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Nature is nonlinear...

4896kj.com/journeying/wp-content/uploads /2007/06/ www.mathworks.com/matlabcentral/fx files/
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Why Optimisation?

• Many physical laws are formulated in terms of maximum
or minimum of energy, entropy, or other object properties

• Optimisation is essential almost everywhere (in natural
life, science, engineering, economics, business, etc).

• Bees minimise the average amount of material per cell
• Humans aim to the maximum effect under limited

resources

• Many scientific and technological applications require
large-scale optimisation with 104..106 or more variables:

• Medical imaging and computer assisted diagnostics
• Shape design of mechanical objects
• Control of industrial processes
• Robotics and autonomous navigation, etc.
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Extremum of a Function

One of most important applied problems: to find maximum or

minimum value of a function f(x) under constraints x ∈ X

• f(x) ≡ f(x1, . . . , xn) is a scalar function of n-dimensional
vector argument

• X is a certain subset of n-dimensional vector space Rn

Unconstrained optimisation: if X = Rn

• Maximum / minimum function value: f∗ = {max
min } f(x)

• Maximiser / minimiser: x∗ = arg {max
min } f(x)

Constrained optimisation: if X ⊂ Rn

• Maximum / minimum function value: f∗ = {max
min }x∈X f(x)

• Maximiser / minimiser: x∗ = arg {max
min }x∈X f(x)
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Univariate Function (Function of One Variable)

f(x)

x

local and global maximum

x1 x2
local and global minimum

x3

inflection

x4

local maximum

x5
local minimum

• Minimum: df(x)
dx

= 0; d2f(x)
dx2 > 0

• Maximum: df(x)
dx

= 0; d2f(x)
dx2 < 0

• Inflection point: df(x)
dx

= 0; d2f(x)
dx2 = 0
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Functions of Many Variables f(x)

• Unconditional local critical (or stationary) point: where the gradient

of f is zero: ∇f(x) =
[

∂f(x)
∂x1

, . . . ,
∂f(x)
∂xn

]T

= 0

• Its properties depend on the Hessian matrix of the 2nd derivatives:

H(x) =















∂2f(x)
∂x2

1

∂2f(x)
∂x1∂x2

. . .
∂2f(x)
∂x1∂xn

∂2f(x)
∂x2∂x1

∂2f(x)
∂x2

2

. . .
∂2f(x)
∂x2∂xn

...
...

. . .
...

∂2f(x)
∂xn∂x1

∂2f(x)
∂xn∂x2

. . .
∂2f(x)
∂x2

n















• Local minimum: if the Hessian is positive definite (the
quadratic form e

T
H(x)e > 0 for any e 6= 0)

• Local maximum: if the Hessian is negative definite (the
quadratic form e

T
H(x)e < 0 for any e 6= 0)

• Saddle point: if the Hessian is indefinite
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Quadratic Function f(x) = a
T
x+ 1

2x
T
Hx of n Variables

f(x) =

a
T
x

︷ ︸︸ ︷

a1x1 + . . .+ anxn +

1

2
x
T
Hx

︷ ︸︸ ︷

1

2

(
H11x

2
1 +H12x1x2 + . . .+H1nx1xn

+H21x2x1 +H22x
2
2 + . . .+H2nx2xn

. . .+Hn1xnx1 +Hn2xnx2 + . . .+Hnnx
2
n

)

=
n∑

i=1

(

aixi +
Hii

2 x2
i +

n∑

j=i+1

Hijxixj

)

where Hij = Hji

• Gradient ∇f(x) = a+Hx:





∂f
∂x1

...
∂f
∂xn




 =






a1
...
an




+






H11 H12 . . . H1n

...
...

. . .
...

Hn1 Hn2 . . . Hnn











x1

...
xn






• Hessian ∂∇f(x)
∂x

≡
[

∂2f
∂xi∂xj

]n

i,j=1
≡ [Hij ]

n

i,j=1 ≡ H
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Sylvester’s Criterion: Sufficient Condition of an Extremum

Symmetric n× n matrix A =






a11 . . . a1n
...

. . .
...

an1 . . . ann




 is:

• Positive definite if the determinants of all its upper-left
submatrices are positive:

a11 > 0;

∣
∣
∣
∣

a11 a12
a21 a22

∣
∣
∣
∣
> 0; . . . ;

∣
∣
∣
∣
∣
∣

a11 . . . a1n
...

. . .
...

an1 . . . ann

∣
∣
∣
∣
∣
∣

> 0

• Negative definite if sign-alternate (starting from a11 < 0):

−a11 > 0;

∣
∣
∣
∣

a11 a12
a21 a22

∣
∣
∣
∣
> 0; . . . ; (−1)n

∣
∣
∣
∣
∣
∣

a11 . . . a1n
...

