 1




LU Factorization

Therefore, basic LU factorization algorithm is

1: U = A, L = I

2: for j = 1 : n − 1 do

3: for i = j + 1 : n do

4: ℓij = uij/ujj
5: for k = j : n do

6: uik = uik − ℓijujk
7: end for

8: end for

9: end for

Note that the entries of U are updated each iteration so at the
start of step j , U = Lj−1Lj−2 · · · L1A

Here line 4 comes straight from the definition ℓij ≡ uij
ujj

LU Factorization

Line 6 accounts for the effect of Lj on columns k = j , j + 1, . . . , n
of U

For k = j : n we have

Lju(:,k) ≡





















1 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...
0 · · · 1 0 · · · 0
0 · · · −ℓj+1,j 1 · · · 0
...

. . .
...

...
. . .

...
0 · · · −ℓnj 0 · · · 1









































u1k
...
ujk

uj+1,k

...
unk





















=





















u1k
...
ujk

uj+1,k − ℓj+1,jujk
...

unk − ℓnjujk





















The vector on the right is the updated k th column of U, which is
computed in line 6

LU Factorization

LU Factorization involves a triply-nested for-loop, hence O(n3)
calculations

Careful operation counting shows LU factorization requires ∼ 1
3n

3

additions and ∼ 1
3n

3 multiplications, ∼ 2
3n

3 operations in total

Solving a linear system using LU

Hence to solve Ax = b, we perform the following three steps:

Step 1: Factorize A into L and U: ∼ 2
3n

3

Step 2: Solve Ly = b by forward substitution: ∼ n2

Step 3: Solve Ux = y by back substitution: ∼ n2

Total work is dominated by Step 1, ∼ 2
3n

3

Solving a linear system using LU

An alternative approach would be to compute A−1 explicitly and
evaluate x = A−1b, but this is a bad idea!

Question: How would we compute A−1?

Solving a linear system using LU

Answer: Let ainv(:,k) denote the kth column of A−1, then ainv(:,k) must
satisfy

Aainv(:,k) = ek

Therefore to compute A−1, we first LU factorize A, then
back/forward substitute for rhs vector ek , k = 1, 2, . . . , n

The n back/forward substitutions alone require ∼ 2n3 operations,
inefficient!

A rule of thumb in Numerical Linear Algebra: It is almost always a
bad idea to compute A−1 explicitly

Solving a linear system using LU

Another case where LU factorization is very helpful is if we want to
solve Ax = bi for several different right-hand sides bi , i = 1, . . . , k

We incur the ∼ 2
3n

3 cost only once, and then each subequent
forward/back subsitution costs only ∼ 2n2

Makes a huge difference if n is large!

Stability of Gaussian Elimination

There is a problem with the LU algorithm presented above

Consider the matrix

A =

[
0 1
1 1

]

A is nonsingular, well-conditioned (κ(A) ≈ 2.62) but LU
factorization fails at first step (division by zero)

Stability of Gaussian Elimination

LU factorization doesn’t fail for

A =

[
10−20 1
1 1

]

but we get

L =

[
1 0

1020 1

]
, U =

[
10−20 1
0 1− 1020

]

Stability of Gaussian Elimination

Let’s suppose that −1020 ∈ F (a floating point number) and that
round(1− 1020) = −1020

Then in finite precision arithmetic we get

L̃ =

[
1 0

1020 1

]
, Ũ =

[
10−20 1
0 −1020

]

Stability of Gaussian Elimination

Hence due to rounding error we obtain

L̃Ũ =

[
10−20 1
1 0

]

which is not close to

A =

[
10−20 1
1 1

]

Then, for example, let b = [3, 3]T

◮ Using L̃Ũ, we get x̃ = [3, 3]T

◮ True answer is x = [0, 3]T

Hence large relative error (rel. err. = 1) even though the problem
is well-conditioned

Stability of Gaussian Elimination

In this example, standard Gaussian elimination yields a large
residual

Or equivalently, it yields the exact solution to a problem
corresponding to a large input perturbation: ∆b = [0, 3]T

Hence unstable algorithm! In this case the cause of the large error
in x is numerical instability, not ill-conditioning

To stabilize Gaussian elimination, we need to permute rows, i.e.
perform pivoting

Pivoting

Recall the Gaussian elimination process








× × × ×

xjj × ×

× × ×

× × ×









−→









× × × ×

xjj × ×

0 × ×

0 × ×









But we could just as easily do








× × × ×

× × ×

xij × ×

× × ×









−→









× × × ×

0 × ×

xij × ×

0 × ×









Partial Pivoting

The entry xij is called the pivot, and flexibility in choosing the
pivot is essential otherwise we can’t deal with:

A =

[
0 1
1 1

]

From a numerical stability point of view, it is crucial to choose the
pivot to be the largest entry in column j : “partial pivoting”2

This ensures that each ℓij entry — which acts as a multiplier in the
LU factorization process — satisfies |ℓij | ≤ 1

2Full pivoting refers to searching through columns j : n for the largest entry;
this is more expensive and only marginal benefit to stability in practice

Partial Pivoting

To maintain the triangular LU structure, we permute rows by
premultiplying by permutation matrices









× × × ×

× × ×

× × ×

xij × ×









P1
−→









× × × ×

xij × ×

× × ×

× × ×









L1
−→









× × × ×

xij × ×

0 × ×

0 × ×









Pivot selection Row interchange

In this case

P1 =









1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0









and each Pj is obtained by swapping two rows of I

Partial Pivoting

Therefore, with partial pivoting we obtain

Ln−1Pn−1 · · · L2P2L1P1A = U

It can be shown (we omit the details here, see Trefethen & Bau)
that this can be rewritten as

PA = LU

where3 P ≡ Pn−1 · · ·P2P1

Theorem: Gaussian elimination with partial pivoting produces
nonsingular factors L and U if and only if A is nonsingular.

3The L matrix here is lower triangular, but not the same as L in the
non-pivoting case: we have to account for the row swaps

Partial Pivoting

Pseudocode for LU factorization with partial pivoting (blue text is
new):

1: U = A, L = I, P = I

2: for j = 1 : n − 1 do

3: Select i(≥ j) that maximizes |uij |
4: Interchange rows of U: u(j ,j :n) ↔ u(i ,j :n)
5: Interchange rows of L: ℓ(j ,1:j−1) ↔ ℓ(i ,1:j−1)

6: Interchange rows of P : p(j ,:) ↔ p(i ,:)
7: for i = j + 1 : n do

8: ℓij = uij/ujj
9: for k = j : n do

10: uik = uik − ℓijujk
11: end for

12: end for

13: end for

Again this requires ∼ 2
3n

3 floating point operations

Partial Pivoting: Solve Ax = b

To solve Ax = b using the factorization PA = LU:

◮ Multiply through by P to obtain PAx = LUx = Pb

◮ Solve Ly = Pb using forward substitution

◮ Then solve Ux = y using back substitution

Partial Pivoting in Python

Python’s scipy.linalg.lu function can do LU factorization with
pivoting.

