
Prof. Thomas Bäck Simulated Annealing 1Natural Computing Group Evolutionary Algorithms

Simulated Annealing

Prof. Thomas Bäck Simulated Annealing 2Natural Computing Group Evolutionary Algorithms

Simulated Annealing

• A	probabilistic	meta-algorithm	for	global	optimization

• Introduced	independently	by	Kirkpatrick,	Gelatt	and	Vecchi	in	
1983	and	V.	Černý	in	1985

• Generalization	of	the	Metropolis	Monte	Carlo	method	of	
Metropolis	in	1953

• Inspired	by	the	manner	in	which	liquids	freeze	or	metals	and	
glass	crystallize	in	the	process	of	annealing

S. Kirkpatrick, C. D. Gelatt and M. P. Vecchi. Optimization by Simulated Annealing, Science,
220(4598): 671-680, 1983

V. Černý. A thermodynamical approach to the travelling salesman problem: an efficient
simulation algorithm. Journal of Optimization Theory and Applications, 45:41-51, 1985

N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, and E. Teller. "Equations of
State Calculations by Fast Computing Machines". Journal of Chemical Physics, 21(6):1087-
1092, 1953

Prof. Thomas Bäck Simulated Annealing 3Natural Computing Group Evolutionary Algorithms

Bridgeman Casting Process

• Objective:	Max.	homogeneity	of	workpiece	after	Casting	Process

• Variables:	18	continuous	speed	variables	for	Casting	Schedule

• Computationally	expensive	simulation	(up	to	32h	simulation	time)

Prof. Thomas Bäck Simulated Annealing 4Natural Computing Group Evolutionary Algorithms

Annealing

• Heat	treatment	à improve	strength	and	hardness	of	certain	
materials	(like	metal	in	metallurgy)

• Material	is	heated	to	a	very	high	temperature	à increased	rate	
of	diffusion	of	the	atoms

• Slowly	cooling	à atoms	can	slowly	settle	back	into	minimal	
energy	states

• If	cooled	slow	enough	à atoms	will	settle	in	a	pattern	
corresponding	to	the	global	energy	minimum	of	a	perfect	crystal

• If	cooled	too	quickly	(quenched)	à atoms	might	not	escape	local	
energy	minima,	leading	to	imperfect	crystallizations

Prof. Thomas Bäck Simulated Annealing 5Natural Computing Group Evolutionary Algorithms

Statistical Thermodynamics

• Thermodynamics:

• large	particle	systems	at	a	given	temperature	approach	an	equilibrium	state

• can	be	characterized	by	a	mean	energy

• The	energy	is	not	stable,	but	constantly	is	changing

• The	probability	of	finding	the	system	in	a	particular	energy	state	is	
given	by	the	Boltzmann-Gibbs	distribution

Prof. Thomas Bäck Simulated Annealing 6Natural Computing Group Evolutionary Algorithms

+

-

+

+ +

-

-

-

-

- +

+

+

-

+

-
+

- +

-

Thermal Equilibrium

• Probability	of	finding	the	system	in	
state	x:

� �⃗ ∝ exp	(−�(�⃗)/�/�)

• Assuming	a	finite	number	of	possible	
states,	the	mean	energy	in	equilibrium	
is	given	by:

å

å

-

-

conf

conf

conf

confconf

m
T)E(

T)E(E

=E
/exp

/exp

T

Boltzmann constant:

23
1.380657799 10 /

B
J Kk

-
= ´

Prof. Thomas Bäck Simulated Annealing 7Natural Computing Group Evolutionary Algorithms

0

0.02

0.04

0.06

0.08

0.1

0 10 20 30 40 50

E

T
1

< T
2

< T
3

Temperature

Raising	the	temperature:

• System	becomes	more	active	à probability	for	each	individual	
particle	of	being	in	a	high	energy	state	increases

Reducing	the	temperature:

• System	gets	less	active	à probability	for	each	individual	particle	
of	being	in	a	high	energy	state	decreases

Prof. Thomas Bäck Simulated Annealing 8Natural Computing Group Evolutionary Algorithms

