LU Factorization

Solving Ax = b

Familiar idea for solving Ax = b is to use Gaussian elimination to
transform Ax = b to a triangular system

What is a triangular system?
» Upper triangular matrix U € R™": if i > j then uj; =0
> Lower triangular matrix L € R™": if i < j then £;; =0

Question: Why is triangular good?

Answer: Because triangular systems are easy to solve!

Solving Ax = b

”

Suppose we have Ux = b, then we can use “back-substitution

Xn = bn/Unn
Xp—1 = (bn—l - Un—l,nxn)/un—l,n—l
Xj = Z ujex |/ ujj

k=j+1

Solving Ax = b

Similarly, we can use forward substitution for a lower triangular
system Lx = b

x1 = bi/tn
xp = (bp— lorx1)/l22

: .
X = (bj - Z@kﬂ) /4
k=1

Solving Ax = b

Back and forward substitution can be implemented with doubly
nested for-loops

The computational work is dominated by evaluating the sum
C 1 |
Zi:lgjkxkr J = 1, N

We have j — 1 additions and multiplications in this loop for each
Jj=1,...,n, i.e. 2(j — 1) operations for each j

Hence the total number of floating point operations in back or
forward substitution is asymptotic to:

n
23 j=2n(n+1)/2~ n?
j=1

Solving Ax = b

Here “~" refers to asymptotic behavior, e.g.

f(n)

f(n) ~ n* < lim =1

n—oo N2

We often also use “big-O" notation, e.g. for remainder terms in
Taylor expansion

f(x) = O(g(x)) if there exists M € R, xo € R such that
|f(x)] < M|g(x)| for all x > xo

In the present context we prefer “~" since it indicates the correct
scaling of the leading-order term

e.g. let f(n) = n?/4 + n, then f(n) = O(n?), whereas f(n) ~ n?/4

Solving Ax = b

So transforming Ax = b to a triangular system is a sensible goal,
but how do we achieve it?

Observation: If we premultiply Ax = b by a nonsingular matrix M
then the new system MAx = Mb has the same solution

Hence, want to devise a sequence of matrices My, My, --- , M,_1
such that MA= M,_1--- M{A = U is upper triangular

This process is Gaussian Elimination, and gives the transformed
system Ux = Mb

LU Factorization

We will show shortly that it turns out that if MA = U, then we
have that L = M~! is lower triangular

Therefore we obtain A = LU: product of lower and upper
triangular matrices

This is the LU factorization of A

LU Factorization

LU factorization is the most common way of solving linear systems!
Ax=b<= LUx=b
Let y = Ux, then Ly = b: solve for y via forward substitution3

Then solve for Ux = y via back substitution

3y = L™'b is the transformed right-hand side vector (i.e. Mb from earlier)
that we are familiar with from Gaussian elimination

LU Factorization

LU factorization is the most common way of solving linear systems!
Ax=b<= LUx=b
Let y = Ux, then Ly = b: solve for y via forward substitution!

Then solve for Ux = y via back substitution

'y = L7'b is the transformed right-hand side vector (i.e. Mb from earlier)
that we are familiar with from Gaussian elimination

LU Factorization

Next question: How should we determine My, Mo, -+ M,_17?

We need to be able to annihilate selected entries of A, below the
diagonal in order to obtain an upper-triangular matrix

To do this, we use “elementary elimination matrices”

Let L; denote j* elimination matrix (we use “L;" rather than “M;"
from now on as elimination matrices are lower triangular)

LU Factorization

Let X(= Lj—1Lj—>--- L1A) denote matrix at the start of step j,
and let x. jy € R” denote column j of X

Then we define L; such that

F1.. 0 0 - 077 xj 7 [xy]
I 1 0 --- 0 Xj| | X
Lixe.j = 0 -+ —xq1/x 1 -+ 0 Xi1j | | O

L 0 _an/Xjf 0 1 4 L Xnj . L 0 -

LU Factorization

To simplify notation, we let £; = 2L in order to obtain
JJ

1. 0 0 --- 01
L= 0 1 0 0
7710 b1 1 0

L O L 0 1]

LU Factorization

Using elementary elimination matrices we can reduce A to upper
triangular form, one column at a time

Schematically, for a 4 x 4 matrix, we have

X X X X X X X X X X X X

X X X X Ly 0 X x X Ly 0 X Xx X

X X X X 0 X x X 0 0 x X

X X X X 0 X Xx X 0 0 x X
A L;A LA

Key point: L, does not affect columns 1,2,..., k —1 of
Ly 1Lk o...L1A

LU Factorization

After n — 1 steps, we obtain the upper triangular matrix
U=L1--- LA

o O o X
o o X X
o X X X
X X X X

LU Factorization

Finally, we wish to form the factorization A = LU, hence we need
L=(Lp1--Loly) ™t = L7050 LY

This turns out to be surprisingly simple due to two strokes of luck!

First stroke of luck: LJ-_1 is obtained simply by negating the
subdiagonal entries of L;

1 0 0 0 M1 0 0
L]0 1 0 0 1|0 1 0
7] o —br1y 1 o’ 7 T |0 Girg 1

L0 Ly 0 1] Lo Ly 0

LU Factorization

Explanation: Let £; =1[0,...,0,4j11j,... ,E,,J-]T so that
LJ' =1- ﬁjejT

Now consider L;(I+ (je]):
Li(I+tle) = 01— el)A+te) = 1=l (e =1—;(e])¢
Also, (ejTEJ-) =0 (why?) so that L;(I+ KjejT) =1

By the same argument (I + EjejT)Lj =1, and hence
-1
L =1+ 4e)

LU Factorization

Next we want to form the matrix L = L;ngl e L;_ll

Note that we have

L = (L4 4)T+ faefy)
= T+ 0ef + el +4(ef Gi)el

= I+€JeJT+€J+leJ7_;_1

Interestingly, this convenient result doesn't hold for LJTJrllLfl, why?