Python 2.7.5 (default, Mar 9 2014, 22:15:05)

[GCC 4.2.1 Compatible Apple LLVM 5.0 (clang-500.0.68)] on darwin

Type "help", "copyright", "credits" or "license" for more information.

>>> import numpy as np

>>> import scipy.linalg

>>> a=np.random.random((4,4))

>>> a

array([[0.30178809, 0.09895414, 0.75341645, 0.55745407],

[0.08879282, 0.97137694, 0.04768167, 0.28140464],

[0.87253281, 0.66021495, 0.4941091 , 0.52966743],

[0.7990001 , 0.45251929, 0.55493106, 0.15781707]])

>>> (p,l,u)=scipy.linalg.lu(a)

>>> p

array([[0., 0., 1., 0.],

[0., 1., 0., 0.],

[1., 0., 0., 0.],

[0., 0., 0., 1.]])

>>> l

array([[1. , 0. , 0. , 0.],

[0.10176445, 1. , 0. , 0.],

[0.34587592, -0.14310957, 1. , 0.],

[0.91572499, -0.16816814, 0.17525841, 1.]])

>>> u

array([[0.87253281, 0.66021495, 0.4941091 , 0.52966743],

[0. , 0.90419053, -0.00260107, 0.22750332],

[0. , 0. , 0.58214377, 0.40681276],

[0. , 0. , 0. , -0.36025118]])

Stability of Gaussian Elimination

Numerical stability of Gaussian Elimination has been an important
research topic since the 1940s

Major figure in this field: James H. Wilkinson (English numerical
analyst, 1919–1986)

Showed that for Ax = b with A ∈ R
n×n:

◮ Gaussian elimination without partial pivoting is numerically
unstable (as we’ve already seen)

◮ Gaussian elimination with partial pivoting satisfies

‖r‖
‖A‖‖x‖ ≤ 2n−1n2ǫmach

Stability of Gaussian Elimination

That is, pathological cases exist where the relative residual,
‖r‖/‖A‖‖x‖, grows exponentially with n due to rounding error

Worst case behavior of Gaussian Elimination with partial pivoting is
explosive instability but such pathological cases are extremely rare!

In over 50 years of Scientific Computation, instability has only been
encountered due to deliberate construction of pathological cases

In practice, Gaussian elimination is stable in the sense that it
produces a small relative residual

Stability of Gaussian Elimination

In practice, we typically obtain

‖r‖
‖A‖‖x‖ . nǫmach,

i.e. grows only linearly with n, and is scaled by ǫmach

Combining this result with our inequality:

‖∆x‖
‖x‖ ≤ κ(A)

‖r‖
‖A‖‖x‖

implies that in practice Gaussian elimination gives small error for
well-conditioned problems!

Cholesky Factorization

Cholesky factorization

Suppose that A ∈ R
n×n is an “SPD” matrix, i.e.:

◮ Symmetric: AT = A

◮ Positive Definite: for any v 6= 0, vTAv > 0

Then the LU factorization of A can be arranged so that U = LT ,
i.e. A = LLT (but in this case L may not have 1s on the diagonal)

Consider the 2× 2 case:

[
a11 a21
a21 a22

]
=

[
ℓ11 0
ℓ21 ℓ22

] [
ℓ11 ℓ21
0 ℓ22

]

Equating entries gives

ℓ11 =
√
a11, ℓ21 = a21/ℓ11, ℓ22 =

√
a22 − ℓ221

Cholesky factorization

This approach of equating entries can be used to derive the
Cholesky factorization for the general n × n case

1: L = A

2: for j = 1 : n do

3: ℓjj =
√
ℓjj

4: for i = j + 1 : n do

5: ℓij = ℓij/ℓjj
6: end for

7: for k = j + 1 : n do

8: for i = k : n do

9: ℓik = ℓik − ℓijℓkj
10: end for

11: end for

12: end for

Cholesky factorization

Notes on Cholesky factorization:

◮ For an SPD matrix A, Cholesky factorization is numerically
stable and does not require any pivoting

◮ Operation count: ∼ 1
3n

3 operations in total, i.e. about half as
many as Gaussian elimination

◮ Only need to store L, hence uses less memory than LU

QR Factorization

QR Factorization

A square matrix Q ∈ R
n×n is called orthogonal if its columns and

rows are orthonormal vectors

Equivalently, QTQ = QQT = I

Orthogonal matrices preserve the Euclidean norm of a vector, i.e.

‖Qv‖22 = vTQTQv = vT v = ‖v‖22

Hence, geometrically, we picture orthogonal matrices as reflection

or rotation operators

Orthogonal matrices are very important in scientific computing,

norm-preservation implies no amplification of numerical error!

QR Factorization

A matrix A ∈ R
m×n, m ≥ n, can be factorized into

A = QR

where

◮ Q ∈ R
m×m is orthogonal

◮ R ≡

[

R̂

0

]

∈ R
m×n

◮ R̂ ∈ R
n×n is upper-triangular

QR is very good for solving overdetermined linear least-squares

problems, Ax ≃ b 4

4QR can also be used to solve a square system Ax = b, but requires ∼ 2×

as many operations as Gaussian elimination hence not the standard choice

QR Factorization

To see why, consider the 2-norm of the least squares residual:

‖r(x)‖22 = ‖b − Ax‖22 = ‖b − Q

[
R̂

0

]
x‖22

= ‖QT

(
b − Q

[
R̂

0

]
x

)
‖22

= ‖QTb −

[
R̂

0

]
x‖22

(We used the fact that ‖QT z‖2 = ‖z‖2 in the second line)

QR Factorization

Then, let QTb = [c1, c2]
T where c1 ∈ R

n, c2 ∈ R
m−n, so that

‖r(x)‖22 = ‖c1 − R̂x‖22 + ‖c2‖
2
2

Question: Based on this expression, how do we minimize ‖r(x)‖2?