Metropolis Algorithm

• Metropolis	introduced	an	algorithm	that	used	the	principles	from	
thermodynamics	for	optimization:

oEach	point	s	of	the	search	space	represents	a	state	of	some	physical	system

oThe	objective	function	E(s)	is	interpreted	as	the	internal	energy	of	the	system	
in	that	state

o Iteratively	random	mutations	s' of	the	current	state	s are	generated,	and	
accepted	or	rejected	using	the	Boltzmann-Gibbs	distribution		

Prof. Thomas Bäck Simulated Annealing 9Natural Computing Group Evolutionary Algorithms

Metropolis Algorithm

1. Start	with	a	random	configuration	s and	compute	E(s)

2. Generate	a	random	mutation	s’ of	s and	compute	E(s’)

3. Accept	the	new	configuration	s’ with	probability:

4. Repeat	from	step	2	until	stopping	criterion	reached

î
í
ì

£-

>-
=

--

0)()'(1

0)()'(/))()'((

sEsE

sEsEe
P

TsEsE

Improvement

s' is worse

Prof. Thomas Bäck Simulated Annealing 10Natural Computing Group Evolutionary Algorithms

E

DE > 0

DE < 0

Metropolis Acceptance Criterion

• Steps	downhill	are	always	accepted

• Occasionally,	also	uphill	steps	are	accepted

Acceptance of uphill steps depends on the temperature T

Prof. Thomas Bäck Simulated Annealing 11Natural Computing Group Evolutionary Algorithms

Simulated Annealing

• Metropolis	algorithm	can	be	generalized	by	introducing	a	
temperature	scheme

• Starting	with	a	high	temperature	…

• And	slowly	cooling	down

à going	from	a	global	search	to	a	local	search

• Including	a	temperature	scheme	for	the	Metropolis	algorithm	is	
equivalent	to	the	process	of	annealing	in	thermodynamics,	
hence	simulated	annealing

Prof. Thomas Bäck Simulated Annealing 12Natural Computing Group Evolutionary Algorithms

Simulated Annealing

SA	consists	of	two	nested	loops:

• Outer	loop:

- Iteratively	decreases	the	temperature	T	which	determines	the	acceptance	probability	
of	new	states

- Terminates	when	the	system	reaches	the	frozen	state

• Inner	loop:

- Metropolis	Monte	Carlo	at	temperature	T

Prof. Thomas Bäck Simulated Annealing 13Natural Computing Group Evolutionary Algorithms

Simulated Annealing Algorithm

create initial solution s

Set initial temperature T

while not terminate do

repeat k times

s’ = perturb s

∆E = E(s’) - E(s)

if (∆E <= 0) then

s = s’

else if (rnd(0,1) < exp(-∆E/T)) then

s = s’

end if

end repeat

decrease T

end do

ED

()p ED

1

ED

()p ED

1 T1 < T2 < T3

Prof. Thomas Bäck Simulated Annealing 14Natural Computing Group Evolutionary Algorithms

Cooling Schedule

• Initial	temperature	must	be	large	enough	to	have	equal	
probabilities	for	uphill	and	downhill	transitions.

• One	must	have	an	estimate	of	E(s’)–E(s) for	a	random	state	s and	
its	neighbour	s to	be	able	to	determine	a	good	initial	
temperature.

• The	temperature	must	decrease	so	that	it	is	(nearly)	zero	at	the	
end.

• A	commonly	used	schedule	is	the	exponential	schedule.

- Here,	the	temperature	decreases	by	a	fixed	factor	α	<	1	each	step.

Prof. Thomas Bäck Simulated Annealing 15Natural Computing Group Evolutionary Algorithms

Cooling Schedules

• Exponential

• Also	...

• Logarithmic

kk
TT ×=

+
a

1

k

k
TT

k

ln

ln
0

0
=

))1exp((0 kcTT
k

-=

Prof. Thomas Bäck Simulated Annealing 16Natural Computing Group Evolutionary Algorithms

Convergence of SA

Iterations à

E
(s

)
à

Move uphill: move accepted with
probability P(e(-(E(s’) − E(s)) / T))

Move downhill: unconditionally accepted

Energy at initial state s0 with initial temperature T0

Energy at freezing point

Prof. Thomas Bäck Simulated Annealing 17Natural Computing Group Evolutionary Algorithms

Restarts

• Sometimes	it	is	better	to	move	back	to	a	solution	that	was	
significantly	better	rather	than	always	moving	from	the	current	
state.	This	is	called	restarting.