. . .
...

an1 . . . ann

∣
∣
∣
∣
∣
∣

> 0

• Indefinite in all other cases
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Quadratic Function: An Example with No Local Extremum

f(x1, x2, x3) = 5x1−3x2+x3+4x2
1−2x1x2+10x1x3−x2

2+3x2x3+9x2
3

∂f
∂x1

= 5 + 8x1 − 2x2 + 10x3
∂2f

∂x2

1

= 8 ∂2f
∂x1∂x2

= −2 ∂2f
∂x1∂x3

= 10

∂f
∂x2

= −3− 2x1 − 2x2 + 3x3
∂2f

∂x1∂x2

= −2 ∂2f

∂x2

2

= −2 ∂2f
∂x2∂x3

= 3

∂f
∂x3

= 1 + 10x1 + 3x2 + 18x3
∂2f

∂x1∂x3

= 10 ∂2f
∂x2∂x3

= 3 ∂2f

∂x2

3

= 18

Gradient:

∇f(x1, x2, x3) =






∂f
∂x1

∂f
∂x2

∂f
∂x3




 =





5
−3
1



+





8 −2 10
−2 −2 3
10 3 18





︸ ︷︷ ︸

the indefinite Hessian H





x1

x2

x3





Sylvester’s criterion:

H11 = 8 > 0;

∣

∣

∣

∣

8 −2
−2 −2

∣

∣

∣

∣

= −12 < 0;

∣

∣

∣

∣

∣

∣

8 −2 10
−2 −2 3
10 3 18

∣

∣

∣

∣

∣

∣

= −120 < 0
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Quadratic Functions of Two Variables

• f(x, y) = x2 − xy + y2 + x− y:

the positive definite Hessian

[
2 −1
−1 2

]

as

2 > 0;

∣

∣

∣

∣

2 1
1 2

∣

∣

∣

∣

= 2 · 2− 1 · 1 = 4− 1 = 3 > 0

• f(x, y) = −x2 − xy + y2 + x− y:

the indefinite Hessian

[
−2 −1
−1 2

]

as

−2 < 0;

∣

∣

∣

∣

−2 1
1 2

∣

∣

∣

∣

= −2 · 2− 1 · 1 = −4− 1 = −5 < 0

• f(x, y) = −− x2 − xy − y2 + x− y:

the negative definite Hessian

[
−2 −1
−1 −2

]

as

−2 < 0;
∣

∣

∣

∣

−2 −1
−1 −2

∣

∣

∣

∣

= −2 · (−2)− (−1) · (−1) = 4− 1 = 3 > 0

Colour-coded range
[fmin, fmax]

85

−0.33

39

−34

1.0

−75
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Equivalent Definitions of a Positive Definite Matrix

Symmetric n× n matrix A is positive definite if

1 All eigenvalues of A are positive (> 0), or

2 Choleski decomposition A = LL
T exists where L is a lower

triangular matrix with lii > 0, or

3 Decomposition A = LDL
T exists where L is a lower

triangular matrix with lii = 1 and D is a diagonal matrix with
di > 0, or

4 All pivots in Gaussian elimination without pivoting are positive
(> 0).

For small matrices, the Sylvester’s condition can be readily checked, but

generally Conditions 2 or 3 are the most efficient and yield easy solutions

to linear systems with coefficients A
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Extrema of f(x, y) = ax2 + by2; a 6= 0; b 6= 0

Gradient ∇f(x, y) = 0 ⇒ ∂f(x,y)
∂x

= 2ax = 0; ∂f(x,y)
∂y

= 2by = 0

⇒ Single extremum at the point [0, 0]T

Hessian H =

[
2a 0
0 2b

]

• Function f(x, y) has the minimum in [0, 0]T if
a > 0 and b > 0: an elliptic paraboloid (the

Sylvester’s criterion: 2a > 0 and 4ab > 0)

• If a > 0; b < 0 or a < 0; b > 0, there is no
extremum: a hyperbolic paraboloid with a
saddle point [0, 0]T (the Sylvester’s criterion:

2a > 0 and 4ab < 0 or 2a < 0 and 4ab < 0)

• Function f(x, y) has the maximum in [0, 0]T if
a < 0 and b < 0: an elliptic paraboloid (the

Sylvester’s criterion: 2a < 0 and 4ab > 0)

f(x, y)

xy

f(x, y)

xy

f(x, y)
xy
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Colour-Coded Graphs of f(x, y) = ax2 + by2; a 6= 0; b 6= 0

Function range [0.0, 3.75] [−1.25, 2.5] [−3.75, 0.0]

f(x, y) = 0.1x2 + 0.05y2 f(x, y) = 0.1x2 − 0.05y2 f(x, y) = −0.1x2 − 0.05y2

• The single potentially extremum point [x = 0, y = 0] such that ∇f(0, 0) = 0

• (left) Minimum – the positive definite H =
[

0.2 0
0 0.1

]

• (middle) Saddle – the indefinite H =
[

0.2 0
0 −0.1

]

• (right) Maximum – the negative definite H =
[

−0.2 0
0 −0.1

]

16 / 41



Outline Non-linear world Extremum points Univariate search Gradient methods Direct search

A More Complex Case: the Rosenbrock’s “Banana” Test Function

y

x1

1

Logarithmic colour
scales

Left window
−2.5 ≤ x, y ≤ 2.5:

f(1, 1) = 0; f(0, 0) = 1;
f(−2.5,−2.5) = 7668.5

Right window
0 ≤ x, y ≤ 1.25:

f(1, 1) = 0; f(0, 0) = 1;
f(1.25, 0) = 244.2

y

x1

1

• Bivariate case: f(x, y) = (1− x)2 + 100(y − x2)2

∇f =

[

−2(1− x)− 400x(y − x2)
200(y − x2)

]

=

[

0
0

]