LU Factorization

Similarly,

LflLJT—|—11 L;:2 = (I + fjejT + gj—i—l eﬁl)(l + £j+2ej74-_2)

— I+€JGJT +€j+lej7-—|—1 +€j+28j7_—’_2

That is, to compute the product L1_1L2_1 e L;}l we simply collect
the subdiagonals for j =1,2,...,n—1

LU Factorization

Hence, second stroke of luck:

L=t 0t =

_Enl

U1
031

U3

€n2

gmn—l

1_

LU Factorization

Therefore, basic LU factorization algorithm is

1. U=AL=1

2. forj=1:n—1do

33 fori=j+1:ndo
i i = ujj/ujj

5: for k=j:ndo

6: Uik = Uj — E,-jujy(
7: end for

8: end for

9: end for

Note that the entries of U are updated each iteration so at the
start of step j, U= Lj_1Lj_o--- 1A

Here line 4 comes straight from the definition /; = %
J

LU Factorization

Line 6 accounts for the effect of L; on columns k =j,j+1,...,n

of U

For k =j : n we have

LjU(:,k) =

0

1

Uik

Ujk
Ujt1,k

Unk

Uik

UJ'k
Uitk — Lir1,jUjk

Unk — LnjUjk

The vector on the right is the updated k™ column of U, which is

computed in line 6

LU Factorization

LU Factorization involves a triply-nested for-loop, hence O(n%)
calculations

Careful operation counting shows LU factorization requires ~ %n3

additions and ~ %n3 multiplications, ~ %n3 operations in total

Solving a linear system using LU

Hence to solve Ax = b, we perform the following three steps:

Step 1: Factorize A into L and U: ~ %n3

Step 2: Solve Ly = b by forward substitution: ~ n?

Step 3: Solve Ux = y by back substitution: ~ n?

Total work is dominated by Step 1, ~ %n:“

Solving a linear system using LU

An alternative approach would be to compute A~! explicitly and
evaluate x = A~1b, but this is a bad idea!

Question: How would we compute A-1?

Solving a linear system using LU

Answer: Let ai(':“’k) denote the kth column of A~1, then ai(’:“’k) must
satisfy

Aa(ly = ek

Therefore to compute A~1, we first LU factorize A, then
back/forward substitute for rhs vector ex, k =1,2,...,n

The n back/forward substitutions alone require ~ 2n° operations,
inefficient!

A rule of thumb in Numerical Linear Algebra: It is almost always a
bad idea to compute A~! explicitly

Solving a linear system using LU

Another case where LU factorization is very helpful is if we want to
solve Ax = b; for several different right-hand sides b;, i =1,... k

We incur the ~ %n3 cost only once, and then each subequent
forward /back subsitution costs only ~ 2n?

Makes a huge difference if n is large!

Stability of Gaussian Elimination

There is a problem with the LU algorithm presented above

[21]

A is nonsingular, well-conditioned (k(A) ~ 2.62) but LU
factorization fails at first step (division by zero)

Consider the matrix

Stability of Gaussian Elimination

LU factorization doesn't fail for

10720 1
A= 1

but we get

1 0 1072 1
b= [10 1 }’ U= [0 1-10%

Stability of Gaussian Elimination

Let's suppose that —10%° € T (a floating point number) and that
round(1 — 10%%) = —102°

Then in finite precision arithmetic we get

~ 1 0 ~ 10-20 1
L_[lo20 1]’ U‘{ 0 —1020}

Stability of Gaussian Elimination

Hence due to rounding error we obtain

- 1072 1
=" 7]

which is not close to

10720 1
A= 1

Then, for example, let b = [3,3]7
» Using LU, we get & = [3,3]"
» True answer is x = [0,3]"

Hence large relative error (rel. err. = 1) even though the problem
is well-conditioned

Stability of Gaussian Elimination

In this example, standard Gaussian elimination yields a large
residual

Or equivalently, it yields the exact solution to a problem
corresponding to a large input perturbation: Ab = [0,3]"

Hence unstable algorithm! In this case the cause of the large error
in x is numerical instability, not ill-conditioning

To stabilize Gaussian elimination, we need to permute rows, i.e.
perform pivoting

Pivoting

Recall the Gaussian elimination process

But we could just as easily do

X

X

X
Xj
X
X

X X X X

X X X X

X X X X

X X X X

X

o oX X

X

X X X X

X X X X

X X X X

X X X X

Partial Pivoting

The entry xj; is called the pivot, and flexibility in choosing the
pivot is essential otherwise we can't deal with:

01
=
From a numerical stability point of view, it is crucial to choose the

pivot to be the largest entry in column j: “partial pivoting”?

This ensures that each /;; entry — which acts as a multiplier in the
LU factorization process — satisfies [¢;;| <1

2Full pivoting refers to searching through columns j : n for the largest entry;
this is more expensive and only marginal benefit to stability in practice

Partial Pivoting

To maintain the triangular LU structure, we permute rows by
premultiplying by permutation matrices

X X X X X X X X X X
X X X Py Xj X X Ly Xij
X X X X X X 0
Xj X X X X X 0
Pivot selection Row interchange
In this case
1 0 0 O
0 0 0 1
Pi=10 01 0
0 1 0 O

and each P; is obtained by swapping two rows of I

X X X X

X X X X

Partial Pivoting

Therefore, with partial pivoting we obtain
Lo1Pn_q1---LbP L1 PPA=U

It can be shown (we omit the details here, see Trefethen & Bau)
that this can be rewritten as

PA= LU
where> P=P,_1--- PPy

Theorem: Gaussian elimination with partial pivoting produces
nonsingular factors L and U if and only if A is nonsingular.

3The L matrix here is lower triangular, but not the same as L in the
non-pivoting case: we have to account for the row swaps

Partial Pivoting

Pseudocode for LU factorization with partial pivoting (blue text is

new):
LU=AL=IP=I1
2. forj=1:n—1do
3: Select i(> j) that maximizes |uj|
4. Interchange rows of U: u(j.n) <* U(ij.n)
5. Interchange rows of L: £(j1.;_1) ¢ {(i1;j-1)
6: Interchange rows of P: p;.) <> p(i)
7. fori=j+1:ndo
8 L= uj/uj
9: for k=j:ndo
10: Ujx = Ujk — g,'J'Ujk
11: end for
12: end for
13: end for

Again this requires ~ %n3 floating point operations

Partial Pivoting: Solve Ax = b

To solve Ax = b using the factorization PA = LU:

> Multiply through by P to obtain PAx = LUx = Pb
» Solve Ly = Pb using forward substitution

> Then solve Ux = y using back substitution

Partial Pivoting in Python

Python's scipy.linalg.lu function can do LU factorization with
pivoting.