• Restarting	is	implemented	by	saving	the	best	solution	s so	far	in	
s_best and	restart	the	cooling	schedule	from	there.

• The	schedule	could	be	restarted	after	a	fixed	number	of	steps,	or	
when	the	current	energy	is	too	high	compared	to	the	best	
energy	so	far.

Prof. Thomas Bäck Simulated Annealing 18Natural Computing Group Evolutionary Algorithms

TSP with Simulated Annealing

The	Traveling	Salesman	problem	(TSP)	can	be	addressed	by	SA	in	
the	following	way:

• A	state	is	an	ordered	list	of	points	(cities)

• The	energy	function	E(s)	is	the	total	distance	between	all	
points	in	the	order	given	plus	the	return	distance

• A	perturbation	of	a	state	s can	be	any	rearrangement	of	the	list	
of	points	(i.e.	swapping	two	points	or	reversing	a	sublist of	s)

• Choose	an	initial	temperature	T0 and	a	cooling	schedule	and	
run	the	SA

http://natcomp.liacs.nl/NC/applets/SimulatedAnnealingTSPAp
plet/SimulatedAnnealingTSPApplet.html

Prof. Thomas Bäck Simulated Annealing 19Natural Computing Group Evolutionary Algorithms

SA Advantages & Disadvantages

Advantages:

• SA	has	the	ability	to	avoid	getting	stuck	at	local	minima.

• Simulated	Annealing	guarantees	a	convergence	upon	running	
sufficiently	large	(infinite)	number	of	iterations.

Disadvantages:

• Determining	the	“cooling	schedule”	is	difficult.
i.e.	how	do	to	decide	what	is	a	sufficient	amount	of	iterations	at	
each	temperature?

• Determining	the	initial	temperature	is	difficult.	Starting	too	high	
will	waste	computation	time,	starting	too	low	will	decrease	the	
quality	of	the	search.

Prof. Thomas Bäck Simulated Annealing 20Natural Computing Group Evolutionary Algorithms

Statistical Thermodynamics and Computing

Probability of selecting a
new point

Boltzmann-Gibbs distribution

Search by reducing TAnnealing

Control ParameterTemperature

Global OptimumGround State

Local OptimumEquilibrium State

Value returned by eval()Energy

Feasible solution to the
problem

State

Simulated AnnealingPhysics

Prof. Thomas Bäck Particle Swarm Optimization 1Natural Computing Group

Slides largely based on:

Riccardo Poli, James Kennedy, Tim Blackwell: Particle swarm optimization. Swarm
Intelligence 1(1): 33-57 (2007)

Particle Swarm Optimization

Slides largely based on: Riccardo Poli, James Kennedy, Tim Blackwell:
Particle swarm optimization. Swarm Intelligence 1(1): 33-57 (2007)

Prof. Thomas Bäck Particle Swarm Optimization 2Natural Computing Group

Particle Swarm Optimization (PSO)

• Developed by Kennedy and Eberhart in 1995

• Population based optimization technique inspired by social behavior
of bird flocking or fish schooling

• Individual swarm members can profit from the discoveries and
previous experience of all other members of the school

Kennedy, J. and Eberhart, R.: Particle Swarm Optimization. Proceedings

of the Fourth IEEE International Conference on Neural Networks,

Perth, Australia. IEEE Service Center 1942-1948, 1995.

Prof. Thomas Bäck Particle Swarm Optimization 3Natural Computing Group

History - Boids

Reynolds (1987): Model of coordinated animal motion in which the
agents (boids) obeyed three simple local rules:

Separation
Move away from neighbors if these are too close

Alignment
Steer towards the average heading of neighbors

Cohesion
Try to move toward the average position of neighbors

These simple rules yield surprisingly realistic swarm

behavior (see http://www.red3d.com/cwr/boids/)

Reynolds, C.W.: Flocks, herds and schools: a distributed

behavioral model. Computer Graphics, 21(4), p.25-34, 1987.

Prof. Thomas Bäck Particle Swarm Optimization 5Natural Computing Group

History - Roosts

Kennedy and Eberhart included a ‘roost’ in a simplified
Boids-like simulation such that each agent:

• is attracted to the location of the roost,

• remembers where it was closer to the roost,

• shares information with its neighbors about its
closest location to the roost

Eventually, all agents land on the roost.