QR Factorization

Answer: We can’t influence the second term, ‖c2‖
2
2, since it

doesn’t contain an x

Hence we minimize ‖r(x)‖22 by making the first term zero

That is, we solve the n× n triangular system R̂x = c1 — this what
Python does in its lstsq function for solving least squares

Also, this tells us that min
x∈Rn

‖r(x)‖2 = ‖c2‖2

QR Factorization

Recall that solving linear least-squares via the normal equations
requires solving a system with the matrix ATA

But using the normal equations directly is problematic since
cond(ATA) = cond(A)2 (this is a consequence of the SVD)

The QR approach avoids this condition-number-squaring effect and
is much more numerically stable!

QR Factorization

How do we compute the QR Factorization?

There are three main methods

◮ Gram–Schmidt Orthogonalization

◮ Householder Triangularization

◮ Givens Rotations

We will cover Gram–Schmidt and Givens rotations in class

Gram–Schmidt Orthogonalization

Suppose A ∈ R
m×n, m ≥ n

One way to picture the QR factorization is to construct a sequence
of orthonormal vectors q1, q2, . . . such that

span{q1, q2, . . . , qj} = span{a(:,1), a(:,2), . . . , a(:,j)}, j = 1, . . . , n

We seek coefficients rij such that

a(:,1) = r11q1,

a(:,2) = r12q1 + r22q2,

...

a(:,n) = r1nq1 + r2nq2 + · · ·+ rnnqn.

This can be done via the Gram–Schmidt process, as we’ll discuss
shortly

Gram–Schmidt Orthogonalization

In matrix form we have:












a(:,1) a(:,2) · · · a(:,n)













=













q1 q2 · · · qn























r11 r12 · · · r1n

r22 r2n

. . .
...
rnn











This gives A = Q̂R̂ for Q̂ ∈ R
m×n, R̂ ∈ R

n×n

This is called the reduced QR factorization of A, which is slightly
different from the definition we gave earlier

Note that for m > n, Q̂T Q̂ = I, but Q̂Q̂T 6= I (the latter is why
the full QR is sometimes nice)

Full vs Reduced QR Factorization

The full QR factorization (defined earlier)

A = QR

is obtained by appending m − n arbitrary orthonormal columns to
Q̂ to make it an m ×m orthogonal matrix

We also need to append rows of zeros to R̂ to “silence” the last

m − n columns of Q, to obtain R =

[
R̂

0

]

Full vs Reduced QR Factorization

Full QR

Reduced QR

Full vs Reduced QR Factorization

Exercise: Show that the linear least-squares solution is given by
R̂x = Q̂Tb by plugging A = Q̂R̂ into the Normal Equations

This is equivalent to the least-squares result we showed earlier
using the full QR factorization, since c1 = Q̂Tb

Full versus Reduced QR Factorization

In Python, numpy.linalg.qr gives the reduced QR factorization
by default

Python 2.7.10 (default, Feb 7 2017, 00:08:15)

[GCC 4.2.1 Compatible Apple LLVM 8.0.0 (clang-800.0.34)] on darwin

Type "help", "copyright", "credits" or "license" for more information.

>>> import numpy as np

>>> a=np.random.random((5,3))

>>> (q,r)=np.linalg.qr(a)

>>> q

array([[-0.58479903, 0.18604305, -0.21857883],

[-0.59514318, -0.34033765, -0.23588693],

[-0.26381403, 0.14702842, -0.47775682],

[-0.39324594, -0.43393772, 0.70189805],

[-0.28208948, 0.79977432, 0.41912791]])

>>> r

array([[-1.50223926, -1.44239112, -1.0813288],

[0. , 0.49087707, 0.4207912],

[0. , -0. , 0.65436304]])

Full versus Reduced QR Factorization

In Python, supplying the mode=’complete’ option gives the
complete QR factorization

Python 2.7.10 (default, Feb 7 2017, 00:08:15)

[GCC 4.2.1 Compatible Apple LLVM 8.0.0 (clang-800.0.34)] on darwin

Type "help", "copyright", "credits" or "license" for more information.

>>> import numpy as np

>>> a=np.random.random((5,3))

>>> (q,r)=np.linalg.qr(a,mode=’complete’)

>>> q

array([[-0.58479903, 0.18604305, -0.21857883, -0.18819304, -0.73498623],

[-0.59514318, -0.34033765, -0.23588693, -0.40072023, 0.56013886],

[-0.26381403, 0.14702842, -0.47775682, 0.80433265, 0.18325448],

[-0.39324594, -0.43393772, 0.70189805, 0.39138159, -0.10590212],

[-0.28208948, 0.79977432, 0.41912791, -0.06225843, 0.31818586]])

>>> r

array([[-1.50223926, -1.44239112, -1.0813288],

[0. , 0.49087707, 0.4207912],

[0. , -0. , 0.65436304],

[0. , 0. , -0.],

[0. , -0. , -0.]])

Gram–Schmidt Orthogonalization

Returning to the Gram–Schmidt process, how do we compute the
qi , i = 1, . . . , n?

In the jth step, find a unit vector qj ∈ span{a(:,1), a(:,2), . . . , a(:,j)}
that is orthogonal to span{q1, qn, . . . , qj−1}

We set

vj ≡ a(:,j) − (qT1 a(:,j))q1 − · · · − (qTj−1a(:,j))qj−1,

and then qj ≡ vj/‖vj‖2 satisfies our requirements

We can now determine the required values of rij

Gram–Schmidt Orthogonalization
We then write our set of equations for the qi as

q1 =
a(:,1)

r11
,

q2 =
a(:,2) − r12q1

r22
,

...

qn =
a(:,n) −

∑n−1
i=1 rinqi

rnn
.

Then from the definition of qj , we see that

rij = qTi a(:,j), i 6= j

|rjj | = ‖a(:,j) −

j−1∑

i=1

rijqi‖2

The sign of rjj is not determined uniquely, e.g. we could choose
rjj > 0 for each j

Classical Gram–Schmidt Process

The Gram–Schmidt algorithm we have described is provided in the
pseudocode below

1: for j = 1 : n do

2: vj = a(:,j)
3: for i = 1 : j − 1 do

4: rij = qTi a(:,j)
5: vj = vj − rijqi
6: end for

7: rjj = ‖vj‖2
8: qj = vj/rjj
9: end for

This is referred to the classical Gram–Schmidt (CGS) method

Gram–Schmidt Orthogonalization

The only way the Gram–Schmidt process can “fail” is if
|rjj | = ‖vj‖2 = 0 for some j

This can only happen if a(:,j) =
∑j−1

i=1 rijqi for some j , i.e. if
a(:,j) ∈ span{q1, qn, . . . , qj−1} = span{a(:,1), a(:,2), . . . , a(:,j−1)}

This means that columns of A are linearly dependent

Therefore, Gram–Schmidt fails =⇒ cols. of A linearly dependent

Gram–Schmidt Orthogonalization

Equivalently, by contrapositive: cols. of A linearly independent
=⇒ Gram–Schmidt succeeds

Theorem: Every A ∈ R
m×n(m ≥ n) of full rank has a unique

reduced QR factorization A = Q̂R̂ with rii > 0

The only non-uniqueness in the Gram–Schmidt process was in the
sign of rii , hence Q̂R̂ is unique if rii > 0

Gram–Schmidt Orthogonalization

Theorem: Every A ∈ R
m×n(m ≥ n) has a full QR factorization.

