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� Clumps

� Clustering

� Density Estimation 

� Low Dimensional Manifolds

� Linear 

� NonLinear
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� Data representation

Inputs are real-valued vectors in a 
high dimensional space.

� Linear structure� Linear structure

Does the data live in a low 
dimensional subspace?

� Nonlinear structure

Does the data live on a low 
dimensional submanifold?
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� Question

How can we detect low dimensional   
structure in high dimensional data?

� Applications� Applications

� Digital image and speech processing

� Analysis of neuronal populations

� Gene expression microarray data

� Visualization of large networks
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� Inputs (high dimensional)

x1,x2,…,xn points in RD

� Outputs (low dimensional)

y ,y ,…,y points  in Rd (d<<D) y1,y2,…,yn points  in Rd (d<<D) 

� Goals

Nearby points remain nearby.

Distant points remain distant.
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� PCA

� MDS
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good representation poor representation

the projections have a significantly 
smaller variance, and are much
closer to the origin.

the projected data has a fairly large 
variance, and the points tend to be far 
from zero.
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� Seek most accurate data representation in a 
lower dimensional space.

� The good direction/subspace to use for 
projection lies in the direction of largest 
variance. 

D=2, d=1 D=3, d=2
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� Assume inputs are centered:

� Given a unit vector u and a point x, the 

length of the projection of x onto u is given 

by
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� Maximize projected variance:
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� Maximizing             subject to              

where                              is the empirical 

Cuu
T
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i xxnC ∑−= 1

1u =

covariance matrix of the data,

gives the principle eigenvector of C.
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� to project the data into a d-dimensional 

subspace (d <<D), we should choose

to be the top d eigenvectors of C.

� now form a new, orthogonal basis for 

the data.

duu ,..., 1

duu ,..., 1

the data.

� The low dimensional representation of x is 

given by
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� Eigenvectors:

principal axes of maximum variance 
subspace.

� Eigenvalues:� Eigenvalues:

variance of projected inputs along principle 
axes.

� Estimated dimensionality:

number of significant (nonnegative) 
eigenvalues.
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1. Subtract sample mean from the data
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2. Compute the covariance matrix

3. Compute eigenvectors e1,e2,…,ed corresponding to the 
d largest eigenvalues of C (d<<D).

4. The desired y is
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� PCA finds the directions that have the most 
variance. 
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� Same result can be obtained by minimizing the 
squared reconstruction error. 
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Eigenvectors and eigenvalues of covariance 
matrix for n=1600 inputs in d=3 dimensions.
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Eigenfaces from 7562

Images:

top left image

is linearis linear

combination

of the rest.
Sirovich & Kirby (1987)

Turk & Pentland (1991)
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� Strengths:

� Eigenvector method

� No tuning parameters

� Non-iterative� Non-iterative

� No local optima

� Weaknesses:
� Limited to second order statistics

� Limited to linear projections
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� MDS attempts to preserve pairwise distances.

� Attempts to construct a configuration of n 

points in Euclidian space by using the 

information about the distances between the ninformation about the distances between the n

patterns.
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� Metric MDS minimizes
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� The distance matrix           can be converted to 
a Gram matrix K by
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D

HDHK
X 2)(

)(
2

1
−=

where                        and e is the vector of 

ones.

2

T
ee

n
IH

1
−=



����������

� K is p.s.d, thus it can be written as

� is  equivalent to 
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� Transform pairwise distances:

� Transformation: nonlinear, but monotonic.

� Preserves rank order of distances.

)( ijij g δδ →

� Find vectors     such thatiy )( ijji gyy δ≈−

( )∑ −−=
ij

jiij
y

yygCost
2

)(min δ



���*����������

� Possible objective function:
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� Strengths

� Relaxes distance constraints.

� Yields nonlinear embeddings.

� Weaknesses� Weaknesses

� Highly nonlinear, iterative optimization with 
local minima.

� Unclear how to choose distance 
transformation.



Non�metric MDS for manifolds?

Rank ordering of Euclidean distances is

NOT preserved in “manifold learning”.



Nonlinear Manifolds

A
PCA and MDS measure the 

Euclidean distance

Unroll the manifold

What is important is the geodesic distance



To preserve structure preserve the geodesic distance and 
not the euclidean distance.



Graph�Based Methods

• Tenenbaum et.al’s Isomap Algorithm

– Global approach.

Preserves global pairwise distances.