What if the notion of distance to the roost is
changed by an unknown function?

Prof. Thomas Bäck Particle Swarm Optimization 6Natural Computing Group

PSO - General concept

• Swarm of particles

• Each particle residing at a position in the search space

• Fitness of each particle = the quality of its position

• Particles fly over the search space with a certain velocity

• Velocity (both direction and speed) of each particle is influenced by its own
best position found so far and the best solution that was found so far by its
neighbors

• Eventually the swarm will converge to optimal positions

Prof. Thomas Bäck Particle Swarm Optimization 7Natural Computing Group

Original PSO - Algorithm

• Randomly initialize particle positions and velocities

• While not terminate

- For each particle i:

- Evaluate fitness yi at current position xi

- If yi is better than pbesti then update pbesti and pi

- If yi is better than gbesti then update gbesti and gi

- For each particle

- Update velocity vi and position xi using:

î
í
ì

+¬

-Ä+-Ä+¬

iii

iiiiii

vxx

xgφUxpφUvv
!!!

!!!!!!!!
)(),()(),(

21
00

Prof. Thomas Bäck Particle Swarm Optimization 8Natural Computing Group

Original PSO - Notation

For each particle i:

- xi is a vector denoting its position

- vi is the vector denoting its velocity

- yi denotes the fitness score of xi
- pi is the best position that it has found so far

- pbesti denotes the fitness of pi
- gi is the best position that has been found so far in its neighborhood

- gbesti denotes the fitness of gi

Velocity update:

- U(0,ϕi) is a random vector uniformly distributed in [0,ϕi] generated at each
generation for each particle

- ϕ1 and ϕ2 are the acceleration coefficients determining the scale of the forces
in the direction of pi and gi

- U denotes the element-wise multiplication operator

Prof. Thomas Bäck Particle Swarm Optimization 9Natural Computing Group

Original PSO - Velocity Update

Momentum

The force pulling the particle to continue its
current direction

Cognitive component

The force emerging from the tendency to return
to its own best solution found so far

Social component

The force emerging from the attraction of the
best solution found so far in its neighborhood

)(),()(),(iiiiii xgφUxpφUvv
!!!!!!!!

-Ä+-Ä+¬
21

00

vi(t)

vi(t+1)xi(t)
xi(t+1)

pi(t) gi(t)

U(0,ϕ1)U(pi-xi)

Prof. Thomas Bäck Particle Swarm Optimization 10Natural Computing Group

Neighborhoods

• The neighborhood of each particle is defines its communication structure (its
social network)

• Two general types:

• Geographical neighborhood topologies:

Based on Euclidean proximity in the search space

Close to the real-world paradigm but computationally expensive

• Communication network topologies:

Communication networks are used based on some connection graph architecture
(e.g. rings, stars, von Neumann networks and random graphs)

Favored over geographical neighborhood because of better convergence
properties and less computation involved

Prof. Thomas Bäck Particle Swarm Optimization 11Natural Computing Group

Neighborhood Topologies

Geographical neighborhoods Communication network topologies

Ring Global best

Random graph Star

Prof. Thomas Bäck Particle Swarm Optimization 12Natural Computing Group

More on Neighborhood Topologies

• Also considered were:

- Clustering topologies (islands)

- Dynamic topologies

- …

• No clear way of saying which topology is the best

• Exploration / exploitation

- Some neighborhood topologies are better for local search others
for global search

- Global best (fully connected): better for local search

- Local best topologies: better for global search

Prof. Thomas Bäck Particle Swarm Optimization 13Natural Computing Group

Synchronous versus Asynchronous

• Synchronous updates

- Personal best and neighborhood bests updated separately from
position and velocity vectors

- Slower feedback about best positions

- Better for gbest PSO

• Asynchronous updates

- New best positions updated after each particle position update

- Immediate feedback about best regions of the search space

- Better for lbest PSO

Prof. Thomas Bäck Particle Swarm Optimization 14Natural Computing Group

Acceleration Coefficients

• The boxes show the distribution of the random vectors of the
attracting forces of the local best and global best

