
Lecture 3. Fitting data

Maksim Bolonkin

Moscow State University

What’s the problem?

Given the dataset {(x1, y1), (x2, y2), . . . (xk , yk)}, xi ∈ R
m, yi ∈ R find a

function f : Rn → R such that

f (xi) = yi , i = 1, . . . k

What’s the problem?

Given the dataset {(x1, y1), (x2, y2), . . . (xk , yk)}, xi ∈ R
m, yi ∈ R find a

function f : Rn → R such that

f (xi) = yi , i = 1, . . . k

What is the problem

Given the dataset {(x1, y1), (x2, y2), . . . (xk , yk)}, xi ∈ R
m, yi ∈ R find a

function f : Rn → R such that

f (xi) ≈ yi , i = 1, . . . k

1. We want the function to be “good”
◮ Continuous/differentiable function or mixture of such functions

2. We want the function to be a “good fit”
◮ Depends on the measure of goodness: mean-squared error, log-likelihood,

KL-divergence, etc.
◮ Data is always noisy

3. We want the function to be generalizible
◮ The dataset comes from some distribution
◮ Function should be a “good fit” for out-of-sample data

Linear Least-Squares

We are considering a linear model

f (x ,θ) =
n∑

i=1

θigi (x)

Linear means linear in model parameters!

Functions
gi (x) reflect domain specific knowledge,
practical or computational considerations.

Examples: x ∈ R, y ∈ R

f (x ,θ) = θ1x + θ2

f (x ,θ) = θ1x
3 + θ2x

2 + θ3x + θ4

f (x ,θ) = θ1e
x + θ2 sin x + θ3x + θ4

The Least Squares Fit

Let’s consider residuals ri associated with the data points:

ri = yi − f (xi , θ)

We want to minimize the objective function:

min
θ

k∑

i=1

ri (θ)
2 = min

θ

k∑

i=1

(yi − f (xi ,θ))
2

Underlying ideas

We assume the following underlying data model:

yi = Γ(xi) + ǫi , i = 1, 2, . . . , k

Thus residuals can be expressed as following:

ri = yi − f (xi ,θ)

= (yi − Γ(xi)) + (Γ(xi)− f (xi ,θ))

= ǫi + (Γ(xi)− f (xi ,θ))

1. The data error ǫi comes from measurements

2. The approximation error Γ(xi)− f (xi ,θ) is the difference between the
pure-data function and the fitting model

Least Squares in Matrix Form

Let’s define the matrix A ∈ Rk×n

A =








g1(x1) g2(x1) . . . gn(x1)
g1(x2) g2(x2) . . . gn(x2)

...
...

. . .
...

g1(xk) g2(xk) . . . gn(xk)








Let’s also denote y = (y1 y2 . . . yk)
T a vector of observations. Then we have

the following equations
Aθ ≈ y , r = y − Aθ

Least squares problem is
min
θ

||y − Aθ||2

Closed-form solution

Function needs to be minimized −→ derivative should be zero:

∂

∂θ
||y − Aθ||2 = 0

Let’s find the derivative:

∂

∂θ
||y − Aθ||2 = −2AT (y − Aθ) = 2AT

Aθ − 2AT
y = 0

A
T
Aθ = A

T
y

This is called the normal equation. Solution is:

θ = (AT
A)−1

A
T
y

Normal equation

◮ Left-hand side and right-hand side of the insolvable equation Aθ = y is
multiplied by AT

◮ If columns of A are independent then ATA is square, symmetric, and
positive definite: matrix is invertable

◮ If columns of A are not independent then ATA is square, symmetric, and
positive semi-definite: then need to use matrix factorization for inversion

Geometric interpretation:

Pseudoinverse matrix

Matrix A+ = (ATA)−1AT is called pseudoinverse (Moore-Penrose
pseudoinverse) and has the property A+A = I .

Pseudoinverse matrix is usually computed using one of the matrix
decompositions.