⇒ Single minimum f(1, 1) = 0

• Multivariate extension: f(x1, . . . , xn) =
n−1
∑

i=1

[

(1− xi)
2 + 100

(

xi+1 − x2
i

)2
]

• For n = 3: Single minimum at [1, 1, 1]
• For 4 ≤ n ≤ 7: Global minimum at all ones (1, 1, . . . , 1) and local

minimum near (−1, 1, . . . , 1)
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Line Search for a Maximal Point

Find a maximiser of f(x) along a direction d[k] from a point x[k],
i.e. along the line x(γ) = x[k] + γd[k]:

{
γ[k] = argmax

γ∈R
f(x(γ)) ≡ argmax

γ∈R
f
(
x[k] + γd[k]

)

x[k+1] = x[k] + γ[k]d[k]

x1

xn

x[k] d[k]

x(γ) = x[k] + γd[k]

x[k+1] = x[k] + γkd[k]

Line search is used repeatedly in many multivariate search methods
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Line Search for a Maximal Point: An Example

Find a maximiser of the quadratic function

f(x, y) = −x2 + xy − y2 + 1

along a direction [δx = 0, δy = 1] from the point [x◦ = 1, y◦ = 0]

Maximising along the line [x◦ + γδx, y
◦ + γδy], i.e. the line

[1 + 0 · γ, 0 + 1 · γ] = [1, γ] in this example:

f(1, γ) = −1 + γ − γ2 + 1 = γ − γ2

γ∗ = argmax
γ∈R

{
γ − γ2

}
= 0.5 ⇐ d(γ−γ2)

dγ
= 1− 2γ = 0

x∗ = 1 ; y∗ = 0.5 ⇒ f(1, 0.5) = 0.25 > f(1, 0) = 0

x

y

f(1, 0) = 0

f(1, 0.5) = 0.25
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Maximising an Univariate Unimodal Function u(x)

u

xx∗

u(x∗)

u(x1)

u(x0)

x1x0

u

xx∗

u(x∗)

a x1 x2 b

u(x1)
u(x2)

Properties of the maximiser x∗ = argmax
x

u(x)

• If x0 < x1 < x∗ or x0 > x1 > x∗, then u(x0) < u(x1) < u(x∗)

• If a ≤ x∗ ≤ b and a ≤ x1 < x2 < b or a < x1 < x2 ≤ b, then
u(x1) < u(x2) ⇒ x1 < x∗ ≤ b
u(x1) = u(x2) ⇒ x1 < x∗ < x2

u(x1) > u(x2) ⇒ a ≤ x∗ < x2







Therefore, the search inter-
val a ≤ x∗ ≤ b is reduced
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Golden Section Search

Initialisation: an interval [a0, b0]; a0 ≤ x∗ ≤ b0, containing the
maximiser x∗ of a unimodal function u(x)
Iteration (step) i = 0, 1, 2, . . ., of reducing the search interval:

• Evaluate u(xi) and u(x̄i) at symmetric internal points of the
interval [ai, bi] (below τ = 1+

√
5

2
is the Greek golden section ratio):

{
xi = ai + (bi − ai)(2− τ) ≈ ai + 0.382(bi − ai)
x̄i = ai + (bi − ai)(τ − 1) ≈ ai + 0.618(bi − ai)

• If u(xi) > u(x̄i), then ai+1 ← ai and bi+1 ← x̄i

• If u(xi) < u(x̄i), then ai+1 ← xi and bi+1 ← bi
• If u(xi) = u(x̄i), then a0 ← xi; b0 ← x̄i, and initiate the

search again from the new interval [a0, b0] and i = 0

Stopping rule: Proceed until the interval [a0, b0] is sufficiently small, or

the next point is within the resolution distance of the last point
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Golden Section Search: A Simple Example

u(x) = 20 + 4x− x2

x∗ = 2; u(x∗) = 24

x0

u(x)

5

10

15

20

25

−1 1 2 3 4 5 6

a0 b0

a1 b1
a2 b2

a3 b3
a4 b4

i 0 1 2 3 4 5 6 7 8 9 10
ai −1.0 −1.00 0.65 1.67 1.67 1.67 1.92 1.92 1.92 1.97 1.97
bi 6.0 3.33 3.33 3.33 2.70 2.31 2.31 2.16 2.06 2.06 2.03
u(ai) 15. 15.0 22.2 23.9 23.9 23.9 23.99 23.99 23.99 24.0 24.0
u(bi) 8. 22.2 22.2 22.2 23.5 23.9 23.91 23.98 23.99 23.99 24.0
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Golden Section vs. Fibonacci Search (optional)

Golden section search: an example

u(x)

x

a0 b0

x0 x̄0

a1 b1
a2 b2

• Golden section search is less efficient than the
Fibonacci search: for i = 1, 2, . . . , n− 1,

xi = ai + (bi − ai)Fn−i/Fn+2−i

x̄i = ai + (bi − ai)Fn+1−i/Fn+2−i

where Fk is the Fibonacci number: F0 = 0;
F1 = 1; Fk = Fk−1 + Fk−2, k = 2, 3, . . .