• The acceleration coefficients determine the scale distribution of
the random cognitive component vector and the social component
vector

vi(t)

xi(t)

pi(t) gi(t)

ϕ1 = ϕ2 = 1 ϕ1 , ϕ2 > 1

vi(t)

xi(t)

pi(t) gi(t)

Prof. Thomas Bäck Particle Swarm Optimization 15Natural Computing Group

Acceleration Coefficients – Insights

ϕ1>0, ϕ2=0 particles are independent hill-climbers

ϕ1=0, ϕ2>0 swarm is one stochastic hill-climber

ϕ1=ϕ2>0 particles are attracted to the average of pi and gi

ϕ2>ϕ1 more beneficial for unimodal problems

ϕ1>ϕ2 more beneficial for multimodal problems

low ϕ1, ϕ2 smooth particle trajectories

high ϕ1, ϕ2 more acceleration, abrupt movements

Adaptive acceleration coefficients have also been proposed. For
example to have ϕ1 and ϕ2 decreased over time

Prof. Thomas Bäck Particle Swarm Optimization 16Natural Computing Group

Original PSO - Problems

• The acceleration coefficients should be set sufficiently high

• Higher acceleration coefficients result in less stable systems in
which the velocity has a tendency to explode

• To fix this, the velocity vi is usually kept within the range

[-vmax, vmax]

• However, limiting the velocity does not necessarily prevent
particles from leaving the search space, nor does it help to
guarantee convergence

v

t

Prof. Thomas Bäck Particle Swarm Optimization 17Natural Computing Group

Inertia weighted PSO

• An inertia weight ω was introduced to control the velocity explosion:

• If ω, ϕ1 and ϕ2 are set correctly, this update rule allows for convergence without
the use of vmax

• The inertia weight can be used to control the balance between exploration and
exploitation:

- ω ≥ 1: velocities increase over time, swarm diverges

- 0 < ω < 1: particles decelerate, convergence depends ϕ1 and ϕ2

• Rule-of-thumb settings: ω = 0.7298 and ϕ1 = ϕ2 = 1.49618

)(),()(),(iiiiii xgφUxpφUvωv
!!!!!!!!

-Ä+-Ä+¬
21

00

Shi, Y. Eberhart, R., 'A modified particle swarm optimizer', in Evolutionary

Computation Proceedings, 1998. IEEE World Congress on Computational

Intelligence., The 1998 IEEE International Conference on , pp. 69-73 (1998).

Prof. Thomas Bäck Particle Swarm Optimization 19Natural Computing Group

Time Decreasing Inertia Weight

• Eberhart and Shi suggested to decrease ω over time (typically from
0.9 to 0.4) and thereby gradually changing from an exploration to
exploitation

• Other schemes for a dynamically changing inertia weight are also
possible and have also been tried

Eberhart, R. C. Shi, Y., 'Comparing inertia weights and constriction

factors in particle swarm optimization', vol. 1, pp. 84-88 vol.1 (2000).

Prof. Thomas Bäck Particle Swarm Optimization 20Natural Computing Group

Constricted Coefficients PSO

• Take away some ‘guesswork’ for setting ω, ϕ1 and ϕ2

• An elegant method for preventing explosion, ensuring convergence
and eliminating the parameter vmax

• The constriction coefficient was introduced as:

With and

())(),0()(),0(21 iiiiii xgUxpUvv
!!!!!!!!

-Ä+-Ä+×¬ ffc

φφφ
χ

4

2

2
-+

=4
21
>+= fff

Clerc, M. Kennedy, J., 'The particle swarm - explosion, stability, and

convergence in a multidimensional complex space', Evolutionary

Computation, IEEE Transactions on , vol. 6, no. 1, 58-73 (2002).

Prof. Thomas Bäck Particle Swarm Optimization 21Natural Computing Group

Fully Informed Particle Swarms (FIPS)

• Each particle is affected by all of its K neighbors

• The velocity update in FIPS is:

• FIPS outperforms the canonical PSO’s on most test-problems

• The performance of FIPS is generally more dependent on the neighborhood
topology (global best neighborhood topology is recommended)

() ()

ï
ï

î

ï
ï

í

ì

=

÷÷
ø

ö
çç
è

æ
Ä×= å

iii

inbr

Κ

ni

ii

vxx

xp,φU
Κ

vχv
n

i

!!!