Case 1: A has full rank

◮ We compute the reduced QR factorization from above

◮ To make Q square we pad Q̂ with m − n arbitrary
orthonormal columns

◮ We also pad R̂ with m − n rows of zeros to get R

Case 2: A doesn’t have full rank

◮ At some point in computing the reduced QR factorization, we
encounter ‖vj‖2 = 0

◮ At this point we pick an arbitrary qj orthogonal to
span{q1, q2, . . . , qj−1} and then proceed as in Case 1

Modified Gram–Schmidt Process

The classical Gram–Schmidt process is numerically unstable!
(sensitive to rounding error, orthogonality of the qj degrades)

The algorithm can be reformulated to give the modified
Gram–Schmidt process, which is numerically more robust

Key idea: when each new qj is computed, orthogonalize each
remaining column of A against it

Modified Gram–Schmidt Process

Modified Gram–Schmidt (MGS):

1: for i = 1 : n do

2: vi = a(:,i)
3: end for

4: for i = 1 : n do

5: rii = ‖vi‖2
6: qi = vi/rii
7: for j = i + 1 : n do

8: rij = qTi vj
9: vj = vj − rijqi

10: end for

11: end for

Modified Gram–Schmidt Process

Key difference between MGS and CGS:

◮ In CGS we compute orthogonalization coefficients rij wrt the
“raw” vector a(:,j)

◮ In MGS we remove components of a(:,j) in
span{q1, q2, . . . , qi−1} before computing rij

This makes no difference mathematically: In exact arithmetic
components in span{q1, q2, . . . , qi−1} are annihilated by qTi

But in practice it reduces degradation of orthogonality of the qj
=⇒ superior numerical stability of MGS over CGS

Operation Count

Work in MGS is dominated by lines 8 and 9, the innermost loop:

rij = qTi vj

vj = vj − rijqi

First line requires m multiplications, m − 1 additions; second line
requires m multiplications, m subtractions

Hence ∼ 4m operations per single inner iteration

Hence total number of operations is asymptotic to

n∑

i=1

n∑

j=i+1

4m ∼ 4m
n∑

i=1

i ∼ 2mn2

Alternative QR computation methods

The QR factorization can also be computed using Householder
triangularization and Givens rotations.

Both methods take the approach of applying a sequence of
orthogonal matrices Q1,Q2,Q3, . . . to the matrix that successively
remove terms below the diagonal (similar to the method employed
by the LU factorization).

We will discuss Givens rotations.

A Givens rotation

For i < j and an angle θ, the elements of the m ×m Givens
rotation matrix G (i , j , θ) are

gii = c , gjj = c , gij = s, gji = −s,

gkk = 1 for k 6= i , j ,

gkl = 0 otherwise, (1)

where c = cos θ and s = sin θ.

A Givens rotation

Hence the matrix has the form

G (i , j , θ) =




1 . . . 0 . . . 0 . . . 0
...

. . .
...

. . .
...

. . .
...

0 . . . c . . . s . . . 0
...

. . .
...

. . .
...

. . .
...

0 . . . −s . . . c . . . 0
...

. . .
...

. . .
...

. . .
...

0 . . . 0 . . . 0 . . . 1




It applies a rotation within the space spanned by the ith and jth
coordinates

Effection of a Givens rotation

Consider a m × n rectangular matrix A where m ≥ n

Suppose that a1 and a2 are in the ith and jth positions in a
particular column of A

Restricting to just ith and jth dimensions, a Givens rotation
G (i , j , θ) for a particular angle θ can be applied so that

(
c s

−s c

)(
a1
a2

)
=

(
α
0

)
,

where α is non-zero, and the jth component is eliminated

Stable computation

α is given by
√

a21 + a22. We could compute

c = a1/
√
a21 + a22, s = a2/

√
a21 + a22

but this is susceptible to underflow/overflow if α is very small.

A better procedure is as follows:

◮ if |a1| > |a2|, set t = tan θ = a2/a1, and hence
c = 1√

1+t2
, s = ct.

◮ if |a2| ≥ |a1|, set τ = cot θ = a1/a2, and hence
s = 1√

1+τ2
, c = sτ .

Givens rotation algorithm

To perform the Givens procedure on a dense m × n rectangular
matrix A where m ≥ n, the following algorithm can be used:

1: R = A,Q = I

2: for k = 1 : n do

3: for j = m : k + 1 do

4: Construct G = G (j − 1, j , θ) to eliminate ajk
5: A = GA

6: Q = QGT

7: end for

8: end for

Givens rotation advantages

In general, for dense matrices, Givens rotations are not as efficient
as the other two approaches (Gram–Schmidt and Householder)

However, they are advantageous for sparse matrices, since non-zero
entries can be eliminated one-by-one. They are also amenable to
parallelization. Consider the 6× 6 matrix:




× × × × × ×
5 × × × × ×
4 6 × × × ×
3 5 7 × × ×
2 4 6 8 × ×
1 3 5 7 9 ×




The numbers represent the steps at which a particular matrix entry
can be eliminated. e.g. on step 3, elements (4, 1) and (6, 2) can be
eliminated concurrently using G (3, 4, θa) and G (5, 6, θb),
respectively, since these two matrices operate on different rows.

Singular Value Decomposition

The Singular Value Decomposition (SVD) is a very useful matrix
factorization

Motivation for SVD: image of the unit sphere, S , from any m × n

matrix is a hyperellipse

A hyperellipse is obtained by stretching the unit sphere in R
m by

factors σ1, . . . , σm in orthogonal directions u1, . . . , um

Singular Value Decomposition

For A ∈ R
2×2, we have

Singular Value Decomposition

Based on this picture, we make some definitions:

◮ Singular values: σ1, σ2, . . . , σn ≥ 0 (we typically assume
σ1 ≥ σ2 ≥ . . .)