Python 2.7.5 (default, Mar 9 2014, 22:15:05)

[GCC 4.2.1 Compatible Apple LLVM 5.0 (clang-500.0.68)] on darwin

Type "help", "copyright", "credits" or "license" for more information.
>>> import numpy as np

>>> import scipy.linalg

>>> a=np.random.random((4,4))

>>> a

array([[0.30178809, 0.09895414, 0.75341645, 0.55745407],
[0.08879282, 0.97137694, 0.04768167, 0.28140464],
[0.87253281, 0.66021495, 0.4941091 , 0.52966743],
[0.7990001 , 0.45251929, 0.55493106, 0.157817071])

>>> (p,1,u)=scipy.linalg.lu(a)

>>> p

array([[0., 0., 1., 0.],
fo., 1., o., 0.1,
[t., o., o., 0.1,
fo., o., o., 1.1

>>> 1

array([[1. , 0. , O. , 0. 1,
[0.10176445, 1. , O. , O. 1,
[0.34587592, -0.14310957, 1. , 0. 1,
[0.91572499, -0.16816814, 0.17525841, 1. 1D

>>> u

array([[0.87253281, 0.66021495, 0.4941091 , 0.52966743],
[o , 0.90419053, -0.00260107, 0.22750332],
[o. , O. , 0.58214377, 0.40681276],
[o , 0. , 0 , -0.36025118]])

Stability of Gaussian Elimination

Numerical stability of Gaussian Elimination has been an important
research topic since the 1940s

Major figure in this field: James H. Wilkinson (English numerical
analyst, 1919-1986)

Showed that for Ax = b with A € R"*":

» Gaussian elimination without partial pivoting is numerically
unstable (as we've already seen)

» Gaussian elimination with partial pivoting satisfies

HrH 1.2
< on
Al = Cmach

Stability of Gaussian Elimination

That is, pathological cases exist where the relative residual,
IIr|l /|| All]|x|], grows exponentially with n due to rounding error

Worst case behavior of Gaussian Elimination with partial pivoting is
explosive instability but such pathological cases are extremely rare!

In over 50 years of Scientific Computation, instability has only been
encountered due to deliberate construction of pathological cases

In practice, Gaussian elimination is stable in the sense that it
produces a small relative residual

Stability of Gaussian Elimination

In practice, we typically obtain

]

S
ALl

N€mach,

i.e. grows only linearly with n, and is scaled by €nach

Combining this result with our inequality:

[|Ax]]]
< x(A)
] LAl

implies that in practice Gaussian elimination gives small error for
well-conditioned problems!

Cholesky Factorization

Cholesky factorization

Suppose that A € R™" is an “SPD" matrix, i.e.:
» Symmetric: AT = A
» Positive Definite: for any v #0, vI Av >0

Then the LU factorization of A can be arranged so that U = LT,
iie. A= LL" (but in this case L may not have 1s on the diagonal)

Consider the 2 x 2 case:

[ail al] _ [17 0] [l11]
a1 ax b1 U 0 /x»
Equating entries gives

(11 = Va1, lo = an/li1, fa=/an — 13

Cholesky factorization

This approach of equating entries can be used to derive the
Cholesky factorization for the general n x n case

fori=j+1:ndo
Ly = L/

end for

for k=j+1:ndo
fori=k:ndo

Cie = Lige — Lijly

end for

11: end for

12: end for

© o N RN

._.
e

Cholesky factorization

Notes on Cholesky factorization:
» For an SPD matrix A, Cholesky factorization is numerically
stable and does not require any pivoting

» Operation count: ~ %n3 operations in total, i.e. about half as

many as Gaussian elimination

» Only need to store L, hence uses less memory than LU

QR Factorization

QR Factorization

A square matrix @ € R™" is called orthogonal if its columns and
rows are orthonormal vectors

Equivalently, RTR=QQ7 =1
Orthogonal matrices preserve the Euclidean norm of a vector, i.e.
lQuIz3=vTQTQv=vTv=|v|3

Hence, geometrically, we picture orthogonal matrices as reflection
or rotation operators

Orthogonal matrices are very important in scientific computing,
norm-preservation implies no amplification of numerical error!

QR Factorization

A matrix A € R™*" m > n, can be factorized into

A= QR
where
» @ € R™™ js orthogonal
» R= [I(R))] e RmMxn

» ReR™"js upper-triangular

QR is very good for solving overdetermined linear least-squares
problems, Ax ~ b *

*QR can also be used to solve a square system Ax = b, but requires ~ 2x
as many operations as Gaussian elimination hence not the standard choice

QR Factorization

To see why, consider the 2-norm of the least squares residual:

A

R
I~ a3 =I5 Q| § |«

o7 (s-e £])13

— 1075 | 5 | xiB

Ir ()13

0

(We used the fact that ||@ 7 z|l2 = ||z||2 in the second line)

QR Factorization

Then, let QT b = [c1, 2] " where ¢; € R”, c; € R™", so that

2 5,112 2
IrCl2 = ller = Rxl2 + 2l

Question: Based on this expression, how do we minimize ||r(x)||27?

QR Factorization

Answer: We can't influence the second term, ||ca|3, since it
doesn’t contain an x

Hence we minimize ||r(x)||3 by making the first term zero

That is, we solve the n x n triangular system Rx = ¢; — this what
Python does in its 1stsq function for solving least squares

Also, this tells us that min [[r(x)|l2 = ||c2]|2
x€eRN

QR Factorization

Recall that solving linear least-squares via the normal equations
requires solving a system with the matrix AT A

But using the normal equations directly is problematic since
cond(AT A) = cond(A)? (this is a consequence of the SVD)

The QR approach avoids this condition-number-squaring effect and
is much more numerically stable!

QR Factorization

How do we compute the QR Factorization?

There are three main methods
» Gram-Schmidt Orthogonalization
» Householder Triangularization

» Givens Rotations

We will cover Gram—-Schmidt and Givens rotations in class

Gram-Schmidt Orthogonalization

Suppose A€ R™" m>n

One way to picture the QR factorization is to construct a sequence
of orthonormal vectors g1, go, ... such that

span{ql,qg,...,qj}—Span{a(1),3(2)» ,_[)} j:17"'7n

We seek coefficients rjj such that

a¢,1) = rniqs,
ac2) = n2q1+ n2qo,
di,n) = Nnnd1 + ronq2 + -+ rangn.