!!!!!

+

+

=

-0
1

1

R. Mendes, J. Kennedy, and J. Neves, “The fully informed particle swarm:

Simpler, maybe better,” IEEE Trans. Evol. Comput., vol. 8, pp.204–210, June 2004.

Prof. Thomas Bäck Particle Swarm Optimization 22Natural Computing Group

Bare Bones PSO

• Eliminate the velocity update of the particles (with all of its tricky
parameter tuning)

• Move particles according to a probability distribution rather than
through the addition of velocity

J. Kennedy. Bare bones particle swarms. In Proceedings of the

IEEE Swarm Intelligence Symposium, pages 80-87, 2003.

vi(t)
xi(t)

pi(t) gi(t)

xi(t)

pi(t) gi(t)

Prof. Thomas Bäck Particle Swarm Optimization 23Natural Computing Group

Bare Bones PSO

• Replace the particle update rule with a Gaussian distribution of
mean (pi+gi) / 2 and standard deviation |pi-gi|

• The position update rule in the jth component of the ith particle is:

with

• Works fairly well, but the Gaussian distribution does not seem to
be the best probability distribution (also the Lévy distribution has
been tried)

()
ijijij

x sµ ,N=

ijijij

ijij

ij

gp

gp

-=

+
=

s

µ
2

Prof. Thomas Bäck Particle Swarm Optimization 24Natural Computing Group

Binary / discrete PSO

• A simple modification to

• Velocity remains continuous using the original update rule

• Positions are updated using the velocity as a probability threshold
to determine whether the jth component of the ith particle is a
zero or a one

�"# = %1		if	� < 11 + exp	(−�"#)0																																									
J. Kennedy and R. Eberhart. A discrete binary version of the particle swarm algorithm.

In Proceedings of the IEEE International Conference on Systems, Man and Cybernetics,

4104-4108, IEEE Press, 1997

Prof. Thomas Bäck Particle Swarm Optimization 27Natural Computing Group

Current Status of PSO

• PSO is applicable for the optimization of hard multi-dimensional
non-linear functions

• Regarding performance PSO is competitive to other known global
optimization methods

• Using the recommended parameter settings it can allows for off-
the-shelf usage

• Among others, applications for and in:

- Training of Neural Networks

- Control applications

- Video analysis applications

- Design applications

- ….

Prof. Thomas Bäck Particle Swarm Optimization 28Natural Computing Group

Social Systems vs. Particle Swarms

Social-Psychology PS Algorithm

Individual (minds) Particles in space

Population of individuals Swarm of particles

Forgetting and Learning Increase or decrease in some
attribute values of the particle

Individual own experience Each particle has some knowledge
of how it performed in the past and
uses it to determine where it is
going to move to

Social interactions Each particle also has some
knowledge of how other particles
around itself performed and uses it
to determine where it is going to
move to

Prof. Thomas Bäck Ant Colony Optimization 1Natural Computing Group Evolutionary AlgorithmsNatural Computing Group

Part	I

Ant Colony Optimization

Part	I

Prof. Thomas Bäck Ant Colony Optimization 2Natural Computing Group Evolutionary AlgorithmsNatural Computing Group

Ant Colony Optimization (ACO)

• Developed	by	Marco	Dorigo in	the	early	1990s.

• A	probabilistic	optimization	technique	inspired	by	the	interaction	of	
ants	in	nature.

• Individual	ants	are	blind	and	dumb,	but	ant	colonies	show	complex	
and	smart	behavior	by	as	a	result	of	low-level	based	
communications.

• Useful	for	computational	problems	which	can	be	reduced	to	finding	
good	paths	in	graphs.

Inside the ant colony - Deborah M. Gordon

Prof. Thomas Bäck Ant Colony Optimization 3Natural Computing Group Evolutionary AlgorithmsNatural Computing Group

Social insects

• Inspiration:	Collective	behavior	of	social	insects

• Examples	of	social	insects:

- Ants

- Termites

- Same	wasps	and	bees

• Some	facts:

- About	2%	of	all	insects	are	social

- About	50%	of	all	social	insects	are	ants

- Total	weight	of	ants	is	about	the	total	weight	of	humans

- Ants	colonize	world	since	100,000,000	years,	humans	only	
50,000…

Prof. Thomas Bäck Ant Colony Optimization 4Natural Computing Group Evolutionary AlgorithmsNatural Computing Group

Ants search for food

• Ants wander	randomly	in	their	search	for	food.