◮ Left singular vectors: {u1, u2, . . . , un}, unit vectors in
directions of principal semiaxes of AS

◮ Right singular vectors: {v1, v2, . . . , vn}, preimages of the ui so
that Avi = σiui , i = 1, . . . , n

(The names “left” and “right” come from the formula for the SVD
below)

Singular Value Decomposition

The key equation above is that

Avi = σiui , i = 1, . . . , n

Writing this out in matrix form we get




















A

































v1 v2 · · · vn













=





















u1 u2 · · · un































σ1

σ2

. . .

σn











Or more compactly:

AV = ÛΣ̂

Singular Value Decomposition

Here

◮ Σ̂ ∈ R
n×n is diagonal with non-negative, real entries

◮ Û ∈ R
m×n with orthonormal columns

◮ V ∈ R
n×n with orthonormal columns

Therefore V is an orthogonal matrix (V TV = VV T = I), so that
we have the reduced SVD for A ∈ R

m×n:

A = ÛΣ̂V T

Singular Value Decomposition

Just as with QR, we can pad the columns of Û with m − n

arbitrary orthogonal vectors to obtain U ∈ R
m×m

We then need to “silence” these arbitrary columns by adding rows
of zeros to Σ̂ to obtain Σ

This gives the full SVD for A ∈ R
m×n:

A = UΣV T

Full vs Reduced SVD

Full SVD

Reduced SVD

Singular Value Decomposition

Theorem: Every matrix A ∈ R
m×n has a full singular value

decomposition. Furthermore:

◮ The σj are uniquely determined

◮ If A is square and the σj are distinct, the {uj} and {vj} are
uniquely determined up to sign

Singular Value Decomposition

This theorem justifies the statement that the image of the unit
sphere under any m × n matrix is a hyperellipse

Consider A = UΣV T (full SVD) applied to the unit sphere, S , in
R
n:

1. The orthogonal map V T preserves S

2. Σ stretches S into a hyperellipse aligned with the canonical
axes ej

3. U rotates or reflects the hyperellipse without changing its
shape

SVD in Python

Python’s numpy.linalg.svd function computes the full SVD of a
matrix

Python 2.7.8 (default, Jul 13 2014, 17:11:32)

[GCC 4.2.1 Compatible Apple LLVM 5.1 (clang-503.0.40)] on darwin

Type "help", "copyright", "credits" or "license" for more information.

>>> import numpy as np

>>> a=np.random.random((4,2))

>>> (u,s,v)=np.linalg.svd(a)

>>> u

array([[-0.38627868, 0.3967265 , -0.44444737, -0.70417569],

[-0.4748846 , -0.845594 , -0.23412286, -0.06813139],

[-0.47511682, 0.05263149, 0.84419597, -0.24254299],

[-0.63208972, 0.35328288, -0.18704595, 0.663828]])

>>> s

array([1.56149162, 0.24419604])

>>> v

array([[-0.67766849, -0.73536754],

[-0.73536754, 0.67766849]])

SVD in Python

The full matrices=0 option computes the reduced SVD

Python 2.7.8 (default, Jul 13 2014, 17:11:32)

[GCC 4.2.1 Compatible Apple LLVM 5.1 (clang-503.0.40)] on darwin

Type "help", "copyright", "credits" or "license" for more information.

>>> import numpy as np

>>> a=np.random.random((4,2))

>>> (u,s,v)=np.linalg.svd(a,full_matrices=0)

>>> u

array([[-0.38627868, 0.3967265],

[-0.4748846 , -0.845594],

[-0.47511682, 0.05263149],

[-0.63208972, 0.35328288]])

>>> s

array([1.56149162, 0.24419604])

>>> v

array([[-0.67766849, -0.73536754],

[-0.73536754, 0.67766849]])

Matrix Properties via the SVD

• The rank of A is r , the number of nonzero singular values2

Proof: In the full SVD A = UΣV T , U and V T have full rank,
hence it follows from linear algebra that rank(A) = rank(Σ)

• image(A) = span{u1, . . . , ur} and null(A) = span{vr+1, . . . , vn}

Proof: This follows from A = UΣV T and

image(Σ) = span{e1, . . . , er} ∈ R
m

null(Σ) = span{er+1, . . . , en} ∈ R
n

2This also gives us a good way to define rank in finite precision: the number
of singular values larger than some (small) tolerance

Matrix Properties via the SVD

• ‖A‖2 = σ1

Proof: Recall that ‖A‖2 ≡ max‖v‖2=1 ‖Av‖2. Geometrically, we see
that ‖Av‖2 is maximized if v = v1 and Av = σ1u1.

• The singular values of A are the square roots of the eigenvalues
of ATA or AAT

Proof: (Analogous for AAT)

ATA = (UΣV T)T (UΣV T) = VΣUTUΣV T = V (ΣTΣ)V T ,

hence (ATA)V = V (ΣTΣ), or (ATA)v(:,j) = σ2
j v(:,j)

Matrix Properties via the SVD

The pseudoinverse, A+, can be defined more generally in terms of
the SVD

Define pseudoinverse of a scalar σ to be 1/σ if σ 6= 0 and zero
otherwise

Define pseudoinverse of a (possibly rectangular) diagonal matrix as
transpose of the matrix and taking pseudoinverse of each entry

Pseudoinverse of A ∈ R
m×n is defined as

A+ = VΣ+UT

A+ exists for any matrix A, and it captures our definitions of
pseudoinverse from previously

Matrix Properties via the SVD

We generalize the condition number to rectangular matrices via
the definition κ(A) = ‖A‖‖A+‖

We can use the SVD to compute the 2-norm condition number:

◮ ‖A‖2 = σmax

◮ Largest singular value of A+ is 1/σmin so that
‖A+‖2 = 1/σmin

Hence κ(A) = σmax/σmin

Matrix Properties via the SVD

These results indicate the importance of the SVD, both
theoretically and as a computational tool

Algorithms for calculating the SVD are an important topic in
Numerical Linear Algebra, but outside scope of this course

Requires ∼ 4mn2 − 4
3n

3 operations

For more details on algorithms, see Trefethen & Bau, or Golub &
van Loan

2

Eigenvalue Problems

3

Eigenvalues and Eigenvectors

◮ Standard eigenvalue problem : Given n × n matrix A, find scalar λ
and nonzero vector x such that