This can be done via the Gram—Schmidt process, as we'll discuss
shortly

Gram-Schmidt Orthogonalization

In matrix form we have:

ni r2 e INn
2 nn
ac,1) a(.,2) e ac,n) = (¢} qz T An

This gives A = CA?I% for @ e RmMxn, R € Rn*n

This is called the reduced QR factorization of A, which is slightly
different from the definition we gave earlier

Note that for m > n, QTQ =1, but QQT #1 (the latter is why
the full QR is sometimes nice)

Full vs Reduced QR Factorization

The full QR factorization (defined earlier)
A= QR

is obtained by appending m — n arbitrary orthonormal columns to
@ to make it an m x m orthogonal matrix

We also need to append rows of zeros to R to “silence” the last

m — n columns of @, to obtain R = [5 }

Full vs Reduced QR Factorization

Reduced QR

Full vs Reduced QR Factorization

Exercise: Show that the linear least-squares solution is given by
Rx = QT b by plugging A= QR into the Normal Equations

This is equivalent to the least-squares result we showed earlier
using the full QR factorization, since ¢; = QTh

Full versus Reduced QR Factorization

In Python, numpy.linalg.qr gives the reduced QR factorization
by default

Python 2.7.10 (default, Feb 7 2017, 00:08:15)

[GCC 4.2.1 Compatible Apple LLVM 8.0.0 (clang-800.0.34)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> import numpy as np

>>> a=np.random.random((5,3))

>>> (q,r)=np.linalg.qr(a)

>>> g

array([[-0.58479903, 0.18604305, -0.21857883],
[-0.59514318, -0.34033765, -0.23588693],
[-0.26381403, 0.14702842, -0.47775682],
[-0.39324594, -0.43393772, 0.70189805],
[-0.28208948, 0.79977432, 0.41912791]]1)

>>> r

array([[-1.50223926, -1.44239112, -1.0813288 1],

[-1
[o. , 0.49087707, 0.4207912],
[o , 0. , 0.65436304]11)

Full versus Reduced QR Factorization

In Python, supplying the mode=’complete’ option gives the
complete QR factorization

Python 2.7.10 (default, Feb 7 2017, 00:08:15)

[GCC 4.2.1 Compatible Apple LLVM 8.0.0 (clang-800.0.34)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> import numpy as np
>>> a=np.random.random((5,3))

>>> (q,r)=np.linalg.qr(a,mode=’complete’)

>>> q
array([[-0.58479903,
[-0.59514318,
[-0.26381403,
[-0.39324594,
[-0.28208948,
>>> r
array([[-1.50223926,

1
0. ,
0. ,
0 s
0

>

0.
0.
0.
0.
0.

18604305, -0.21857883, -0.18819304, -0.73498623],
34033765, -0.23588693, -0.40072023, 0.56013886],
14702842, -0.47775682, 0.80433265, 0.18325448],
43393772, 0.70189805, 0.39138159, -0.10590212],
79977432, 0.41912791, -0.06225843, 0.31818586]])

.44239112, -1.0813288],
.49087707, 0.4207912],

, 0.65436304],
» —0. 1,
, —0. 1

Gram-Schmidt Orthogonalization

Returning to the Gram—Schmidt process, how do we compute the
g, i=1,...,n7

In the jth step, find a unit vector q; € span{a(. 1), a(.2);---,a(.j)}
that is orthogonal to span{qi, qn,...,qj—1}

We set
— T T
vi = aij) — (a1 agj))ar — - — (gj213¢.)) G—1,
and then g; = v;/||vj||2 satisfies our requirements

We can now determine the required values of r;;

Gram-Schmidt Orthogonalization
We then write our set of equations for the g; as

a 51
qa = ()7
r
o 9(2) — h2q1
92 = 2)
n—1
a(.,n) — Zi:l finqi
dn = .

I'nn
Then from the definition of g;, we see that
rij = qiTa(:J)v i 7&]
j—1
il = llacy = Y rigill2
i=1

The sign of rjj is not determined uniquely, e.g. we could choose
rj > 0 for each j

Classical Gram=Schmidt Process

The Gram—-Schmidt algorithm we have described is provided in the
pseudocode below

1: for j=1:ndo
Vi = a(.)
fori=1:j—1do
_ T
Fij = 4q; 4(.)
Vi =V — rjqi
end for
rij = Ivill2
qj = vi/rj
end for

© e NaA RN

This is referred to the classical Gram—Schmidt (CGS) method

Gram-Schmidt Orthogonalization

The only way the Gram—=Schmidt process can “fail” is if
Irijl = |lvjll2 = 0 for some j

This can only happen if a(. ;) = Z{;i rijq; for some j, i.e. if
a.j) € span{qy, Gn; - - -, -1} = span{a.1),a;.2)s - - - » A(.j—1) }

This means that columns of A are linearly dependent

Therefore, Gram—Schmidt fails = cols. of A linearly dependent

Gram-Schmidt Orthogonalization

Equivalently, by contrapositive: cols. of A linearly independent
—> Gram-Schmidt succeeds

Theorem: Every A € R™*"(m > n) of full rank has a unique
reduced QR factorization A = QR with r;; >0

The only non-uniqueness in the Gram—Schmidt process was in the
sign of r;;, hence QR is unique if rj; > 0

Gram-Schmidt Orthogonalization

Theorem: Every A € R™*"(m > n) has a full QR factorization.

Case 1: A has full rank
» We compute the reduced QR factorization from above

» To make Q square we pad Q with m—n arbitrary
orthonormal columns

» We also pad R with m — n rows of zeros to get R

Case 2: A doesn't have full rank

» At some point in computing the reduced QR factorization, we
encounter ||vjll2 =0

» At this point we pick an arbitrary g; orthogonal to
span{qi,q2,...,qj—1} and then proceed as in Case 1

Modified Gram—Schmidt Process

The classical Gram—=Schmidt process is numerically unstable!
(sensitive to rounding error, orthogonality of the g; degrades)

The algorithm can be reformulated to give the modified
Gram—-Schmidt process, which is numerically more robust

Key idea: when each new g; is computed, orthogonalize each
remaining column of A against it

Modified Gram—Schmidt Process

Modified Gram—=Schmidt (MGS):

:fori=1:ndo
Vi = a(.,i)
end for
:fori=1:ndo
rit = | vill2
qi = Vi/fii
forj=i+1:ndo
rij = qiTVj
Vi =V — rjqi
end for
. end for

© o N R

—
=

[y
[y

Modified Gram—Schmidt Process

Key difference between MGS and CGS:

> In CGS we compute orthogonalization coefficients r; wrt the
“raw” vector a(.)

span{qi,q2,...,qi—1} before computing r;

» In MGS we remove components of a. ;) in

This makes no difference mathematically: In exact arithmetic
components in span{qi, g2, ..., qi—1} are annihilated by q,-T

But in practice it reduces degradation of orthogonality of the g;
= superior numerical stability of MGS over CGS

Operation Count

Work in MGS is dominated by lines 8 and 9, the innermost loop:

_ T
fj = qi v
Vi = Vj—[riqi

First line requires m multiplications, m — 1 additions; second line
requires m multiplications, m subtractions

Hence ~ 4m operations per single inner iteration

Hence total number of operations is asymptotic to

Z Z 4m~4m21~2mn

i=1 j=i+1

Alternative QR computation methods

The QR factorization can also be computed using Householder
triangularization and Givens rotations.

