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In the previous episode...

◮ Underconstrained LSP can produce infinitely many solutions,

we want ”good enough” solutions

◮ Common way of obtaining good solutions is to add

regularization term to objective function

min
θ

||y − Aθ||2 + λ||θ||2

◮ Choise of penalty hyperparameter λ is important - risk of

over-regularizing



In the previous episode...

◮ Nonlinear Least Squares - parameters do not vanish after
getting the derivative −→ need to solve non-linear equation

◮ Variations of Newton’s method: iterative approximation of a
root of equation

◮ Update step is a solution to an ordinary linear Least Squares
problem

min
∆bn

||Jr (bn)∆bn + r(bn)||2

◮ Improvement of Gauss-Newton method is the line search: find
step size such that objedtive function is not increasing

◮ Levenberg-Marquardt method - further improvement: restrict
update vector length to some small values



Example: Poisson distribution

Suppose that X1, . . . ,XN are i.i.d. discrete random variables, such
that Xi ∼ Pois(θ) with probability mass function defined as

Pr(Xi = xi ) =
e−θθxi

xi !

where θ is some unknown parameter.
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Example: Poisson distribution

Suppose that X1, . . . ,XN are i.i.d. discrete random variables, such
that Xi ∼ Pois(θ) with probability mass function defined as

Pr(Xi = xi ) =
e−θθxi

xi !

where θ is some unknown parameter.

Question: What is the probability of observing particular sample

{x1, . . . , xN}, assuming that a Poisson distribution with parameter
θ (yet unknown) generated the data?

Pr((X1 = x1) ∩ . . . ∩ (XN = xN)) =

N
∏

i=1

Pr(Xi = xi )



Example: Poisson distribution

We know pmf of the Poisson distribution. Therefore

Pr((X1 = x1) ∩ . . . ∩ (XN = xN)) =
N
∏

i=1

e−θθxi

xi !

= e−θN θ
∑N

i=1

∏N
i=1 xi !



Example: Poisson distribution

We know pmf of the Poisson distribution. Therefore

Pr((X1 = x1) ∩ . . . ∩ (XN = xN)) =
N
∏

i=1

e−θθxi

xi !

= e−θN θ
∑N

i=1

∏N
i=1 xi !

This joint probability is a function of θ and corresponds to the
likelihood of the sample {x1, . . . , xN}

L(θ; x1, . . . , xN) = Pr((X1 = x1) ∩ . . . ∩ (XN = xN))

L(θ; x1, . . . , xN) = e−θN × θ
∑N

i=1 × 1
∏N

i=1 xi !



Example: Poisson distribution
Let’s consider some realization of the sample with N = 10:
{5, 0, 1, 1, 0, 3, 2, 3, 4, 1}. Then

L(θ; x1, . . . , x10) =
e−10Θθ20

207, 360



Example: Poisson distribution
Let’s consider some realization of the sample with N = 10:
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Example: Poisson distribution

Let’s find the value of parameter θ that produces the largest
likelihood for given data. Instead of maximizing directly we will
maximize logarithm of the likelihood:

ln L(θ; x1, . . . , xN) = −θN + ln(θ)

N
∑

i=1

xi − ln

(

N
∏

i=1

xi !

)

∂ ln L(θ; x1, . . . , xN)

∂θ
= −N +

1

θ

N
∑

i=1

xi

∂2 ln L(θ; x1, . . . , xN)

∂θ2
= − 1

θ2

N
∑

i=1

xi < 0



Maximum Likelihood Estimate

Maximum Likelihood estimate (estimator) is defined as:

θ̂ = argmax
θ

ln L(θ; x1, . . . , xN)



Maximum Likelihood Estimate

Maximum Likelihood estimate (estimator) is defined as:

θ̂ = argmax
θ

ln L(θ; x1, . . . , xN)

∂ ln L(θ; x1, . . . , xN)

∂θ

∣

∣

∣

∣

θ̂

= −N +
1

θ̂

N
∑

i=1

xi = 0

⇐⇒ θ̂ =
1

N

N
∑

i=1

xi

∂2 ln L(θ; x1, . . . , xN)

∂θ2

∣

∣

∣

∣

θ̂

= − 1

θ̂2

N
∑

i=1

xi < 0



Maximum Likelihood Estimate

◮ The Maximum Likelihood estimate is a value

θ̂ ≡ θ̂(x) =
1

N

N
∑

i=1

xi

Given some fixed numbers for xi we’ll get a value of estimate.