Ax = λ x

◮ λ is eigenvalue, and x is corresponding eigenvector

◮ λ may be complex even if A is real

◮ Spectrum = λ(A) = set of all eigenvalues of A

◮ Spectral radius = ρ(A) = max{|λ| : λ ∈ λ(A)}

4

Geometric Interpretation

◮ Matrix expands or shrinks any vector lying in direction of eigenvector
by scalar factor

◮ Scalar expansion or contraction factor is given by corresponding
eigenvalue λ

◮ Eigenvalues and eigenvectors decompose complicated behavior of
general linear transformation into simpler actions

5

Eigenvalue Problems

◮ Eigenvalue problems occur in many areas of science and engineering,
such as structural analysis

◮ Eigenvalues are also important in analyzing numerical methods

◮ Theory and algorithms apply to complex matrices as well as real
matrices

◮ With complex matrices, we use conjugate transpose, AH , instead of
usual transpose, AT

6

Examples: Eigenvalues and Eigenvectors

◮ A =

[

1 0
0 2

]

: λ1 = 1, x1 =

[

1
0

]

, λ2 = 2, x2 =

[

0
1

]

◮ A =

[

1 1
0 2

]

: λ1 = 1, x1 =

[

1
0

]

, λ2 = 2, x2 =

[

1
1

]

◮ A =

[

3 −1
−1 3

]

: λ1 = 2, x1 =

[

1
1

]

, λ2 = 4, x2 =

[

1
−1

]

◮ A =

[

1.5 0.5
0.5 1.5

]

: λ1 = 2, x1 =

[

1
1

]

, λ2 = 1, x2 =

[

−1
1

]

◮ A =

[

0 1
−1 0

]

: λ1 = i , x1 =

[

1
i

]

, λ2 = −i , x2 =

[

i

1

]

where i =
√
−1

7

Characteristic Polynomial and Multiplicity

8

Characteristic Polynomial

◮ Equation Ax = λx is equivalent to

(A − λI)x = 0

which has nonzero solution x if, and only if, its matrix is singular

◮ Eigenvalues of A are roots λi of characteristic polynomial

det(A − λI) = 0

in λ of degree n

◮ Fundamental Theorem of Algebra implies that n × n matrix A

always has n eigenvalues, but they may not be real nor distinct

◮ Complex eigenvalues of real matrix occur in complex conjugate
pairs: if α+ iβ is eigenvalue of real matrix, then so is α− iβ, where
i =

√
−1

9

Example: Characteristic Polynomial

◮ Characteristic polynomial of previous example matrix is

det

([

3 −1
−1 3

]

− λ

[

1 0
0 1

])

=

det

([

3− λ −1
−1 3− λ

])

=

(3− λ)(3− λ)− (−1)(−1) = λ2 − 6λ+ 8 = 0

so eigenvalues are given by

λ =
6±

√
36− 32

2
, or λ1 = 2, λ2 = 4

10

Companion Matrix

◮ Monic polynomial

p(λ) = c0 + c1λ+ · · ·+ cn−1λ
n−1 + λn

is characteristic polynomial of companion matrix

Cn =















0 0 · · · 0 −c0
1 0 · · · 0 −c1
0 1 · · · 0 −c2
...

...
. . .

...
...

0 0 · · · 1 −cn−1















◮ Roots of polynomial of degree > 4 cannot always computed in finite
number of steps

◮ So in general, computation of eigenvalues of matrices of order > 4
requires (theoretically infinite) iterative process

11

Characteristic Polynomial, continued

◮ Computing eigenvalues using characteristic polynomial is not
recommended because of

◮ work in computing coefficients of characteristic polynomial

◮ sensitivity of coefficients of characteristic polynomial

◮ work in solving for roots of characteristic polynomial

◮ Characteristic polynomial is powerful theoretical tool but usually not
useful computationally

12

Example: Characteristic Polynomial

◮ Consider

A =

[

1 ǫ

ǫ 1

]

where ǫ is positive number slightly smaller than
√
ǫmach

◮ Exact eigenvalues of A are 1 + ǫ and 1− ǫ

◮ Computing characteristic polynomial in floating-point arithmetic, we
obtain

det(A − λI) = λ2 − 2λ+ (1− ǫ2) = λ2 − 2λ+ 1

which has 1 as double root

◮ Thus, eigenvalues cannot be resolved by this method even though
they are distinct in working precision

13

Multiplicity and Diagonalizability

◮ Multiplicity is number of times root appears when polynomial is
written as product of linear factors

◮ Simple eigenvalue has multiplicity 1

◮ Defective matrix has eigenvalue of multiplicity k > 1 with fewer
than k linearly independent corresponding eigenvectors

◮ Nondefective matrix A has n linearly independent eigenvectors, so it
is diagonalizable

X
−1

AX = D

where X is nonsingular matrix of eigenvectors

14

Eigenspaces and Invariant Subspaces

◮ Eigenvectors can be scaled arbitrarily: if Ax = λx , then
A(γx) = λ(γx) for any scalar γ, so γx is also eigenvector
corresponding to λ

◮ Eigenvectors are usually normalized by requiring some norm of
eigenvector to be 1

◮ Eigenspace = Sλ = {x : Ax = λx}

◮ Subspace S of Rn (or Cn) is invariant if AS ⊆ S

◮ For eigenvectors x1 · · · xp, span([x1 · · · xp]) is invariant subspace

19

Properties of Eigenvalue Problems

Properties of eigenvalue problem affecting choice of algorithm and

software

◮ Are all eigenvalues needed, or only a few?

◮ Are only eigenvalues needed, or are corresponding eigenvectors also

needed?

◮ Is matrix real or complex?

◮ Is matrix relatively small and dense, or large and sparse?

◮ Does matrix have any special properties, such as symmetry, or is it

general matrix?