Solving Least-Squares using LU decomposition

◮ Using LU decomposition for the matrix ATA and solving the normal
equation using forward and backward eimination

◮ This approach is very unstable

◮ Condition number of ATA is the square of the condition number of A

◮ Condition number for positive definite matrix is the ratio of it’s max and
min eigenvalues

Solving Least-Squares using QR decomposition

◮ When stability is in doubt use orthogonalization A = QR

◮ In this case normal equation is getting simpler:

A
T
Aθ = A

T
y

(QR)TQRθ = (QR)T y

R
T
Q

T
Q

︸ ︷︷ ︸

I

Rθ = R
T
Q

T
y

R
T
Rθ = R

T
Q

T
y

Rθ = Q
T
y

◮ Multiplication QT y is stable, back-substitution with upper-triangular R is
simple

◮ Twice as long as for calculating ATA but much more reliable

Solving Least-Squares using SVD decomposition

◮ Most stable solution is using SVD decomposition A = UDV T

◮ ATA = VDTUTUDV T = VDTDV T = VD2V T

◮ In this case normal equation is getting simpler:

VD
2
V

T
θ = VDU

T
y

D
2
V

T
θ = DU

T
y

V
T
θ = (D2)−1

D
︸ ︷︷ ︸

D+

U
T
y

θ = VD
+
U

T
y

◮ If rank(A) = n then

D
+ = D

−1 = diag

{
1

σ1
, · · · ,

1

σn

}

◮ Extremely small singular values can be removed.

Weighted Least Squares

Small but important extension of the least squares problem: not all the points
are treated equally.

min
θ

||W (y − Aθ)||2

Normal equation for θ is

(WA)T (WA)θ = (WA)T y

No new math, just replace A with WA and y with Wy .

Total Least Squares

Another formulation of the least squares problem is following:

[θ,∆y] = arg min
θ,∆y

||∆y ||, subject to Aθ = y +∆y

In this form we are trying to modify y so that equation satisfies. Assumption is:
observations are noisy, measurements are precise.

In case of noisy measurements we can consider the following problem:

[θ,∆A,∆y] = arg min
θ,∆A,∆y

||[∆A ∆y]||, subject to (A+∆A)θ = y +∆y

This problem is called total least squares.

Total Least Squares

From geometric perspective total least squares minimizes sum of distances to
the fitting line.

Total Least Squares

Let’s consider 2-dimensional case. Assuming that all the points are centered
around the origin (easy to obtain assumption), and line has a normal vector
(ux , uy)

T .
In this case we have a following expression for distances:

Xu =








x1 y1
x2 y2
...

...
xk yk








(
ux
uy

)

We seek to minimize sum of squared distances:

min
u

||Xu||2, subject to ||u|| = 1

Total Least Squares

min
u

||Xu||2, subject to ||u|| = 1

This constrained optimization problem can be solved using Lagrange multiplier
or as an unconstrained minimization of the Rayleigh quotient:

R(u) =
||Xu||2

||u||2
=

uTXTXu

uTu

As usually, function is being minimized by differentiating:

∂R(u)

∂u
=

(2XTXu)(uTu)− (uTXTXu)(2u)

(uTu)2

Equating enumerator to zero and getting:

(2XT
Xu)(uT

u) = (uT
X

T
Xu)(2u)

X
T
Xu =

uTXTXu

uTu
u

Total Least Squares

X
T
Xu =

uTXTXu

uTu
u

Fraction on the right-hand side is exactly the Rayleigh quotient:

X
T
Xu = R(u)u

What does that mean?

1. Vector u is an eigenvector of a matrix XTX with eigenvalue R(u)

2. Since we want to minimize R(u), the vector that minimize it is the
eigenvector of XTX with minimal eigenvalue

Total Least Squares: general solution

Let’s consider the matrix C = [A y] and find SVD-decomposition of this matrix

C = [A y] = UΣV T
, where Σ = diag{σ1, σ2, . . . , σn+1}

and define the partitioning

V =

(
V11 v12

v21 v22

)

, Σ =

(
Σ11 Σ12

Σ21 σ22

)

Solution exists if σ22 6= 0 and is given by

θ = −
v12

v22

Underdetermined Least Squares

So far we focused only on overconstrained systems (more data points than
parameters).
But Least Squares also applies to underconstrained systems Aθ = y with
A ∈ R

k×n, k < n

We can apply the same math as before, but ATA will be singular, this infinitely
many solutions.

Underdetermined Least Squares

One option is to pose the problem as constrained optimization

min θT θ subject to Aθ = y

Then use Lagrange multipliers method.