• Fibonacci search minimises the maximal
interval of uncertainty about the maximiser
x∗ (in that sense it is optimal)

• But the number of points n to be evaluated
in the Fibonacci search has to be prescribed

• Search for the root x∗ of the first derivative,
du
dx
(x∗) = 0, be it available, is even more efficient
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Gradient of a Function of Several Variables

Gradient vector ∇f(x) =
[

∂f
∂x1

, ∂f
∂x2

, . . . , ∂f
∂xn

]T

is directed to the

greatest slope of the function f at any point.
x2

0

x1

1

1

x2

0

x1

1

1

f(x1, x2) = 10x2

1
− 2x1x2 + 2x2

2
− 18x1 − 2x2;

∂f
∂x1

= 20x1 − 2x2 − 18; ∂f
∂x2

= −2x1 + 4x2 − 2
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Gradient Search

Gradient methods for seeking a maximum (minimum) for f :

1 Evaluate the gradient at an initial point

2 Move along the gradient direction for a computable distance

3 Repeat this process until the maximum (minimum) is found

If exact partial derivatives are unknown, the gradients may be
numerically approximated: for a small ε > 0

∂f

∂xi

≈
f(x1, . . . , xi−1, xi + ε, xi+1, . . . , xn)− f(x1, . . . , xi−1, xi − ε, xi+1, . . . , xn)

2ε

• Approximation errors can make the methods less attractive
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Gradient Maximisation: The Steepest Ascent

Initialisation: Select an initial point x0

Iterative steps i = 0, 1, . . .:

1 Compute the gradient ∇f(x) at the point xi

2 Draw a line xi + t∇f(xi) through xi in the gradient direction

3 Select the point xi+1 on this line yielding the largest value for
f of all points on the line:

f(xi+1) = max
t∈(0,∞)

{f(x) : x = xi + t∇f(xi)}

Stopping rule: Terminate if the gradient is small (|∇f(xi)| ≈ 0)
or successive points are close to each other (|xi+1 − xi| ≈ 0)
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Gradient Minimisation: The Steepest Descent

Initialisation: Select an initial point x0

Iterative steps i = 0, 1, . . .:

1 Compute the gradient ∇f(x) at the point xi

2 Draw a line xi − t∇f(xi) in the opposite gradient direction

3 Select the point xi+1 on this line yielding the smallest value
for f of all points on the line:

f(xi+1) = min
t∈(0,∞)

{f(x) : x = xi − t∇f(xi)}

Stopping rule: Terminate if the gradient is small (|∇f(xi)| ≈ 0)
or successive points are close to each other (|xi+1 − xi| ≈ 0)
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Finding the Best Point Along the Gradient Direction

Search for the extremum point along the line f(x)± t · ∇f(x)

If the derivatives ∇f are computable and
the function f is well-behaving then:

1 Substitute x0 ± t · ∇f(x0) into the equation for f ,

2 Differentiate with respect to t, and

3 Set the derivative equal to zero to find t

else if the function u(t) ≡ f (x0 ± t∇f(x0)) is unimodal
then use any one-dimensional line search, e.g.

• the golden section search or

• the Fibonacci section search
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Steepest Ascent: An Example

f(x) ≡ f(x, y) = 25− x2 − 4y2; ∇f(x) = (−2x,−8y); x0 = (−3,−2):

f(x0) = 0; f(x1) = 20.1; f(x2) = 24.0; f(x3) = 24.8; f(x4) = 24.9; . . .

f = 0

f = 18.8

x0 = (−3,−2)

x1 = (−2.17, 0.20)

x2 = (−0.59,−0.39)

x3 = (−0.43, 0.04)

x4 = (−0.12,−0.08)

f∗ = 25
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Steepest Descent: f(x, y) = 10x2 − 2xy + 2y2 − 18x− 2y






∂f
∂x

∣
∣
∣
xi,yi

≡ ui = 20x− 2y − 18

∂f
∂y

∣
∣
∣
xi,yi

≡ vi = −2x+ 4y − 2
⇒

{

xi+1 = xi − tiui

yi+1 = yi − tivi

f(xi + tui, yi + tvi) = f(xi, yi)− t
(
u2
i + v2i

)
+ t2

(
au2

i + buivi + cv2i
)

⇒ ti = argmin
t
{f(xi + tui, yi + tvi)} =

1
2

u2

i+v2

i

au2

i+buivi+cv2

i

i xi yi f(xi, yi) ui vi xi+1 yi+1

0 −1.0000 −1.0000 30.0000 −36.0000 −4.0000 0.8589 −0.7935
1 0.8589 −0.7935 −3.8741 0.7657 −6.8917 0.6937 0.6937
2 0.6937 0.6937 −9.0618 −5.5134 −0.6126 0.9784 0.7253
3 0.9784 0.7253 −9.8563 0.1173 −1.0555 0.9531 0.9531
4 0.9531 0.9531 −9.9780 −0.8444 −0.0938 0.9967 0.9579
5 0.9967 0.9579 −9.9966 0.0180 −0.1616 0.9928 0.9928
6 0.9928 0.9928 −9.9995 −0.1293 −0.0144 0.9995 0.9936
7 0.9995 0.9936 −9.9999 0.0028 −0.0248 0.9989 0.9989
8 0.9989 0.9989 −10.0000 −0.0198 −0.0022 0.9999 0.9990
9 0.9999 0.9990 −10.0000 0.0004 −0.0038 0.9998 0.9998
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Steepest Descent: f(x, y) = 10x2 − 2xy + 2y2 − 18x− 2y