24

Computing Eigenvalues and Eigenvectors

25

Problem Transformations

◮ Shift : If Ax = λx and σ is any scalar, then (A − σI)x = (λ− σ)x ,
so eigenvalues of shifted matrix are shifted eigenvalues of original
matrix

◮ Inversion : If A is nonsingular and Ax = λx with x 6= 0, then λ 6= 0
and A−1x = (1/λ)x , so eigenvalues of inverse are reciprocals of
eigenvalues of original matrix

◮ Powers : If Ax = λx , then Akx = λkx , so eigenvalues of power of
matrix are same power of eigenvalues of original matrix

◮ Polynomial : If Ax = λx and p(t) is polynomial, then
p(A)x = p(λ)x , so eigenvalues of polynomial in matrix are values of
polynomial evaluated at eigenvalues of original matrix

26

Similarity Transformation

◮ B is similar to A if there is nonsingular matrix T such that

B = T−1A T

◮ Then

By = λy ⇒ T−1ATy = λy ⇒ A(Ty) = λ(Ty)

so A and B have same eigenvalues, and if y is eigenvector of B,
then x = Ty is eigenvector of A

◮ Similarity transformations preserve eigenvalues, and eigenvectors are
easily recovered

27

Example: Similarity Transformation

◮ From eigenvalues and eigenvectors for previous example,

[

3 −1
−1 3

] [

1 1
1 −1

]

=

[

1 1
1 −1

] [

2 0
0 4

]

and hence
[

0.5 0.5
0.5 −0.5

] [

3 −1
−1 3

] [

1 1
1 −1

]

=

[

2 0
0 4

]

◮ So original matrix is similar to diagonal matrix, and eigenvectors
form columns of similarity transformation matrix

28

Diagonal Form

◮ Eigenvalues of diagonal matrix are diagonal entries, and eigenvectors
are columns of identity matrix

◮ Diagonal form is desirable in simplifying eigenvalue problems for
general matrices by similarity transformations

◮ But not all matrices are diagonalizable by similarity transformation

◮ Closest one can get, in general, is Jordan form, which is nearly
diagonal but may have some nonzero entries on first superdiagonal,
corresponding to one or more multiple eigenvalues

29

Triangular Form

◮ Any matrix can be transformed into triangular (Schur) form by
similarity, and eigenvalues of triangular matrix are diagonal entries

◮ Eigenvectors of triangular matrix less obvious, but still
straightforward to compute

◮ If

A − λI =





U11 u U13

0 0 vT

O 0 U33





is triangular, then U11y = u can be solved for y , so that

x =





y

−1
0





is corresponding eigenvector

30

Block Triangular Form

◮ If

A =











A11 A12 · · · A1p

A22 · · · A2p

. . .
...

App











with square diagonal blocks, then

λ(A) =

p
⋃

j=1

λ(Ajj)

so eigenvalue problem breaks into p smaller eigenvalue problems

◮ Real Schur form has 1× 1 diagonal blocks corresponding to real
eigenvalues and 2× 2 diagonal blocks corresponding to pairs of
complex conjugate eigenvalues

31

Forms Attainable by Similarity

A T B

distinct eigenvalues nonsingular diagonal
real symmetric orthogonal real diagonal
complex Hermitian unitary real diagonal
normal unitary diagonal
arbitrary real orthogonal real block triangular

(real Schur)
arbitrary unitary upper triangular

(Schur)
arbitrary nonsingular almost diagonal

(Jordan)

◮ Given matrix A with indicated property, matrices B and T exist
with indicated properties such that B = T−1AT

◮ If B is diagonal or triangular, eigenvalues are its diagonal entries

◮ If B is diagonal, eigenvectors are columns of T

32

Power Iteration

33

Power Iteration

◮ Simplest method for computing one eigenvalue-eigenvector pair is
power iteration, which repeatedly multiplies matrix times initial
starting vector

◮ Assume A has unique eigenvalue of maximum modulus, say λ1, with
corresponding eigenvector v1

◮ Then, starting from nonzero vector x0, iteration scheme

xk = Axk−1

converges to multiple of eigenvector v1 corresponding to dominant

eigenvalue λ1

34

Convergence of Power Iteration

◮ To see why power iteration converges to dominant eigenvector,
express starting vector x0 as linear combination

x0 =

n
∑

i=1

αivi

where vi are eigenvectors of A

◮ Then
xk = Axk−1 = A2xk−2 = · · · = Akx0 =

n
∑

i=1

λk
i αivi = λk

1

(

α1v1 +
n
∑

i=2

(λi/λ1)
kαivi

)

◮ Since |λi/λ1| < 1 for i > 1, successively higher powers go to zero,
leaving only component corresponding to v1

35

Example: Power Iteration

◮ Ratio of values of given component of xk from one iteration to next
converges to dominant eigenvalue λ1

◮ For example, if A =

[

1.5 0.5
0.5 1.5

]

and x0 =

[

0
1

]

, we obtain

k xT
k ratio

0 0.0 1.0
1 0.5 1.5 1.500
2 1.5 2.5 1.667
3 3.5 4.5 1.800
4 7.5 8.5 1.889
5 15.5 16.5 1.941
6 31.5 32.5 1.970
7 63.5 64.5 1.985
8 127.5 128.5 1.992

◮ Ratio is converging to dominant eigenvalue, which is 2

36

Limitations of Power Iteration

Power iteration can fail for various reasons

◮ Starting vector may have no component in dominant eigenvector v1
(i.e., α1 = 0) — not problem in practice because rounding error
usually introduces such component in any case

◮ There may be more than one eigenvalue having same (maximum)
modulus, in which case iteration may converge to linear combination
of corresponding eigenvectors

◮ For real matrix and starting vector, iteration can never converge to
complex vector

37

Normalized Power Iteration

◮ Geometric growth of components at each iteration risks eventual
overflow (or underflow if λ1 < 1)

◮ Approximate eigenvector should be normalized at each iteration, say,
by requiring its largest component to be 1 in modulus, giving
iteration scheme

yk = Axk−1

xk = yk/‖yk‖∞

◮ With normalization, ‖yk‖∞ → |λ1|, and xk → v1/‖v1‖∞

38

Example: Normalized Power Iteration

◮ Repeating previous example with normalized scheme,

k xT
k ‖yk‖∞

0 0.000 1.0
1 0.333 1.0 1.500
2 0.600 1.0 1.667
3 0.778 1.0 1.800
4 0.882 1.0 1.889
5 0.939 1.0 1.941
6 0.969 1.0 1.970
7 0.984 1.0 1.985
8 0.992 1.0 1.992

〈 interactive example 〉

39

Geometric Interpretation

◮ Behavior of power iteration depicted geometrically

◮ Initial vector x0 = v1 + v2 contains equal components in
eigenvectors v1 and v2 (dashed arrows)

◮ Repeated multiplication by A causes component in v1
(corresponding to larger eigenvalue, 2) to dominate, so sequence of
vectors xk converges to v1

40

Power Iteration with Shift

◮ Convergence rate of power iteration depends on ratio |λ2/λ1|, where
λ2 is eigenvalue having second largest modulus