The idea is to restrict the solution to (n − k)-dimensional hyperplane of Rn on
which θT θ has a unique minimum.

Underdetermined Least Squares

One option is to pose the problem as constrained optimization

min θT θ subject to Aθ = y

Then use Lagrange multipliers method.

The idea is to restrict the solution to (n − k)-dimensional hyperplane of Rn on
which θT θ has a unique minimum.

Lagrange multiplier approach gives the solution

θ = A
T (AAT)−1

y

In this expression AT (AAT)−1 is called right pseudo-inverse.

Underdetermined Least Squares

Another approach to the underconstrained problem is to impose regularization
by modifying objective function:

min ||y − Aθ||2 + ||Sθ||2

Here S ∈ R
n×n is a scaling matrix.

Underdetermined Least Squares

Another approach to the underconstrained problem is to impose regularization
by modifying objective function:

min ||y − Aθ||2 + ||Sθ||2

Here S ∈ R
n×n is a scaling matrix.

Calculating gradient of objective function gives the normal equation

(AT
A+ S

T
S)θ = A

T
y

We chose S to ensure that lef-hand side matrix is invertible.

Simplest choice for the regularizer is S = λI ∈ R
n×n, λ > 0

Underdetermined Least Squares

Find least-squares fit for degree 11 polynomial to 5 samples of
y = cos(4x) for x ∈ [0, 1]

Try S = 0.001I (i.e. µ = 0.001)

0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5

‖r(b)‖2 = 1.07× 10−4

‖b‖2 = 4.40

cond(ATA+ STS) = 1.54× 107

Fit is good since regularization term is small but condition number
is still large

Underdetermined Least Squares

Find least-squares fit for degree 11 polynomial to 5 samples of
y = cos(4x) for x ∈ [0, 1]

Try S = 0.5I (i.e. µ = 0.5)

0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

‖r(b)‖2 = 6.60× 10−1

‖b‖2 = 1.15

cond(ATA+ STS) = 62.3

Regularization term now dominates: small condition number and
small ‖b‖2, but poor fit to the data!

Underdetermined Least Squares

Find least-squares fit for degree 11 polynomial to 5 samples of
y = cos(4x) for x ∈ [0, 1]

Try S = diag(0.1, 0.1, 0.1, 10, 10 . . . , 10)

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

1.5

‖r(b)‖2 = 4.78× 10−1

‖b‖2 = 4.27

cond(ATA+ STS) = 5.90× 103

We strongly penalize b3, b4, . . . , b11, hence the fit is close to
parabolic

Underdetermined Least Squares

Find least-squares fit for degree 11 polynomial to 5 samples of
y = cos(4x) for x ∈ [0, 1]

0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5

‖r(b)‖2 = 1.03× 10−15

‖b‖2 = 7.18

Python routine gives Lagrange multiplier based solution, hence
satisfies the constraints to machine precision

Nonlinear Least Squares

Until now we had linear in parameters functions to fit the data. This is
generally not the case for real problems.

Some examples of non-linear fitting functions would be exponential decay
function M(x , c1, c2) = c1e

−c2x or non-normalized Gaussian function

M(x , c) = c1e
−(x−c2)

2/c23

Nonlinear Least Squares: Example
Example: Suppose we have a radio transmitter at b̂ = (b̂1, b̂2)
somewhere in [0, 1]2 (×)

Suppose that we have 10 receivers at locations
(x1

1
, x1

2
), (x2

1
, x2

2
), . . . , (x10

1
, x10

2
) ∈ [0, 1]2 (•)

Receiver i returns a measurement for the distance yi to the
transmitter, but there is some error/noise (ǫ)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x1

x
2

xi

yi + ǫ

b̂

Nonlinear Least Squares: Example

Let b be a candidate location for the transmitter

The distance from b to (x i
1
, x i

2
) is

di (b) ≡
√

(b1 − x i
1
)2 + (b2 − x i

2
)2

We want to choose b to match the data as well as possible, hence
minimize the residual r(b) ∈ R

10 where ri (b) = yi − di (b)

Nonlinear Least Squares: Example

In this case, ri (α+ β) 6= ri (α) + ri (β), hence nonlinear
least-squares!