May become slow near
the goal minimum. . .
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Steepest Descent: Rosenbrock’s “Banana”

f(x, y) = (1− x)2 + 100
(

y − x2
)2

http://en.wikipedia.org/wiki/Gradient descent
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Unconstrained Optimisation: An Informal Sketch

Minimum or maximum of a function f(x) of many variables

• The goal: x∗ = arg {max
min } f(x); f

∗ ≡ f(x∗) = {max
min } f(x)

• Mostly: a multi-modal f(x)
• Modes correspond to the gradient’s roots ∇f(x◦) = 0

• Most optimistic case: an analytical solution of this system
• The optimum may not be unique: f∗ = f(x∗

1) = . . . = f(x∗
k)

Global optimisation is typically a hard problem

• Feasible solutions - only for specific functions

Local optimisation: find the optimiser x◦ close to a known x0

• Most optimistic case: f(x); ∇f(x) – an analytical solution

• Typically – an iterative linear search starting from x0

• Analytical or numerical selection of direction si at each step i
• Analytical or numerical step, e.g. t◦ = arg {max

min }t f(xi + tsi)
• Accelerated linear search with interdependent si and sj ; j < i
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Outline Non-linear world Extremum points Univariate search Gradient methods Direct search

Accelerated Gradient Search

f = 0

f = 18.8

x0

x1

x2

x3

x4

f∗ = 25

• Once i > 2, for i odd the point xi is found by gradient search from
xi−1, and xi+1 is found by an accelerated step by maximising over
the line through xi and xi−2

• Global maximum of a negative definite quadratic function of n
variables is provably found after 2n− 1 steps of this procedure

34 / 41



Outline Non-linear world Extremum points Univariate search Gradient methods Direct search

Direct Search Methods

• If both the gradient and Hessian of f(x) are too complicated

to compute but f can be evaluated at any point x ∈ Rn

Pattern search of K. Hooke and T. A. Jeeves

• For i = 1, . . . , n sequentially:

• If f(x1, . . . , xi + εi, . . . , xn) > f(x1, . . . , xi, . . . , xn), replace
xi ← xi + ε

• Else if f(x1, . . . , xi − εi, . . . , xn) > f(x1, . . . , xi, . . . , xn),
replace xi ← xi − ε

• Repeat this cycle of perturbations until no perturbations about xj

bring about an improvement

• Halve the pre-defined perturbation sizes εi and repeat the process

while the next point brings an improvement over xj
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Outline Non-linear world Extremum points Univariate search Gradient methods Direct search

Sectioning and Accelerated Rosenbrock’s Search

One-at-a-time search, or sectioning, from an initial point x0

• For i = 1, . . . , n sequentially, search for the maximum in the

direction of the variable xi by one of the one-dimensional search

methods and replace xi by the maximiser x∗

i : xi ← x∗

i

• Repeat this cycle of one-dimensional searches until the steps

xi − x∗

i ; i = 1, . . . , n become less than a given threshold

Convergence rate is usually too slow and the search may halt far from the optimum

Accelerated search of H. H. Rosenbrock

• Use one-at-a-time search from x0 to find the next point x∗

1
and the

direction δ with components δi = x∗

1:i − x0:i

• Search for the maximum in the direction δ and replace x0 by the

maximiser x1 found

• Repeat this cycle until xt and xt−1 are closer than a threshold
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One-at-a-time Search: An Example

x2

x1

[x1, x2] [x1 ← x
∗

1
, x2]
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Rosenbrock’s Search: An Example

x2

x1

[x1, x2] [x1 ← x
∗

1
, x2]

[x∗

1
, x

∗

2
]
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Coordinate descent

We’ve seen some pretty sophisticated methods

Our focus today is a very simple technique that can be surprisingly
efficient and scalable: coordinate descent, i.e., coordinate-wise
minimization

Q: Given convex, differentiable f : Rn → R, if we are at a point x
such that f(x) is minimized along each coordinate axis, have we

found a global minimizer?

I.e., does f(x+ δ · ei) ≥ f(x) for all δ, i =⇒ f(x) = minz f(z)?

(Here ei = (0, . . . , 1, . . . 0) ∈ R
n, the ith standard basis vector)

2



x1

x2

f

x1

x
2

−4 −2 0 2 4

−
4

−
2

0
2

4

●

A: No! Look at the above counterexample

Q: Same question again, but now f(x) = g(x) +
∑n

i=1 hi(xi), with
g convex, differentiable and each hi convex ... ? (Non-smooth part
here called separable)
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x1

x2

f

x1

x
2

−4 −2 0 2 4

−
4

−
2

0
2

4

●

A: Yes! Proof: for any y,

f(y)− f(x) ≥ ∇g(x)T (y − x) +
n∑

i=1

[hi(yi)− hi(xi)]

=

n∑

i=1

[∇ig(x)(yi − xi) + hi(yi)− hi(xi)]
︸ ︷︷ ︸

≥0

≥ 0
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Coordinate descent

This suggests that for f(x) = g(x) +
∑n

i=1 hi(xi) (with g convex,
differentiable and each hi convex) we can use coordinate descent
to find a minimizer: start with some initial guess x(0), and repeat

x
(k)
1 ∈ argmin

x1

f
(
x1, x

(k−1)
2 , x

(k−1)
3 , . . . x(k−1)

n

)

x
(k)
2 ∈ argmin

x2

f
(
x
(k)
1 , x2, x

(k−1)
3 , . . . x(k−1)

n

)

x
(k)
3 ∈ argmin

x2

f
(
x
(k)
1 , x

(k)
2 , x3, . . . x

(k−1)
n

)