◮ May be possible to choose shift, A − σI , such that

∣

∣

∣

∣

λ2 − σ

λ1 − σ

∣

∣

∣

∣

<

∣

∣

∣

∣

λ2

λ1

∣

∣

∣

∣

so convergence is accelerated

◮ Shift must then be added to result to obtain eigenvalue of original
matrix

◮ In earlier example, for instance, if we pick shift of σ = 1, (which is
equal to other eigenvalue) then ratio becomes zero and method
converges in one iteration

◮ In general, we would not be able to make such fortuitous choice, but
shifts can still be extremely useful in some contexts, as we will see
later

41

Inverse and Rayleigh Quotient Iterations

42

Inverse Iteration

◮ To compute smallest eigenvalue of matrix rather than largest, can
make use of fact that eigenvalues of A−1 are reciprocals of those of
A, so smallest eigenvalue of A is reciprocal of largest eigenvalue of
A−1

◮ This leads to inverse iteration scheme

Ayk = xk−1

xk = yk/‖yk‖∞

which is equivalent to power iteration applied to A−1

◮ Inverse of A not computed explicitly, but factorization of A used to
solve system of linear equations at each iteration

◮ Inverse iteration converges to eigenvector corresponding to smallest

eigenvalue of A

◮ Eigenvalue obtained is dominant eigenvalue of A−1, and hence its
reciprocal is smallest eigenvalue of A in modulus

43

Example: Inverse Iteration

◮ Applying inverse iteration to previous example to compute smallest
eigenvalue yields sequence

k xT
k ‖yk‖∞

0 0.000 1.0
1 −0.333 1.0 0.750
2 −0.600 1.0 0.833
3 −0.778 1.0 0.900
4 −0.882 1.0 0.944
5 −0.939 1.0 0.971
6 −0.969 1.0 0.985

which is indeed converging to 1 (which is its own reciprocal in this
case)

〈 interactive example 〉

44

Inverse Iteration with Shift

◮ As before, shifting strategy, working with A − σI for some scalar σ,
can greatly improve convergence

◮ Inverse iteration is particularly useful for computing eigenvector
corresponding to approximate eigenvalue, since it converges rapidly
when applied to shifted matrix A − λI , where λ is approximate
eigenvalue

◮ Inverse iteration is also useful for computing eigenvalue closest to
given value β, since if β is used as shift, then desired eigenvalue
corresponds to smallest eigenvalue of shifted matrix

45

Rayleigh Quotient

◮ Given approximate eigenvector x for real matrix A, determining best
estimate for corresponding eigenvalue λ can be considered as n × 1
linear least squares approximation problem

xλ ∼= Ax

◮ From normal equation xTxλ = xTAx , least squares solution is given
by

λ =
xTAx

xTx

◮ This quantity, known as Rayleigh quotient, has many useful
properties

46

Example: Rayleigh Quotient

◮ Rayleigh quotient can accelerate convergence of iterative methods
such as power iteration, since Rayleigh quotient xT

k Axk/x
T
k xk gives

better approximation to eigenvalue at iteration k than does basic
method alone

◮ For previous example using power iteration, value of Rayleigh
quotient at each iteration is shown below

k xT
k ‖yk‖∞ xT

k Axk/x
T
k xk

0 0.000 1.0
1 0.333 1.0 1.500 1.500
2 0.600 1.0 1.667 1.800
3 0.778 1.0 1.800 1.941
4 0.882 1.0 1.889 1.985
5 0.939 1.0 1.941 1.996
6 0.969 1.0 1.970 1.999

47

Rayleigh Quotient Iteration

◮ Given approximate eigenvector, Rayleigh quotient yields good
estimate for corresponding eigenvalue

◮ Conversely, inverse iteration converges rapidly to eigenvector if
approximate eigenvalue is used as shift, with one iteration often
sufficing

◮ These two ideas combined in Rayleigh quotient iteration

σk = xT
k Axk/x

T
k xk

(A − σk I)yk+1 = xk

xk+1 = yk+1/‖yk+1‖∞

starting from given nonzero vector x0

48

Rayleigh Quotient Iteration, continued

◮ Rayleigh quotient iteration is especially effective for symmetric
matrices and usually converges very rapidly

◮ Using different shift at each iteration means matrix must be
refactored each time to solve linear system, so cost per iteration is
high unless matrix has special form that makes factorization easy

◮ Same idea also works for complex matrices, for which transpose is
replaced by conjugate transpose, so Rayleigh quotient becomes
xHAx/xHx

49

Example: Rayleigh Quotient Iteration

◮ Using same matrix as previous examples and randomly chosen
starting vector x0, Rayleigh quotient iteration converges in two
iterations

k xT
k σk

0 0.807 0.397 1.896
1 0.924 1.000 1.998
2 1.000 1.000 2.000

50

Deflation

51

Deflation

◮ After eigenvalue λ1 and corresponding eigenvector x1 have been
computed, then additional eigenvalues λ2, . . . , λn of A can be
computed by deflation, which effectively removes known eigenvalue

◮ Let H be any nonsingular matrix such that Hx1 = αe1, scalar
multiple of first column of identity matrix (Householder
transformation is good choice for H)

◮ Then similarity transformation determined by H transforms A into
form

HAH−1 =

[

λ1 bT

0 B

]

where B is matrix of order n − 1 having eigenvalues λ2, . . . , λn

52

Deflation, continued

◮ Thus, we can work with B to compute next eigenvalue λ2

◮ Moreover, if y2 is eigenvector of B corresponding to λ2, then

x2 = H−1

[

α
y2

]

, where α =
bTy2

λ2 − λ1

is eigenvector corresponding to λ2 for original matrix A, provided
λ1 6= λ2

◮ Process can be repeated to find additional eigenvalues and
eigenvectors

53

Deflation, continued

◮ Alternative approach lets u1 be any vector such that uT
1 x1 = λ1

◮ Then A − x1u
T
1 has eigenvalues 0, λ2, . . . , λn

◮ Possible choices for u1 include

◮ u1 = λ1x1, if A is symmetric and x1 is normalized so that ‖x1‖2 = 1

◮ u1 = λ1y1, where y1 is corresponding left eigenvector (i.e.,
AT y1 = λ1y1) normalized so that yT

1 x1 = 1

◮ u1 = ATek , if x1 is normalized so that ‖x1‖∞ = 1 and kth
component of x1 is 1

	Eigenvalue Problems
	Characteristic Polynomial and Multiplicity
	Computing Eigenvalues and Eigenvectors
	Power Iteration
	Inverse and Rayleigh Quotient Iterations
	Deflation