Both methods take the approach of applying a sequence of

orthogonal matrices Q1, @, Q3, ... to the matrix that successively
remove terms below the diagonal (similar to the method employed
by the LU factorization).

We will discuss Givens rotations.

A Givens rotation

For i < j and an angle 0, the elements of the m x m Givens
rotation matrix G(i,/,0) are

8ii = G, 8jj = ¢, 8ij =5, 8ji = —S,
g =1 fork#i,j,
gk = 0 otherwise, (1)

where ¢ = cosf and s = sin6.

A Givens rotation

Hence the matrix has the form

1 ... 0 ... 0 ...0

0 c ... s 0
G(ivj79):

0 —s c 0

o ... 0 ... 0 ... 1

It applies a rotation within the space spanned by the ith and jth
coordinates

Effection of a Givens rotation

Consider a m x n rectangular matrix A where m > n

Suppose that a; and a; are in the ith and jth positions in a
particular column of A

Restricting to just /ith and jth dimensions, a Givens rotation
G(i,j,0) for a particular angle 6 can be applied so that

(5)(2)-(5)

where « is non-zero, and the jth component is eliminated

Stable computation

« is given by y/a? + a3. We could compute

c=a1/\/a?+ a3, s=ax/y\/a2 + a3
but this is susceptible to underflow/overflow if « is very small.

A better procedure is as follows:
» if |a1| > |a2|, set t = tan® = a»/a1, and hence
c= ﬁ,s = ct.
> if |ap| > |a1|, set 7 = cotf = aj/az, and hence

_ 1 _
S—W,C—ST.

Givens rotation algorithm

To perform the Givens procedure on a dense m X n rectangular
matrix A where m > n, the following algorithm can be used:

1

2

33 forj=m:k+1do

4 Construct G = G(j — 1,,0) to eliminate aj,
5: A=GA

6 Q=QGT

7. end for

8: end for

Givens rotation advantages

In general, for dense matrices, Givens rotations are not as efficient
as the other two approaches (Gram-Schmidt and Householder)

However, they are advantageous for sparse matrices, since non-zero
entries can be eliminated one-by-one. They are also amenable to
parallelization. Consider the 6 x 6 matrix:

=N W o X
w S 1o X X
oo N X X X
~N o0 X X X X
© X X X X X
X X X X X X

The numbers represent the steps at which a particular matrix entry
can be eliminated. e.g. on step 3, elements (4, 1) and (6,2) can be
eliminated concurrently using G(3,4,60,) and G(5,6,60p),
respectively, since these two matrices operate on different rows.

Singular Value Decomposition

The Singular Value Decomposition (SVD) is a very useful matrix
factorization

Motivation for SVD: image of the unit sphere, S, from any m x n
matrix is a hyperellipse

A hyperellipse is obtained by stretching the unit sphere in R™ by
factors o1,...,0m, in orthogonal directions uy, ..., un

Singular Value Decomposition

For A € R?*2, we have

vy

NI

5]

AS

Singular Value Decomposition

Based on this picture, we make some definitions:
» Singular values: 01,07,...,0, > 0 (we typically assume
o1>02>...)

» Left singular vectors: {u1, ua, ..., up}, unit vectors in
directions of principal semiaxes of AS

» Right singular vectors: {vi, va,...,v,}, preimages of the u; so
that Av; =oju;, i=1,...,n

(The names “left” and “right” come from the formula for the SVD
below)

Singular Value Decomposition
The key equation above is that
Avi=oju;, i=1,...,n

Writing this out in matrix form we get

02

Or more compactly:

AV = U

On

Singular Value Decomposition

Here

» ¥ € R™" s diagonal with non-negative, real entries
» U € R™" with orthonormal columns

» V € R™" with orthonormal columns

Therefore V is an orthogonal matrix (VTV = VWT =1), so that
we have the reduced SVD for A € R™*"™:

A=UsVvT

Singular Value Decomposition

Just as with QR, we can pad the columns of U with m — n
arbitrary orthogonal vectors to obtain U € R™*"™

We then need to “silence” these arbitrary columns by adding rows
of zeros to X to obtain X

This gives the full SVD for A € R™*™:

A=UxVT

Full vs Reduced SVD

Full SVD

N

I .
A U b3 \A

Reduced SVD

Singular Value Decomposition

Theorem: Every matrix A € R™*" has a full singular value
decomposition. Furthermore:

» The o are uniquely determined

» If Ais square and the o are distinct, the {u;} and {v;} are
uniquely determined up to sign

Singular Value Decomposition

This theorem justifies the statement that the image of the unit
sphere under any m X n matrix is a hyperellipse

Consider A= UX VT (full SVD) applied to the unit sphere, S, in
R":
1. The orthogonal map VT preserves S
2. ¥ stretches S into a hyperellipse aligned with the canonical
axes e

3. U rotates or reflects the hyperellipse without changing its
shape

SVD in Python

Python's numpy.linalg.svd function computes the full SVD of a
matrix

Python 2.7.8 (default, Jul 13 2014, 17:11:32)

[GCC 4.2.1 Compatible Apple LLVM 5.1 (clang-503.0.40)] on darwin

Type "help", "copyright", "credits" or "license" for more information.
>>> import numpy as np

>>> a=np.random.random((4,2))

>>> (u,s,v)=np.linalg.svd(a)

>>> u

array([[-0.38627868, 0.3967265 , -0.44444737, -0.70417569],
[-0.4748846 , -0.845594 , -0.23412286, -0.06813139],
[-0.47511682, 0.05263149, 0.84419597, -0.24254299],
[-0.63208972, 0.35328288, -0.18704595, 0.663828 11])

>>> s

array([1.56149162, 0.24419604])

>>> v

array([[-0.67766849, -0.73536754],
[-0.73536754, 0.6776684911)

SVD in Python

The full matrices=0 option computes the reduced SVD

Python 2.7.8 (default, Jul 13 2014, 17:11:32)
[GCC 4.2.1 Compatible Apple LLVM 5.1 (clang-503.0.40)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> import numpy as np
>>> a=np.random.random((4,2))
>>> (u,s,v)=np.linalg.svd(a,full_matrices=0)
>>> u
array([[-0.38627868, 0.3967265],
[-0.4748846 , -0.845594 1,
[-0.47511682, 0.05263149],
[-0.63208972, 0.3532828811)
>>> s
array([1.56149162, 0.24419604])
>>> v
array([[-0.67766849, -0.73536754],
[-0.73536754, 0.6776684911)