. . .

x(k)n ∈ argmin
x2

f
(
x
(k)
1 , x

(k)
2 , x

(k)
3 , . . . xn

)

for k = 1, 2, 3, . . . (note: after we solve for x
(k)
i , we use its new

value from then on!)
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Seminal work of Tseng (2001) proves that for such f (provided f

is continuous on compact set {x : f(x) ≤ f(x(0))} and f attains
its minimum), any limit point of x(k), k = 1, 2, 3, . . . is a minimizer
of f1

Notes:

• Order of cycle through coordinates is arbitrary, can use any
permutation of {1, 2, . . . n}

• Can everywhere replace individual coordinates with blocks of
coordinates

• “One-at-a-time” update scheme is critical, and “all-at-once”
scheme does not necessarily converge

1Using real analysis, we know that x(k) has subsequence converging to x⋆

(Bolzano-Weierstrass), and f(x(k)) converges to f⋆ (monotone convergence)
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Linear regression

Consider linear regression

min
β∈Rp

1

2
‖y −Xβ‖22

where y ∈ R
n, and X ∈ R

n×p with columns X1, . . . Xp

Minimizing over βi, with all βj , j 6= i fixed:

0 = ∇if(β) = XT
i (Xβ − y) = XT

i (Xiβi +X−iβ−i − y)

i.e., we take

βi =
XT

i (y −X−iβ−i)

XT
i Xi

Coordinate descent repeats this update for i = 1, 2, . . . , p, 1, 2, . . .
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Coordinate descent vs gra-
dient descent for linear re-
gression: 100 instances
(n = 100, p = 20)
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0
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e

+
0
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k

f(
k
)−

fs
ta

r

GD

CD

Is it fair to compare 1 cycle of coordinate descent to 1 iteration of
gradient descent? Yes, if we’re clever:

βi ←
XT

i (y −X−iβ−i)

XT
i Xi

=
XT

i r

‖Xi‖22
+ βi

where r = y −Xβ. Therefore each coordinate update takes O(n)
operations — O(n) to update r, and O(n) to compute XT

i r —
and one cycle requires O(np) operations, just like gradient descent
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Accelerated GD

Same example, but now
with accelerated gradient
descent for comparison

Is this contradicting the optimality of accelerated gradient descent?
I.e., is coordinate descent a first-order method?

No. It uses much more than first-order information
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Lasso regression

Now consider the lasso problem

min
β∈Rp

1

2
‖y −Xβ‖22 + λ‖β‖1

Note that the non-smooth part is separable: ‖β‖1 =
∑p

i=1 |βi|

Minimizing over βi, with βj , j 6= i fixed:

0 = XT
i Xiβi +XT

i (X−iβ−i − y) + λsi

where si ∈ ∂|βi|. Solution is simply given by soft-thresholding

βi = Sλ/‖Xi‖22

(
XT

i (y −X−iβ−i)

XT
i Xi

)

Repeat this for i = 1, 2, . . . p, 1, 2, . . .
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Box-constrained regression

Consider box-constrainted linear regression

min
β∈Rp

1

2
‖y −Xβ‖22 subject to ‖β‖∞ ≤ s

Note this fits our framework, as 1{‖β‖∞ ≤ s} =
∑n

i=1 1{|βi| ≤ s}

Minimizing over βi with all βj , j 6= i fixed: same basic steps give

βi = Ts

(
XT

i (y −X−iβ−i)

XT
i Xi

)

where Ts is the truncating operator:

Ts(u) =







s if u > s

u if − s ≤ u ≤ s

−s if u < −s
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Introduction

Introduction

Gradient descent is a way to minimize an objective function J(θ)
θ ∈ R

d : model parameters
η: learning rate
∇θJ(θ): gradient of the objective function with regard to the
parameters

Updates parameters in opposite direction of gradient.
Update equation: θ = θ − η · ∇θJ(θ)

Figure: Optimization with gradient descent
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Gradient descent variants

Gradient descent variants

1 Batch gradient descent

2 Stochastic gradient descent

3 Mini-batch gradient descent

Difference: Amount of data used per update
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Gradient descent variants Batch gradient descent

Batch gradient descent

Computes gradient with the entire dataset.

Update equation: θ = θ − η · ∇θJ(θ)

for i in range(nb_epochs ):

params_grad = evaluate_gradient(

loss_function , data , params)

params = params - learning_rate * params_grad

Listing 1: Code for batch gradient descent update
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Gradient descent variants Batch gradient descent

Pros:

Guaranteed to converge to global minimum for convex error surfaces
and to a local minimum for non-convex surfaces.

Cons:

Very slow.
Intractable for datasets that do not fit in memory.
No online learning.
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Gradient descent variants Stochastic gradient descent

Stochastic gradient descent

Computes update for each example x (i)y (i).

Update equation: θ = θ − η · ∇θJ(θ; x
(i); y (i))

for i in range(nb_epochs ):

np.random.shuffle(data)

for example in data:

params_grad = evaluate_gradient(

loss_function , example , params)

params = params - learning_rate * params_grad

Listing 2: Code for stochastic gradient descent update
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Gradient descent variants Stochastic gradient descent

Pros

Much faster than batch gradient descent.
Allows online learning.