◮ The Maximum Likelihood estimator is a random variable
depending on some other random variables

θ̂ =
1

N

N
∑

i=1

Xi



The Likelihood Function

The Likelihood Function is defined to be:

LN : Θ× R
N → R+

(θ; x1, . . . , xN) 7→ LN(θ; x1, . . . , xN) =
N
∏

i=1

fX (xi ; θ)

where fX (x ; θ) is a probability density function of a random
variable X .

The log-Likelihood Function is defined to be:

ℓN : Θ× R
N → R

(θ; x1, . . . , xN) 7→ ℓN(θ; x1, . . . , xN) =

N
∑

i=1

ln fX (xi ; θ)



Example: Normal distribution

If Y ∼ N(m, σ2) then:

fY (y ; θ) =
1

σ
√
2π

e
−

(y−m)2

2σ2

with

θ =

(

m

σ2

)

Likelihood and log-Likelihood functions would be of the form:

L(θ; y) = (σ22π)−
N
2 e

−
1

2σ2

∑N
i=1(yi−m)2

ℓ(θ; y) = −N

2
ln(σ2)− N

2
ln(2π)− 1

2σ2

N
∑

i=1

(yi −m)2



Example: Normal distribution

What is the MLE of m and σ2?

∂ℓ(θ; y)

∂m
=

1

σ2

N
∑

i=1

(yi −m) =⇒ m̂ =
1

N

N
∑

i=1

Yi

∂ℓ(θ; y)

∂σ2
= − N

2σ2
+

1

2σ4

N
∑

i=1

(yi −m)2 =⇒ σ̂2 =
1

N

N
∑

i=1

(Yi − Ȳ )2

Hessian matrix is negative definite (can verify on your own).



Example: Linear regression model

Let’s consider linear regression model:

yi = xTi β + ǫi

where xi , β ∈ R
K and noise is normally distributed ǫi ∼ N (0, σ2).

Then the conditional log-likelihood of the observations (xi , yi ) is
given by

ℓ(θ; y |x) = −N

2
ln(σ2)− N

2
ln(2π)− 1

2σ2

N
∑

i=1

(yi − xTi β)2

where θ = (βTσ2)T ∈ R
K+1.

What are the MLE of β and σ2?



Example: Linear regression model

Finding the derivative of log-likelihood and equating to 0:

∂ℓ(θ; y)

∂β
=

1

σ2

N
∑

i=1

xi (yi−xTi β) =⇒ β̂ =

(

N
∑

i=1

XiX
T
i

)−1( N
∑

i=1

XiYi

)



Example: Linear regression model

Finding the derivative of log-likelihood and equating to 0:

∂ℓ(θ; y)

∂β
=

1

σ2

N
∑

i=1

xi (yi−xTi β) =⇒ β̂ =

(

N
∑

i=1

XiX
T
i

)−1( N
∑

i=1

XiYi

)

∂ℓ(θ; y)

∂σ2
= − N

2σ2
+

1

2σ4

N
∑

i=1

(yi−xTi β)2 =⇒ σ̂2 =
1

N

N
∑

i=1

(Yi−XT
i β̂)2

Again, fairly easy to verify that Hessian is negative definite, thus
estimators are maximizing log-likelihood.



Invariance principle

Under suitable regularity conditions, the maximum likelihood
estimator of a function g(.) of the parameter θ is g(θ̂), where θ̂ is
the maximum likelihood estimator of θ.

This gives some agility in terms of reparametrization. For example,
if parameter θ occurs in the model in denominator, we can
substitute it with γ = 1/θ



Important assumption

The log-likelihood and the Maximum Likelihood estimator are
always based on an assumption about the distribution of the
random variable.

Yi ∼ distribution with pdf fY (y ; θ) =⇒ L(y ; θ) and ℓ(y ; θ)

In practice we generally don’t know true distribution of Y .



MLE properties

The maximum likelihood estimator has the following properties:

◮ Consistency - as the smple size tends to infinity the MLE
tends to the ”true” value of the parameter

◮ Asymptotic normality - as the sample size increases, the
distribution of the MLE tends to the normal distribution

◮ Efficiency - as the sample size tends to infinity, there are nor
any other unbiased estimators with a lower mean squared error



What questions do you have?