Define the objective function φ(b) = 1

2
‖r(b)‖2

2
, where r(b) ∈ R

10

is the residual vector

The 1/2 factor in φ(b) has no effect on the minimizing b, but
leads to slightly cleaner formulae later on

Nonlinear Least Squares

As usually we will try to minimize the objective function by differentiating it
and setting to zero:

φ(b) =
1

2
||r(b)||2 =

1

2

k
∑

j=1

[rj(b)]
2

∂φ

∂bi
=

∂

∂bi

1

2

k
∑

j=1

r
2

j =
k

∑

j=1

rj
∂rj

∂bi

Nonlinear Least Squares

As usually we will try to minimize the objective function by differentiating it
and setting to zero:

φ(b) =
1

2
||r(b)||2 =

1

2

k
∑

j=1

[rj(b)]
2

∂φ

∂bi
=

∂

∂bi

1

2

k
∑

j=1

r
2

j =
k

∑

j=1

rj
∂rj

∂bi

Denoting Jr (b) = {
∂rj

∂bi
}ij the Jacobian matrix we have

∇φ = Jr (b)
T
r(b)

Nonlinear Least Squares

To find the minimum of objective function we need to solve the equation

Jr (b)
T
r(b) = 0

This system has n equations and n unknowns, but most likely is a nonlinear
system.

Such systems require iterative methods. We’ll discuss Newton’s method of
solving the system and it’s variations.

Newton’s method for nonlinear fitting

Recall Newton’s method for finding roots of equation f (x) = 0.

Let xn be our current guess for the root x∗ = xn +∆x . Then Taylor expansion
will be

0 = f (x∗) = f (xn +∆x) = f (xn) + ∆xf
′(xn) + O((∆x)2)

It follows that f ′(xn)∆x ≈ −f (xn) which gives us update equation

xn+1 = xn −
f (xn)

f ′(xn)

Newton’s method for nonlinear fitting

Recall Newton’s method for finding roots of equation f (x) = 0.

Let xn be our current guess for the root x∗ = xn +∆x . Then Taylor expansion
will be

0 = f (x∗) = f (xn +∆x) = f (xn) + ∆xf
′(xn) + O((∆x)2)

It follows that f ′(xn)∆x ≈ −f (xn) which gives us update equation

xn+1 = xn −
f (xn)

f ′(xn)

This argument generalizes directly to functions of several variables F (x) = 0

JF (xn)∆xn = −F (xn)

Newton’s method for nonlinear fitting

In the case of nonlinear Least Squares we have F (b) = Jr (b)
T
r(b). To apply

Newton’s method we need to find the Jacobian of the function F (b).

∂Fi

∂bj
=

∂

∂bj

(

Jr (b)
T
r(b)

)

i

=
∂

∂bj

k
∑

l=1

∂rl

∂bi
rl

=

k
∑

l=1

∂rl

∂bi

∂rl

∂bj
+

k
∑

l=1

∂2
rl

∂bi∂bj
rl

Newton’s method for nonlinear fitting

Second derivatives are messy and painful to deal with. But they are multiplied
by residuals which are small if function becomes a good fit. Therefore we can
neglect second order term in the equality.

∂Fi

∂bj
≈

k
∑

l=1

∂rl

∂bi

∂rl

∂bj
= Jr (b)

T
Jr (b)

Newton’s method for nonlinear fitting

Second derivatives are messy and painful to deal with. But they are multiplied
by residuals which are small if function becomes a good fit. Therefore we can
neglect second order term in the equality.

∂Fi

∂bj
≈

k
∑

l=1

∂rl

∂bi

∂rl

∂bj
= Jr (b)

T
Jr (b)

Putting all pieces together we obtain the update formula:

Jr (bn)
T
Jr (bn)∆bn = −Jr (bn)

T
r(bn)

bn+1 = bn +∆bn

This is known as Gauss-Newton Algorithm for nonlinear Least Squares.

Every iteration requires solving a linear least squares problem
Jr (bn)∆bn ≈ −r(bn)

Computing the Jacobian

To use Gauss–Newton in practice, we need to be able to compute
the Jacobian matrix Jr (bk) for any bk ∈ R

n

We can do this “by hand”, e.g. in our transmitter/receiver
problem we would have:

[Jr (b)]ij = −
∂

∂bj

√

(b1 − x i
1
)2 + (b2 − x i

2
)2

Differentiating by hand is feasible in this case, but it can become
impractical if r(b) is more complicated

Or perhaps our mapping b → y is a “black box” — no closed form
equations hence not possible to differentiate the residual!