• Roweis and Saul’s Locally Linear Embedding Algorithm• Roweis and Saul’s Locally Linear Embedding Algorithm

– Local approach

Nearby points should map nearby

• Belkin and Niyogi Laplacian Eigenmaps Algorithm

– Local approach

– minimizes approximately the same value as LLE



Isomap � Key Idea:

• For neighboring points Euclidean distance is a 

good approximation to the geodesic distance.

• For distant points estimate the distance by a 

� Use geodesic instead of Euclidean distances 
in MDS.

• For distant points estimate the distance by a 

series of short hops between neighboring 

points. Find shortest paths in a graph with 

edges connecting neighboring data points.



Step 1. Build adjacency graph.

� Adjacency graph

Vertices represent inputs. Undirected edges 
connect neighbours.

� Neighbourhood selection� Neighbourhood selection

Many options: k-nearest neighbours, inputs 
within radius r, prior knowledge.

Graph is discretized

approximation of

submanifold.



Building the graph

� Computation

� kNN scales naively as 

� Faster methods exploit data structures.

� Assumptions

)(
2
DnO

� Assumptions

1. Graph is connected.

2. Neighbourhoods on graph reflect 
neighbourhoods on manifold.



Step 2. Estimate geodesics

� Dynamic programming

� Weight edges by local distances.

� Compute shortest paths through graph.

� Geodesic distances� Geodesic distances

� Estimate by lengths of shortest paths:

denser sampling = better estimates.

� Computation

� Djikstra’s algorithm for shortest paths 
O(n2log n + n2k).



Step 3. Metric MDS

� Embedding

� Top d eigenvectors of Gram matrix yield 
embedding.

� Dimensionality� Dimensionality

� Number of significant eigenvalues yield 
estimate of dimensionality.

� Computation

� Top d eigenvectors can be computed in 
O(n2d).



Summary

� Algorithm

1. k nearest neighbours

2. shortest paths through graph

3. MDS on geodesic distances3. MDS on geodesic distances



Swiss Roll

n (points) =1024

k (neighbors) =12



Isomap: Two�dimensional embedding of hand images (from Josh. 

Tenenbaum, Vin de Silva, John Langford 2000)

n =2000, k =6, D=64x64



Isomap: two�dimensional embedding of hand�written ‘2’ (from 

Josh. Tenenbaum, Vin de Silva, John Langford 2000)

n =1000, r=4.2, D=20x20



Isomap: three�dimensional embedding of faces (from Josh. 

Tenenbaum, Vin de Silva, John Langford 2000)

n =698, k=6



Properties of Isomap

� Strengths :

� Preserves the global data structure 

� Performs global optimization 

� Non-parametric (Only heuristic is neighbourhood size)

� Weaknesses :

� Sensitive to “shortcuts”

� Very slow



Spectral Methods

� Common framework

1. Derive sparse graph from kNN.

2. Derive matrix from graph weights.

3. Derive embedding from eigenvectors.3. Derive embedding from eigenvectors.

� Varied solutions

Algorithms differ in step 2. Types of 
optimization: shortest paths, least squares 
fits, semidefinite programming.



Locally Linear Embedding (LLE) 
� Assume that  data lies on a 

manifold: each sample and its 

neighbors lie on approximately 

linear subspace

� Idea: 

1. Approximate data by a set of 

linear patcheslinear patches

2. Glue these patches together on 

a low dimensional subspace 

s.t. neighborhood relationships 

between patches are 

preserved. 

Algorithm: http://cs.nyu.edu/~roweis/lle/algorithm.html



LLE at glance

� Steps

1. Nearest neighbour search.

2. Least squares fits.

3. Sparse eigenvalue problem.3. Sparse eigenvalue problem.

� Properties

� Obtains highly nonlinear embeddings.

� Not prone to local minima.

� Sparse graphs yield sparse problems.



Step 1.  Nearest neighbours 

search

Effect of Neighbourhood SizeEffect of Neighbourhood Size



Step 2. Compute weights

� Characterize local geometry of each 
neighbourhood by weights Wij.

� Compute weights by reconstructing each input 
(linearly) from neighbours.



Linear reconstructions

� Local linearity
� Assume neighbours lie on locally linear patches of 

a low dimensional manifold.

� Minimize reconstruction error� Minimize reconstruction error
� Each point can be written as a linear combination 

of its neighbors.