Some terminology

◮ p(D|θ) is called the likelihood

◮ p(θ) is called prior distribution

◮ p(θ|D) is called posterior distribution and in general can be
computed using Bayes’ Rule

p(θ|D) =
p(θ)p(D|θ)

∫

p(θ′)p(D|θ′)dθ′

◮ The posterior predictive distribution p(D′|D) is the
distribution over unseen observations given known
observations

p(D′|D) =

∫

p(θ|D)p(D′|θ)dθ



Example

Suppose we are interested in modeling the distribution of
temperatures in Tashkent in March. We assume that temperatures
are distributed according to Gaussian distribution with unknown
mean µ and known standard deviation σ. We want to find µ that
is most probable given observations.

p(µ|D) ∝ p(µ)p(D|µ)



Example

Suppose we are interested in modeling the distribution of
temperatures in Tashkent in March. We assume that temperatures
are distributed according to Gaussian distribution with unknown
mean µ and known standard deviation σ. We want to find µ that
is most probable given observations.

p(µ|D) ∝ p(µ)p(D|µ)
We know how to find the likelihood:

p(D|µ) =
N
∏

i=1

1√
2πσ

e
−

1
2σ2 (xi−µ)2

What prior distribution should we pick?



Conjugate prior

One source of prior distributions is domain knowledge. More
common way is to select conjugate prior. Conjugate prior comes
from the same family of distributions and has similar functional
representation.



Conjugate prior

One source of prior distributions is domain knowledge. More
common way is to select conjugate prior. Conjugate prior comes
from the same family of distributions and has similar functional
representation.

Let’s look at the data point distribution:

p(xi |µ) =
1√
2πσ

e
−

1
2σ2 (xi−µ)2

Easy to see that this expression also represents a Gaussian
distribution over µ. Therefore conjugate prior for this problem will
be the Gaussian distribution with µp and σp for parameters.

p(µ) =
1√
2πσp

e
−

1

2σ2
p
(µ−µp)2



Example

Now we can express the posterior:

p(µ|D) ∝
[

1√
2πσp

e
−

1

2σ2
p
(µ−µp)2

][

N
∏

i=1

1√
2πσ

e
−

1
2σ2

∑N
i=1(xi−µ)2

]

∝ e
−

(µ−µp )
2

2σ2
p

−
1

2σ2

∑N
i=1(xi−µ)2

∝ e
−

(µ−µpost)
2

σ
2
post

where

σpost =
1

√

1
σ2
p
+ N

σ2

µpost =
µp/σ

2
p + N/σ2(1/N

∑

xi )

1/σ2
p + N/σ2



Maximum a-posteriori

In the example we deduced the distribution posterior will have
according to selected prior. To infer some prediction regarding
unseen data we need to integrate over all possible values of
parameter. This approach is called full Bayesian approach.

Instead we can approximate the parameter with a single value that
maximizes the posterior distribution. In this example we will obtain
the same value for mean µMAP = µpost but predictions might be
different.

MAP is similar to MLE with prior distribution serving as a
regularizer.



What questions do you have?



Yet another example

Let’s consider some data that was generated from two different
models:

y(i) = a1x(i) + b1 + ǫ1(i)

y(i) = a2x(i) + b2 + ǫ2(i)



Yet another example

In this example we have two problems:

1. We don’t know the parameters. If we knew the parameters we
would be able to make assignments of points to one or the
other model (by selecting which is closer).

Expectation Maximization (EM) algorithm iteratively estimates
both assignments and model parameters. Every iteration has 2
steps, at each we assume one is fixed and estimate the other.



Yet another example

In this example we have two problems:

1. We don’t know the parameters. If we knew the parameters we
would be able to make assignments of points to one or the
other model (by selecting which is closer).

2. We don’t know what model every point belongs to. If we
knew the assignments, we could easily estimate the
parameters using ordinary LSP.

Expectation Maximization (EM) algorithm iteratively estimates
both assignments and model parameters. Every iteration has 2
steps, at each we assume one is fixed and estimate the other.



E-step

Assuming that model parameters are known. We assign each data
point a probability of being generated by one model or the other
based on calculated residuals
rk(i) = akx(i) + b(k)− y(i), k = 1, 2. Thus we get

P(ak , bk |rk(i)) =
P(rk(i)|ak , bk)

P(r1(i)|a1, b1) + P(r1(i)|a2, b2)

If we assume noise to be Gaussian distributed with 0 mean,
probability takes the form

wk(i) = P(ak , bk |rk(i)) =
e−r2

k
(i)/2σ2

e−r21 (i)/2σ
2
+ e−r22 (i)/2σ

2



M-step

We estimated probabilities of points being generated by both
models. We can estimate the parameters assuming these
assignments are true. This brings us to weighted least squares
problem

E (ak , bk) =
n
∑

i=1

(wk(i)(akx(i) + bk − y(i)))2

Or in matrix form:

E (mk) = ||Wk(Xmk − y)||2



EM algorithm

E and M steps are iterated until convergence.