• If	an	ant	finds	food	it	returns	home	laying	down	a	pheromone	trail

on	its	way	back.

• Other	ants	stumble	upon	the	trail	and	start	following this	
pheromone	trail.

• If	the	other	ants	successfully	followed	the	trail,	they	will	also	return	
home	and	also	deposit	pheromones	on	their	way	back	(reinforcing
the	trail).

Prof. Thomas Bäck Ant Colony Optimization 5Natural Computing Group Evolutionary AlgorithmsNatural Computing Group

Ants and pheromones

• Ants	follow	pheromone	trails.

• The	higher	the	amount	of	pheromone	on	a	trail,	the	higher	the	
probability	of	ants	following	it.

• Pheromones	defuse	over	time,	so	when	a	food	source	is	exhausted,	
the	trail	will	no	longer	be	reinforced	and	slowly	dissipates.

• When	an	established	path	to	a	food	source	is	blocked,	the	ants	
leave	the	path	to	explore	new	routes.

Prof. Thomas Bäck Ant Colony Optimization 6Natural Computing Group Evolutionary AlgorithmsNatural Computing Group

Ants interacting with an obstacle

Figure 1 Figure 2

Figure 3Figure 4

Prof. Thomas Bäck Ant Colony Optimization 7Natural Computing Group Evolutionary AlgorithmsNatural Computing Group

The shortest path

Soon,	the	ants	will	find	the	shortest	path	between	their	home	and	the	
food.

Three	reasons	why	ants	find	the	shortest	path:

• Earlier	pheromone	(the	trail	is	completed	earlier)

• More	pheromone	(higher	ant	density)

• Younger	pheromone	(less	diffusion)

Idea:	use	this	principle	to	find	the	shortest	paths	of	graphs!!!

Given	a	(big)	graph:	� = (�, �),	find	the	shortest	path	between	�� and	��

Prof. Thomas Bäck Ant Colony Optimization 8Natural Computing Group Evolutionary AlgorithmsNatural Computing Group

The ACO algorithm

initialize pheromones	�,- for	each	edge	 �, � ∈ �

for each	iteration	do

for k	=	1	to	number	of	ants	do

set	out	ant	k	at	start	node

while ant	k	has	not	build	a	solution	do

choose	the	next	node	of	the	path	probabilistically	

end

end

update	pheromones

end

return the	best	solution	found

Prof. Thomas Bäck Ant Colony Optimization 9Natural Computing Group Evolutionary AlgorithmsNatural Computing Group

Selecting the next move

• When	ant	� is	located	at	a	node	�, the	probability	�-
4 of	choosing	�- as	

the	next	node	is:

• �,:	the	set	of	nodes	that	ant	� can	reach	from	�, (neighborhood)

• �,-:	the	heuristic	desirability	for	choosing	edge	(�, �)

• �,-:	the	amount	of	pheromone	on	edge	(�, �)

• � and	� :	relative	influence	of	heuristics	vs.	pheromone

ï
î

ï
í

ì

Ï

Î
×

×

= å Î

i

i

Nm imim

ijij

k

Njif

Njif
p

k

i
j

0

ba

ba

ht

ht

Prof. Thomas Bäck Ant Colony Optimization 10Natural Computing Group Evolutionary AlgorithmsNatural Computing Group

Pheromone update (1)

The	pheromone	on	each	edge	is	updated	as:

• � :	the	evaporation	rate	of	the	‘old’	pheromone

• Δ�,- :	the	‘new’	pheromone	that	is	deposited	by	all	ants	on	edge	

(i,j)	calculated	as:

ijijij
ttrt D+×-=)1(

å
=

D=D
m

k

k

ijij

0

tt

Prof. Thomas Bäck Ant Colony Optimization 11Natural Computing Group Evolutionary AlgorithmsNatural Computing Group

Pheromone update (2)

The	pheromone	that	is	deposited	on	edge	(�, �) by	ant	� is	
calculated	as:

With:

• � :	a	heuristic	parameter

• �4:	the	path	traversed	by	ant	k

• �4:	the	length	of	�4 calculated	as	the	sum	of	the	lengths	of	all	the	
edges	of	�4

î
í
ì Î

=D
otherwise

TjiifLQ kkk

ij
0

),(/
t

Prof. Thomas Bäck Ant Colony Optimization 12Natural Computing Group Evolutionary AlgorithmsNatural Computing Group

Using heuristic information

• The	attractiveness	�,- of	edge	(�, �) is	computed	by	some	heuristic	

indicating	the	a	priori	desirability of	that	move.