Computing the Jacobian

So, what is the alternative to “differentiation by hand”?
Finite difference approximation: for h ≪ 1 we have

[Jr (bk)]ij ≈
ri (bk + ejh)− ri (bk)

h

Avoids tedious, error prone differentiation of r by hand!

Also, can be used for differentiating “black box” mappings since
we only need to be able to evaluate r(b)

Gauss-Newton with line search

Implementation of Gauss-Newton method often uses line search in the
proposed direction of change:

bn+1 = bn + αn∆bn

Step length is chosen to satisfy Armijo condition

φ(bn + αn∆bn) < φ(bn) + cαnr(bn)
T
Jr (bn)

T∆bn

for some constant c ∈ (0, 1).

This provides ”good enough” step in the descent direction. usual choice for αn

is the largest power on 1/2 that satisfies the condition.

The Levenberg-Marquardt method

Levenberg-Marquardt methos is similar to Gauss-Newton method but line
search is substituted with trust region strategy.

min ||Jr (bn)∆bn + r(bn)||2 subject to ||∆bn|| ≤ bound

The Levenberg-Marquardt method

Levenberg-Marquardt methos is similar to Gauss-Newton method but line
search is substituted with trust region strategy.

min ||Jr (bn)∆bn + r(bn)||2 subject to ||∆bn|| ≤ bound

To solve this constrained optimization problem we need to optimize the
following objective:

min
∆bn

||Jr (bn)∆bn + r(bn)||2 + λn||∆bn||2

where λn is a Lagrange parameter for the constraint on n-th iteration.

The Levenberg-Marquardt method

The update step is computed as a solution to a Linear Least Squares problem

min
∆bn

∥

∥

∥

∥

(

Jr (bn)√
λnI

)

∆bn −
(

−r(bn)
0

)
∥

∥

∥

∥

2

Parameter λn influences both the direction and the length of the step. If λn is
close to 0, we have Gauss-Newton method, for large λn we have a short step in
the direction of steepest descent.

Common strategy for chosing λn is following:

1. The initial value is λ0 ≈ ||Jr (b0)TJr (b0)||
2. For subsequent steps improvement ratio ρn is defined as

ρn =
actual reduction

predicted reduction
=

φ(bn)− φ(bn+1)
1
2
∆bT

n (Jr (bn)T r(bn)− λn∆bn)

The Levenberg-Marquardt method

Parameter λn influences both the direction and the length of the step.
Common strategy for chosing λn is following:

1. The initial value is λ0 ≈ ||Jr (b0)TJr (b0)||
2. For subsequent steps improvement ratio ρn is defined as

ρn =
actual reduction

predicted reduction
=

φ(bn)− φ(bn+1)
1
2
∆bT

n (Jr (bn)T r(bn)− λn∆bn)

◮ If ρn > 0.75 then λn+1 =
λn

3

◮ If ρn < 0.25 then λn+1 = 2λn

◮ Otherwise λn+1 = λn

◮ If ρn > 0 perform the update.

Both Gauss-Newton and Levenberg-Marquardt algorithms are often globally
convergent with quadratic convergence if neglected second-order terms are
small and linear otherwise.

The Levenberg-Marquardt method

Figure: Gauss-Newton (top) and Levenberg-Marquardt (bottom) convergence

Nonlinear Least Squares: Example

Python example: Using lsqnonlin.py we provide an initial guess
(•), and converge to the solution (×)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Nonlinear Least Squares: Example
Levenberg–Marquardt minimizes φ(b), as we see from the contour
plot of φ(b) below

Recall × is the true transmitter location, × is our best-fit to the
data; φ(×) = 0.0248 < 0.0386 = φ(×).

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

These contours are quite different from what we get in linear
problems

Linear Least-Squares Contours

Two examples of linear least squares contours for
φ(b) = ‖y − Ab‖2

2
, b ∈ R

2

−10 −5 0 5 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

−10 −5 0 5 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

In linear least squares φ(b) is quadratic, hence contours are
“hyperellipses”