Matrix Properties via the SVD

e The rank of A is r, the number of nonzero singular values?
Proof: In the full SVD A= UZVT, U and VT have full rank,
hence it follows from linear algebra that rank(A) = rank(X)

e image(A) = span{u1,...,u,} and null(A) = span{v,41,...,Vn}
Proof: This follows from A= ULV and

image(X) = span{ei,...,e} € R"
null(¥) = span{er1,...,en} €R"

2This also gives us a good way to define rank in finite precision: the number
of singular values larger than some (small) tolerance

Matrix Properties via the SVD

° |All2 =01

Proof: Recall that [|Al2 = max),|,—1 [[Av|2. Geometrically, we see
that ||Av/||2 is maximized if v =v; and Av = o113

e The singular values of A are the square roots of the eigenvalues
of ATAor AAT

Proof: (Analogous for AAT)
ATA=(zvHTwzvh =vzuTuzvT =v(ETL)VT,

hence (ATA)V = V(E7X), or (ATA)v(.j) = 07 v

Matrix Properties via the SVD

The pseudoinverse, A*, can be defined more generally in terms of
the SVD

Define pseudoinverse of a scalar o to be 1/0 if o # 0 and zero
otherwise

Define pseudoinverse of a (possibly rectangular) diagonal matrix as
transpose of the matrix and taking pseudoinverse of each entry

Pseudoinverse of A € R™*" is defined as
AT =vItyT

AT exists for any matrix A, and it captures our definitions of
pseudoinverse from previously

Matrix Properties via the SVD

We generalize the condition number to rectangular matrices via
the definition x(A) = || A||||AT||

We can use the SVD to compute the 2-norm condition number:
> [[All2 = omax

» Largest singular value of AT is 1/0min so that
||A+H2 = 1/0min

Hence x(A) = 0max/Tmin

Matrix Properties via the SVD

These results indicate the importance of the SVD, both
theoretically and as a computational tool

Algorithms for calculating the SVD are an important topic in
Numerical Linear Algebra, but outside scope of this course

Requires ~ 4mn® — §n* operations

For more details on algorithms, see Trefethen & Bau, or Golub &
van Loan

Eigenvalue Problems

Eigenvalues and Eigenvectors

v

Standard eigenvalue problem: Given n x n matrix A, find scalar A
and nonzero vector x such that

Ax=\x

>)\ is eigenvalue, and x is corresponding eigenvector

> X\ may be complex even if A is real

v

Spectrum = A(A) = set of all eigenvalues of A

v

Spectral radius = p(A) = max{|\| : X € A\(A)}

Geometric Interpretation

» Matrix expands or shrinks any vector lying in direction of eigenvector
by scalar factor

> Scalar expansion or contraction factor is given by corresponding
eigenvalue A

» Eigenvalues and eigenvectors decompose complicated behavior of
general linear transformation into simpler actions

Eigenvalue Problems

» Eigenvalue problems occur in many areas of science and engineering,
such as structural analysis

» Eigenvalues are also important in analyzing numerical methods

» Theory and algorithms apply to complex matrices as well as real
matrices

» With complex matrices, we use conjugate transpose, A" instead of
usual transpose, AT

Examples: Eigenvalues and Eigenvectors

v
>
I
—
o
— =
>~
flrt

1
—
=

05 15
> A=

where i = /-1

1 0
’ >\2:2a X2 = |:1:|

’ >\2:2a X2 = |:1:|

X1 = ﬂ7 A2 =4, X2=[_

2, x1 = ﬂ7 A2 =1, Xz_[

Characteristic Polynomial and Multiplicity

Characteristic Polynomial

» Equation Ax = Ax is equivalent to
(A—X)x=0
which has nonzero solution x if, and only if, its matrix is singular

» Eigenvalues of A are roots \; of characteristic polynomial
det(A—AI)=0
in \ of degree n

» Fundamental Theorem of Algebra implies that n x n matrix A
always has n eigenvalues, but they may not be real nor distinct

» Complex eigenvalues of real matrix occur in complex conjugate
pairs: if o+ [is eigenvalue of real matrix, then so is a — i3, where

i=+—1

Example: Characteristic Polynomial

» Characteristic polynomial of previous example matrix is

(2 Y2 9)-
(P 2)-

B-=NB—-N)—(-1)(-1)=X-6A+8=0
so eigenvalues are given by

 6+36-32

A 5)

or A\1=2, MA=4

Companion Matrix
» Monic polynomial
pA)=co+car+-+ AT EN

is characteristic polynomial of companion matrix

00 0 —a
1 0 0 —C
c,=[01 - 0 -0
0 0 --- 1 —cp

» Roots of polynomial of degree > 4 cannot always computed in finite
number of steps

» So in general, computation of eigenvalues of matrices of order > 4
requires (theoretically infinite) iterative process

10

11

Characteristic Polynomial, continued

» Computing eigenvalues using characteristic polynomial is not
recommended because of

» work in computing coefficients of characteristic polynomial
> sensitivity of coefficients of characteristic polynomial

» work in solving for roots of characteristic polynomial

» Characteristic polynomial is powerful theoretical tool but usually not
useful computationally

12

Example: Characteristic Polynomial

» Consider

where € is positive number slightly smaller than /€qach
» Exact eigenvalues of Aare 1 +eand 1 —¢

» Computing characteristic polynomial in floating-point arithmetic, we
obtain

det(A—A) =X -2+ (1—-3) =X -2\+1

which has 1 as double root

» Thus, eigenvalues cannot be resolved by this method even though
they are distinct in working precision

Multiplicity and Diagonalizability

» Multiplicity is number of times root appears when polynomial is
written as product of linear factors

» Simple eigenvalue has multiplicity 1

» Defective matrix has eigenvalue of multiplicity k > 1 with fewer
than k linearly independent corresponding eigenvectors

» Nondefective matrix A has n linearly independent eigenvectors, so it

is diagonalizable
X'AX =D

where X is nonsingular matrix of eigenvectors

13

14

Eigenspaces and Invariant Subspaces

» Eigenvectors can be scaled arbitrarily: if Ax = Ax, then
A(~vx) = A(yx) for any scalar +, so vx is also eigenvector
corresponding to A

» Eigenvectors are usually normalized by requiring some norm of
eigenvector to be 1

> Eigenspace = S\ = {x : Ax = \x}
> Subspace S of R" (or C") is invariant if AS C S

> For eigenvectors x; - -+ Xp, span([xi - - - X,]) is invariant subspace

19

Properties of Eigenvalue Problems

Properties of eigenvalue problem affecting choice of algorithm and
software

» Are all eigenvalues needed, or only a few?