• The	pheromone	trail	level	�,- of	edge	(�, �) indicates	how	proficient	
it	has	been	in	the	past.

• � = 0 represents	a	greedy	approach	and	� = 0 represents	rapid	
selection	of	tours	that	may	not	be	optimal.

• Thus,	there	is	a tradeoff	between	speed	and	quality.

Prof. Thomas Bäck Ant Colony Optimization 13Natural Computing Group Evolutionary AlgorithmsNatural Computing Group

Example: TSP

• Desirability	�,- = �/�,-

• Tabu list	(neighourhood)	contains	all	cities	an	ant	has	visited	
already.

• Adding	“elitist	ant”:

best

ijijijij b tttrt D+D+×-=)1(

î
í
ì Î

=D
otherwise

bestjiifLQ bestbest

ij
0

),(/
t

• a = 1

• b = 5

• r = 0.5

• Q = 100

• t0 = 10-6

• b = 5

Prof. Thomas Bäck Ant Colony Optimization 14Natural Computing Group Evolutionary AlgorithmsNatural Computing Group

Advantages / Disadvantages

Advantages:

• Applicable	to	a	broad	range	of	combinatorial	optimization	
problems.

• Can	be	used	in	dynamic	applications	(adapts	to	changes	such	as	
new	distances,	etc.).

• Can	compete	with	other	global	optimization	techniques	like	genetic	
algorithms	and	simulated	annealing.

Disadvantages:

• Only	applicable	for	combinatorial	(discrete)	problems.

• Theoretical	analysis	is	difficult.

Prof. Thomas Bäck Ant Colony Optimization 15Natural Computing Group Evolutionary AlgorithmsNatural Computing Group

Solving a problem by ACO

1. Represent	the	problem	in	the	form	a	weighted	graph,	on	which	
ants	can	build	solutions.

2. Define	the	meaning	of	the	pheromone	trails.

3. Define	the	heuristic	preference	for	the	ant	while	constructing	a	
solution.

4. Choose	a	specific	ACO	algorithm	and	apply	to	problem	being	
solved.

5. Tune	the	parameters	of	the	ACO	algorithm.

Prof. Thomas Bäck Ant Colony Optimization 16Natural Computing Group Evolutionary AlgorithmsNatural Computing Group

Applications of ACO

• Scheduling

• Routing	problems

- Traveling	Salesman	Problem	(TSP)

- Vehicle	routing

- Network	routing

• Set-problems

- Multi-Knapsack

- Max	Independent	Set

- Set	Covering

• Other

- Shortest	Common	Sequence

- Constraint	Satisfaction

- 2D-HP	protein	folding

Prof. Thomas Bäck Ant Colony Optimization 17Natural Computing Group Evolutionary AlgorithmsNatural Computing Group

Ant Foraging and ACO

Biology (Ant Foraging) ACO Algorithm

Ant Individual (agent) used to build

(construct) a solution

Ant Colony Population (colony) of cooperating

individuals

Pheromone Trail Modification of the environment

caused by the artificial ants in

order to provide an indirect mean

of communication with other ants

of the colony. Allows assessment

of the quality of a given edge on a

graph.

Pheromone Evaporation Reduction in the pheromone level

of a given path due to aging.

Prof. Thomas Bäck Ant Colony Optimization 20Natural Computing Group Evolutionary AlgorithmsNatural Computing Group

The ACO algorithm

initialize pheromones tij ;

place each ant k on a random edge;

for each iteration do

for k = 1 to number of ants do

build a solution by applying a

probabilistic transition rule (e-1) times;

end for

eval the cost of every solution build;

if an improved solution is found

then update the best solution;

end if

update pheromones;

end for

return best solution found;