Cons

High variance updates.

Figure: SGD fluctuation (Source: Wikipedia)
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Gradient descent variants Stochastic gradient descent

Batch gradient descent vs. SGD fluctuation

Figure: Batch gradient descent vs. SGD fluctuation (Source: wikidocs.net)

SGD shows same convergence behaviour as batch gradient descent if
learning rate is slowly decreased (annealed) over time.
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Gradient descent variants Mini-batch gradient descent

Mini-batch gradient descent

Performs update for every mini-batch of n examples.

Update equation: θ = θ − η · ∇θJ(θ; x
(i :i+n); y (i :i+n))

for i in range(nb_epochs ):

np.random.shuffle(data)

for batch in get_batches(data , batch_size =50):

params_grad = evaluate_gradient(

loss_function , batch , params)

params = params - learning_rate * params_grad

Listing 3: Code for mini-batch gradient descent update
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Gradient descent variants Mini-batch gradient descent

Pros

Reduces variance of updates.
Can exploit matrix multiplication primitives.

Cons

Mini-batch size is a hyperparameter. Common sizes are 50-256.

Typically the algorithm of choice.

Usually referred to as SGD even when mini-batches are used.
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Gradient descent variants Mini-batch gradient descent

Method Accuracy
Update
Speed

Memory
Usage

Online
Learning

Batch
gradient descent

Good Slow High No

Stochastic
gradient descent

Good (with
annealing)

High Low Yes

Mini-batch
gradient descent

Good Medium Medium Yes

Table: Comparison of trade-offs of gradient descent variants
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Challenges

Challenges

Choosing a learning rate.

Defining an annealing schedule.

Updating features to different extent.

Avoiding suboptimal minima.
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Gradient descent optimization algorithms

Gradient descent optimization algorithms

1 Momentum

2 Nesterov accelerated gradient

3 Adagrad

4 Adadelta

5 RMSprop

6 Adam

7 Adam extensions
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Gradient descent optimization algorithms Momentum

Momentum

SGD has trouble navigating ravines.
Momentum [Qian, 1999] helps SGD accelerate.
Adds a fraction γ of the update vector of the past step vt−1 to
current update vector vt . Momentum term γ is usually set to 0.9.

vt = γvt−1 + η∇θJ(θ)

θ = θ − vt
(1)

(a) SGD without momentum (b) SGD with momentum

Figure: Source: Genevieve B. Orr
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Gradient descent optimization algorithms Momentum

Reduces updates for dimensions whose gradients change
directions.

Increases updates for dimensions whose gradients point in the
same directions.

Figure: Optimization with momentum (Source: distill.pub)
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Gradient descent optimization algorithms Nesterov accelerated gradient

Nesterov accelerated gradient

Momentum blindly accelerates down slopes: First computes
gradient, then makes a big jump.
Nesterov accelerated gradient (NAG) [Nesterov, 1983] first makes a
big jump in the direction of the previous accumulated gradient
θ − γvt−1. Then measures where it ends up and makes a correction,
resulting in the complete update vector.

vt = γ vt−1 + η∇θJ(θ − γvt−1)

θ = θ − vt
(2)

Figure: Nesterov update (Source: G. Hinton’s lecture 6c)
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Gradient descent optimization algorithms Adagrad

Adagrad

Previous methods: Same learning rate η for all parameters θ.
Adagrad [Duchi et al., 2011] adapts the learning rate to the
parameters (large updates for infrequent parameters, small updates
for frequent parameters).
SGD update: θt+1 = θt − η · gt

gt = ∇θt
J(θt)

Adagrad divides the learning rate by the square root of the sum of
squares of historic gradients.
Adagrad update:

θt+1 = θt −
η√

Gt + ǫ
⊙ gt (3)

Gt ∈ R
d×d : diagonal matrix where each diagonal element i , i is the

sum of the squares of the gradients w.r.t. θi up to time step t

ǫ: smoothing term to avoid division by zero
⊙: element-wise multiplication
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Gradient descent optimization algorithms Adagrad

Pros

Well-suited for dealing with sparse data.
Significantly improves robustness of SGD.
Lesser need to manually tune learning rate.

Cons

Accumulates squared gradients in denominator. Causes the learning
rate to shrink and become infinitesimally small.
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Gradient descent optimization algorithms Adadelta

Adadelta

Adadelta [Zeiler, 2012] restricts the window of accumulated past
gradients to a fixed size. SGD update:

∆θt = −η · gt
θt+1 = θt +∆θt

(4)

Defines running average of squared gradients E [g2]t at time t:

E [g2]t = γE [g2]t−1 + (1− γ)g2
t (5)

γ: fraction similarly to momentum term, around 0.9

Adagrad update:

∆θt = − η√
Gt + ǫ

⊙ gt (6)

Preliminary Adadelta update:

∆θt = − η
√

E [g2]t + ǫ
gt (7)
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Gradient descent optimization algorithms Adadelta

∆θt = − η
√

E [g2]t + ǫ
gt (8)

Denominator is just root mean squared (RMS) error of gradient:

∆θt = − η

RMS [g ]t
gt (9)

Note: Hypothetical units do not match.
Define running average of squared parameter updates and RMS:

E [∆θ2]t = γE [∆θ2]t−1 + (1− γ)∆θ2t

RMS [∆θ]t =
√

E [∆θ2]t + ǫ
(10)

Approximate with RMS [∆θ]t−1, replace η for final Adadelta update:

∆θt = −RMS [∆θ]t−1

RMS [g ]t
gt

θt+1 = θt +∆θt

(11)
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Gradient descent optimization algorithms RMSprop

RMSprop

Developed independently from Adadelta around the same time by
Geoff Hinton.