» Are only eigenvalues needed, or are corresponding eigenvectors also
needed?

» Is matrix real or complex?
» Is matrix relatively small and dense, or large and sparse?

» Does matrix have any special properties, such as symmetry, or is it
general matrix?

Computing Eigenvalues and Eigenvectors

24

25

Problem Transformations

> Shift: If Ax = Ax and o is any scalar, then (A —ol)x = (A — 0)x,
so eigenvalues of shifted matrix are shifted eigenvalues of original
matrix

> Inversion: If A is nonsingular and Ax = Ax with x # 0, then A # 0
and A~1x = (1/\)x, so eigenvalues of inverse are reciprocals of
eigenvalues of original matrix

» Powers: If Ax = \x, then A¥x = \¥x, so eigenvalues of power of
matrix are same power of eigenvalues of original matrix

> Polynomial: If Ax = Ax and p(t) is polynomial, then
p(A)x = p(A)x, so eigenvalues of polynomial in matrix are values of
polynomial evaluated at eigenvalues of original matrix

Similarity Transformation

> B is similar to A if there is nonsingular matrix T such that
B=TAT
» Then
By =)y = T 'ATy =)y = A(Ty)=A(Ty)

so A and B have same eigenvalues, and if y is eigenvector of B,
then x = Ty is eigenvector of A

» Similarity transformations preserve eigenvalues, and eigenvectors are
easily recovered

26

27

Example: Similarity Transformation

» From eigenvalues and eigenvectors for previous example,
3 1| |1 1] |1 1112 0
-1 3|1 -1 |1 -1|/1|0 4

05 05 3 -1 |1 1] |12 0

05 —-05||-1 3|1 —-1] |0 4

» So original matrix is similar to diagonal matrix, and eigenvectors
form columns of similarity transformation matrix

and hence

Diagonal Form

» Eigenvalues of diagonal matrix are diagonal entries, and eigenvectors
are columns of identity matrix

» Diagonal form is desirable in simplifying eigenvalue problems for
general matrices by similarity transformations

» But not all matrices are diagonalizable by similarity transformation

» Closest one can get, in general, is Jordan form, which is nearly
diagonal but may have some nonzero entries on first superdiagonal,
corresponding to one or more multiple eigenvalues

28

29
Triangular Form
» Any matrix can be transformed into triangular (Schur) form by
similarity, and eigenvalues of triangular matrix are diagonal entries

» Eigenvectors of triangular matrix less obvious, but still
straightforward to compute

> If
Ui u U
A-)X=1]0 0 v’
O 0 Us

is triangular, then Uj1y = u can be solved for y, so that

y
x=|-1

0

is corresponding eigenvector

30

Block Triangular Form

> If
A Ap A,
Ay A,
A=]
App

with square diagonal blocks, then
P
MA) = [JMAy)
j=1
so eigenvalue problem breaks into p smaller eigenvalue problems

» Real Schur form has 1 x 1 diagonal blocks corresponding to real
eigenvalues and 2 x 2 diagonal blocks corresponding to pairs of
complex conjugate eigenvalues

Forms Attainable by Similarity

A T B
distinct eigenvalues nonsingular diagonal
real symmetric orthogonal real diagonal
complex Hermitian unitary real diagonal
normal unitary diagonal
arbitrary real orthogonal real block triangular
(real Schur)
arbitrary unitary upper triangular
(Schur)
arbitrary nonsingular almost diagonal
(Jordan)

» Given matrix A with indicated property, matrices B and T exist
with indicated properties such that B = T—1AT

» If B is diagonal or triangular, eigenvalues are its diagonal entries

» If B is diagonal, eigenvectors are columns of T

31

Power lteration

32

33

Power lteration

» Simplest method for computing one eigenvalue-eigenvector pair is
power iteration, which repeatedly multiplies matrix times initial
starting vector

» Assume A has unique eigenvalue of maximum modulus, say A1, with
corresponding eigenvector vy

» Then, starting from nonzero vector xg, iteration scheme
Xk = Axy_1

converges to multiple of eigenvector vy corresponding to dominant
eigenvalue \;

34

Convergence of Power lteration

» To see why power iteration converges to dominant eigenvector,
express starting vector xp as linear combination

n
X0 — E Vi
i=1

where v; are eigenvectors of A

» Then

Xe = Axp_1=A%X_r =+ = Akxo =

n n
Z)\f-‘a;v,- =)\lf <Oz1V1 + Z()\;/)\l)ka;v,->

i=1 i=2

» Since |A;/A\1] < 1 for i > 1, successively higher powers go to zero,
leaving only component corresponding to v;

Example: Power Iteration

» Ratio of values of given component of x, from one iteration to next
converges to dominant eigenvalue \;

. 1.5 05 0 .
» For example, if A= [0.5 1.5} and xg = L} we obtain
x| ratio
0.0 1.0

0.5 1.5 | 1.500
1.5 2.5 | 1.667
35 4.5 | 1.800
7.5 8.5 | 1.889
155 165 | 1.941
315 325 | 1.970
63.5 64.5 | 1.985
127.5 128.5 | 1.992

CO~NOOT A~ WN O X

» Ratio is converging to dominant eigenvalue, which is 2

Limitations of Power lteration

Power iteration can fail for various reasons

» Starting vector may have no component in dominant eigenvector vy
(i.e., a3 = 0) — not problem in practice because rounding error
usually introduces such component in any case

» There may be more than one eigenvalue having same (maximum)
modulus, in which case iteration may converge to linear combination
of corresponding eigenvectors

» For real matrix and starting vector, iteration can never converge to
complex vector

36

37

Normalized Power lteration

» Geometric growth of components at each iteration risks eventual
overflow (or underflow if A\; < 1)

» Approximate eigenvector should be normalized at each iteration, say,
by requiring its largest component to be 1 in modulus, giving
iteration scheme

Yo = Axi
Y/ 1yl oo

Xk

,and xx = vi/||vi|loo

» With normalization, ||yx||cc — | M1

Example: Normalized Power lteration

» Repeating previous example with normalized scheme,

A
0| 0.000 1.0

110333 1.0 1.500
210600 1.0| 1.667
310778 1.0| 1.800
4 10882 1.0 1.889
510939 1.0 1.941
6 | 0969 1.0 1.970
710984 1.0 1.985
810992 1.0 1.992

(interactive example)