EM algorithm

E and M steps are iterated until convergence.

EM algorithm is guaranteed to converge. But quality of obtained
result largely depends on initial parameters and parameters of noise
distribution, like σ. One recommendation is to update σ on each
EM iteration

σk =

∑n
i=1 wk(i)r

2
k (i)

∑n
i=1 wk(i)



BCS Summer School, Exeter, 2003 Christopher M. Bishop 

The Gaussian Distribution 

• Multivariate Gaussian 

 

 

 

 

 

 

• Define precision to be the inverse of the covariance 

 

 

• In 1-dimension  

 

mean covariance 
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Gaussian Mixtures 

• Linear super-position of Gaussians 

 

 

 

• Normalization and positivity require 

 

 

 

 

• Can interpret the mixing coefficients as prior probabilities 
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Sampling from the Gaussian 

• To generate a data point: 

– first pick one of the components with probability  

– then draw a sample       from that component 

• Repeat these two steps for each new data point 
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Example: Gaussian Mixture Density 

• Mixture of 3 Gaussians 
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Synthetic Data Set 
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Fitting the Gaussian Mixture 

• We wish to invert this process – given the data set, find 

the corresponding parameters: 

– mixing coefficients 

– means  

– covariances 

• If we knew which component generated each data point, 

the maximum likelihood solution would involve fitting 

each component to the corresponding cluster 

• Problem: the data set is unlabelled 

• We shall refer to the labels as latent (= hidden) variables 
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Synthetic Data Set Without Labels 
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Posterior Probabilities 

• We can think of the mixing coefficients as prior 

probabilities for the components  

• For a given value of     we can evaluate the 

corresponding posterior probabilities, called 

responsibilities 

• These are given from Bayes’ theorem by 
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Posterior Probabilities (colour coded) 
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Posterior Probability Map 
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Maximum Likelihood for the GMM 

• The log likelihood function takes the form 

 

 

 

 

• Note: sum over components appears inside the log 

• There is no closed form solution for maximum likelihood 

• How to maximize the log likelihood 

– solved by expectation-maximization (EM) algorithm 
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EM Algorithm – Informal Derivation 

• Let us proceed by simply differentiating the log likelihood 

• Setting derivative with respect to      equal to zero gives 

 

 

 

 

 

giving 

 

 

 

 

 

which is simply the weighted mean of the data 
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EM Algorithm – Informal Derivation 

• Similarly for the covariances 

 

 

 

 

 

 

• For mixing coefficients use a Lagrange multiplier to give 

 

 

 

    Average responsibility which component j takes for 

explaining the data points. 
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EM Algorithm – Informal Derivation 

• The solutions are not closed form since they are coupled 

• Suggests an iterative scheme for solving them: 

– Make initial guesses for the parameters 

– Alternate between the following two stages: 

1. E-step: evaluate responsibilities 

2. M-step: update parameters using ML results 
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General EM Algorithm 

 

Repeat until convergence { 

 

– E-step: 

      For each i set  

 

– M-step: 

 

 

 

 } 
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EM for MoG revisited 

• For                            , define hidden variables 

 

 

•       are indicator random variables, they indicate  which 

Gaussian component generated sample
 

 

• Let                             indicator r.v. correspond to 

sample     . 

 We say that            , when its k’st coordinate is 1 and 

the rest are 0. 
 

• Conditioned on     , distribution of       is Gaussian 
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EM for MoG revisited 
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EM for MoG revisited 

M-step: 
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Similarly, 
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EM Example 

 Example from R. Gutierrez-Osuna  

 Training set of 900 examples forming an annulus 

 Mixture model with m = 30 Gaussian components of 

unknown mean and variance is used 

 Training: 
 Initialization: 

 means to 30 random examples 

 covaraince matrices initialized to be diagonal, with large variances on 

the diagonal (compared to the training data variance) 

 During EM training, components with small mixing coefficients were 

trimmed 
 This is a trick to get in a more compact model, with fewer than 30 

Gaussian components 



EM Example 

from R. Gutierrez-Osuna 