Also divides learning rate by a running average of squared
gradients.

RMSprop update:

E [g2]t = γE [g2]t−1 + (1− γ)g2
t

θt+1 = θt −
η

√

E [g2]t + ǫ
gt

(12)

γ: decay parameter; typically set to 0.9
η: learning rate; a good default value is 0.001
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Gradient descent optimization algorithms Adam

Adam

Adaptive Moment Estimation (Adam) [Kingma and Ba, 2015] also
stores running average of past squared gradients vt like Adadelta
and RMSprop.

Like Momentum, stores running average of past gradients mt .

mt = β1mt−1 + (1− β1)gt

vt = β2vt−1 + (1− β2)g
2
t

(13)

mt : first moment (mean) of gradients
vt : second moment (uncentered variance) of gradients
β1, β2: decay rates
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Gradient descent optimization algorithms Adam

mt and vt are initialized as 0-vectors. For this reason, they are biased
towards 0.

Compute bias-corrected first and second moment estimates:

m̂t =
mt

1− βt
1

v̂t =
vt

1− βt
2

(14)

Adam update rule:

θt+1 = θt −
η√

v̂t + ǫ
m̂t (15)
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Gradient descent optimization algorithms Update equations

Update equations

Method Update equation

SGD
gt = ∇θtJ(θt)
∆θt = −η · gt
θt = θt +∆θt

Momentum ∆θt = −γ vt−1 − ηgt
NAG ∆θt = −γ vt−1 − η∇θJ(θ − γvt−1)

Adagrad ∆θt = − η√
Gt + ǫ

⊙ gt

Adadelta ∆θt = −RMS [∆θ]t−1

RMS [g ]t
gt

RMSprop ∆θt = − η
√

E [g2]t + ǫ
gt

Adam ∆θt = − η√
v̂t + ǫ

m̂t

Table: Update equations for the gradient descent optimization algorithms.
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Gradient descent optimization algorithms Comparison of optimizers

Which optimizer to choose?

Adaptive learning rate methods (Adagrad, Adadelta, RMSprop,
Adam) are particularly useful for sparse features.

Adagrad, Adadelta, RMSprop, and Adam work well in similar
circumstances.

[Kingma and Ba, 2015] show that bias-correction helps Adam slightly

outperform RMSprop.
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Additional strategies for optimizing SGD

Additional strategies for optimizing SGD

1 Shuffling and Curriculum Learning [Bengio et al., 2009]

Shuffle training data after every epoch to break biases

Order training examples to solve progressively harder problems;
infrequently used in practice

2 Batch normalization [Ioffe and Szegedy, 2015]

Re-normalizes every mini-batch to zero mean, unit variance
Must-use for computer vision

3 Early stopping

“Early stopping (is) beautiful free lunch” (Geoff Hinton)

4 Gradient noise [Neelakantan et al., 2015]

Add Gaussian noise to gradient
Makes model more robust to poor initializations
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Outlook Tuned SGD vs. Adam

Tuned SGD vs. Adam

Many recent papers use SGD with learning rate annealing.

SGD with tuned learning rate and momentum is competitive with

Adam [Zhang et al., 2017b].

Adam converges faster, but underperforms SGD on some tasks,
e.g. Machine Translation [Wu et al., 2016].

Adam with 2 restarts and SGD-style annealing converges faster
and outperforms SGD [Denkowski and Neubig, 2017].

Increasing the batch size may have the same effect as decaying the
learning rate [Smith et al., 2017].
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Outlook Learning to optimize

Learning to optimize

Rather than manually defining an update rule, learn it.
Update rules outperform existing optimizers and transfer across tasks.

Figure: Neural Optimizer Search [Bello et al., 2017]
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Outlook Learning to optimize

Discovered update rules

PowerSign:
αf (t)∗sign(g)∗sign(m)

∗ g (16)

α: often e or 2
f : either 1 or a decay function of the training step t

m: moving average of gradients
Scales update by αf (t) or 1/αf (t) depending on whether the direction
of the gradient and its running average agree.

AddSign:
(α+ f (t) ∗ sign(g) ∗ sign(m)) ∗ g (17)

α: often 1 or 2
Scales update by α+ f (t) or α− f (t).
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Outlook Understanding generalization in Deep Learning

Understanding generalization in Deep Learning

Optimization is closely tied to generalization.

The number of possible local minima grows exponentially with the

number of parameters [Kawaguchi, 2016].

Different local minima generalize to different extents.

Recent insights in understanding generalization:

Neural networks can completely memorize random inputs

[Zhang et al., 2017a].
Sharp minima found by batch gradient descent have high

generalization error [Keskar et al., 2017].
Local minima that generalize well can be made arbitrarily sharp

[Dinh et al., 2017].

Several submissions at ICLR 2018 on understanding generalization.
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