38

39
Geometric Interpretation

» Behavior of power iteration depicted geometrically

To L1 T2T3L4

1.0 AN 7

V2 N 7/ U1

L1 | !
0.0 —-1.0 =05 0.0 0.5 1.0

» Initial vector xg = vy + v» contains equal components in
eigenvectors vy and v, (dashed arrows)

> Repeated multiplication by A causes component in v;
(corresponding to larger eigenvalue, 2) to dominate, so sequence of
vectors x, converges to v;

Power

v

40

Iteration with Shift

Convergence rate of power iteration depends on ratio |\y/A1|, where
X2 is eigenvalue having second largest modulus

May be possible to choose shift, A — o/, such that

&
AL

)\2—0
)\1—0'

so convergence is accelerated

Shift must then be added to result to obtain eigenvalue of original
matrix

In earlier example, for instance, if we pick shift of o = 1, (which is
equal to other eigenvalue) then ratio becomes zero and method
converges in one iteration

In general, we would not be able to make such fortuitous choice, but
shifts can still be extremely useful in some contexts, as we will see
later

Inverse and Rayleigh Quotient lterations

41

42

Inverse lteration

>

To compute smallest eigenvalue of matrix rather than largest, can
make use of fact that eigenvalues of A~ are reciprocals of those of

A, so smallest eigenvalue of A is reciprocal of largest eigenvalue of
A—l

This leads to inverse iteration scheme
Ay, = xi_1
Xk = Yi/llYklloo
which is equivalent to power iteration applied to A~!

Inverse of A not computed explicitly, but factorization of A used to
solve system of linear equations at each iteration

Inverse iteration converges to eigenvector corresponding to smallest
eigenvalue of A

Eigenvalue obtained is dominant eigenvalue of A=, and hence its
reciprocal is smallest eigenvalue of A in modulus

Example: Inverse lteration

» Applying inverse iteration to previous example to compute smallest
eigenvalue yields sequence

k x¢ 1yl oo
0 0.000 1.0

1| -0333 1.0 | 0.750
2 | —0.600 1.0 | 0.833
3| —-0778 1.0 | 0.900
4| —-0.882 1.0 | 0.944
5] -0939 1.0]| 0971
6 | —0.969 1.0 | 0.985

which is indeed converging to 1 (which is its own reciprocal in this
case)

(interactive example)

44

Inverse lteration with Shift

> As before, shifting strategy, working with A — ol for some scalar o,
can greatly improve convergence

> Inverse iteration is particularly useful for computing eigenvector
corresponding to approximate eigenvalue, since it converges rapidly
when applied to shifted matrix A — \I, where X\ is approximate
eigenvalue

> Inverse iteration is also useful for computing eigenvalue closest to
given value 3, since if 8 is used as shift, then desired eigenvalue
corresponds to smallest eigenvalue of shifted matrix

Rayleigh Quotient

» Given approximate eigenvector x for real matrix A, determining best
estimate for corresponding eigenvalue A\ can be considered as n x 1
linear least squares approximation problem

x\ = Ax
» From normal equation x” x\ = x" Ax, least squares solution is given
by
xT Ax
r=X1
xTx

» This quantity, known as Rayleigh quotient, has many useful
properties

45

46

Example: Rayleigh Quotient

» Rayleigh quotient can accelerate convergence of iterative methods
such as power iteration, since Rayleigh quotient x| Axy/x,/ x, gives
better approximation to eigenvalue at iteration k than does basic
method alone

» For previous example using power iteration, value of Rayleigh
quotient at each iteration is shown below

k X yklloe | % Axic/x xi
0 [0.000 1.0

1]0333 1.0 1.500 1.500

2 [0.600 1.0 | 1.667 1.800
310778 1.0 | 1.800 1.941
410882 1.0/ 1.889 1.985
500939 1.0 | 1.941 1.996

6 |0.969 1.0 | 1.970 1.999

47

Rayleigh Quotient Iteration

» Given approximate eigenvector, Rayleigh quotient yields good
estimate for corresponding eigenvalue

» Conversely, inverse iteration converges rapidly to eigenvector if
approximate eigenvalue is used as shift, with one iteration often
sufficing

> These two ideas combined in Rayleigh quotient iteration
ok = x| Axic/x;] xi
(A= oul)yri1 = x

Xk+1 = .Yk+1/Hyk+1||00

starting from given nonzero vector xg

Rayleigh Quotient lteration, continued

» Rayleigh quotient iteration is especially effective for symmetric
matrices and usually converges very rapidly

» Using different shift at each iteration means matrix must be
refactored each time to solve linear system, so cost per iteration is
high unless matrix has special form that makes factorization easy

» Same idea also works for complex matrices, for which transpose is
replaced by conjugate transpose, so Rayleigh quotient becomes
xHAx /xHx

48

49

Example: Rayleigh Quotient Iteration

» Using same matrix as previous examples and randomly chosen
starting vector xg, Rayleigh quotient iteration converges in two
iterations

k XkT ‘ Ok

0 | 0.807 0.397 | 1.896
110924 1.000 | 1.998
2 | 1.000 1.000 | 2.000

Deflation

50

51

Deflation

» After eigenvalue A1 and corresponding eigenvector x; have been
computed, then additional eigenvalues Aj,..., A, of A can be
computed by deflation, which effectively removes known eigenvalue

» Let H be any nonsingular matrix such that Hx; = aey, scalar
multiple of first column of identity matrix (Householder
transformation is good choice for H)

> Then similarity transformation determined by H transforms A into

form
A bT]

-1 _
HAH —{0 B

where B is matrix of order n — 1 having eigenvalues Xy, ..., A,

52

Deflation, continued

» Thus, we can work with B to compute next eigenvalue A\

» Moreover, if y, is eigenvector of B corresponding to Ay, then

bT}’z
Ao — A1

x=H! [a] , where a=
y2

is eigenvector corresponding to A, for original matrix A, provided
AL # A2

» Process can be repeated to find additional eigenvalues and
eigenvectors

53

Deflation, continued

» Alternative approach lets u; be any vector such that u x; = \;
» Then A — xyu] has eigenvalues 0, Az, ..., \,

» Possible choices for u; include

> u; = Aixi, if A is symmetric and x; is normalized so that ||x1]j2 =1

> u = A\iy1, where y; is corresponding left eigenvector (i.e.,
ATy; = Aiy1) normalized so that y;' x; = 1

» u; = AT e, if x; is normalized so that [¥1]loc =1 and kth
component of x; is 1

	Eigenvalue Problems
	Characteristic Polynomial and Multiplicity
	Computing Eigenvalues and Eigenvectors
	Power Iteration
	Inverse and Rayleigh Quotient Iterations
	Deflation