� The weights chosen to minimize the reconstruction 

error:

2
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jiji
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xWx



Least squares fits (Computing  Wij)

� Local reconstructions

� Choose weights to minimize:

� Constraints

2

)( ∑ ∑−=Φ
i j

jiji xWxW

x=
∑ =

j

ijW 1

invariance to translation

� Set              if       is not a neighbor of

� Weights must sum to one:

� Local invariance
� Optimal weights       are invariant to rotation, 

translation, and scaling.

jx0=ijW ix

ijW



Step 3. Finding the Embedding 

� Low dimensional representation

Map inputs to outputs:

� Minimize reconstruction errors

Optimize outputs for fixed weights:

d

i

D

i RyRx ∈→∈

Optimize outputs for fixed weights:

� Constraints:

� Center outputs on origin 

� Impose unit covariance matrix 
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Minimization

� Quadratic form:
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It can be shown that 



Sparse eigenvalue problem

� Optimal embedding 

given by bottom d+1 eigenvectors, 
corresponding to the d+1 smallest eigenvalues
(Rayleigh-Ritz theorem).  

� Solution

� Discard bottom eigenvector [1 1 … 1] (with 
eigenvalue zero).

� Other eigenvectors satisfy constraints.



Surfaces

N=1000

inputs

k=8

nearest

neighbors



Lips

N=15960

images

K=24

neighbors

D=65664

pixels

d=2d=2

(shown)



Pose and

expression

N=1965

images

k=12

nearest

neighborsneighbors

D=560

pixels

d=2

(shown)



Properties of LLE

� Strengths:

� Fast

� No local minima

� Non-iterative� Non-iterative

� Non-parametric (only heuristic is 
neighbourhood size).

� Weaknesses:

� Sensitive to “shortcuts”

� No estimate of dimensionality



LLE versus Isomap

� Many similarities

� Graph-based, spectral method

� No local minima

� Essential differences� Essential differences

� Does not estimate dimensionality �

� No theoretical guarantees �

� Constructs sparse vs. dense matrix ☺

� Preserves weights vs. distances

� Much faster ☺



Cocktail Party 

 microphone signals are 

mixed speech signals 

 

 

 

 

 Input: microphone 

signals 

 Goal: recover the speech 

signals  
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ICA vs. PCA 

 Similar to PCA 

 Finds a new basis to represent the data 

 Different from PCA 

 PCA removes only correlations, ICA 
removes correlations, and higher order 

dependence. 

 In PCA some components are more 

important than others (based on 
eigenvalues) in  ICA components are 

equally important. 



ICA vs. PCA 

 PCA: principle 

components are 

orthogonal.   

 ICA: independent 

components are not! 



ICA vs. PCA 

maximal variance directions independent components 



 Assume data            , generated by n 

independent sources. 

 

 We assume:  

 
 

n
Rs

,Asx 

mixing matrix 

nn
RA



Model 

is unknown 



Model 

  Assume data            , generated by n independent 

sources. 

n
Rs

ijs signal from source j at time i. 

1ts

source 1 

source 2 

2ts

t





n

k

ikjkij sAx
1

sum over sources 

mic. j at time i 



Problem Definition 

 We observe                       

 Goal: recover the sources    , that generated 

the data               . 

 

 Let  

 Goal is to find  W, such that  

 Denote  
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i denotes time 
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ICA Intuition 



ICA Ambiguities 

 If we have no prior knowledge about the 

mixing matrix, then there are inherent 
ambiguities in A that are impossible to 

recover. 

 The sources can be recovered up to 

 Permutation 

 Scaling 

 Sign 

 



Permutation Ambiguity 

Assume  that P is a nxn permutation matrix.  

Examples: ;
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W and PW. 
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'ix

The permutation of the original sources is ambiguous. 

Not important in most applications 



Scaling Ambiguity 
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 ii ssA 5.0   ,2 

We cannot recover the “correct” scaling of the sources. 

Scaling a speaker's speech signal       by some positive factor  affects 
only the volume of that speaker's speech. 

js

Not important in most applications 

Also, sign changes do not matter:      and          sound identical when 
played on a speaker. 

js js



Gaussian sources are problematic 

,2n ),,0(~ INs Asx 

),0(~ T
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Let R be an arbitrary orthogonal matrix, such that  .IRRRR
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Let  ,' ARA  then 



Gaussian Sources are Problematic 

 Whether the mixing matrix is A or A’, we would 
observe data from a                  distribution.  

 Thus, there is no way to tell if the sources were 
mixed using A or A’.  

 There is an arbitrary rotational component in the 
mixing matrix that cannot be determined from the 
data, and we cannot recover the original sources. 

 Reason: The Gaussian distribution is spherically 
symmetric. 

 For non-Gaussian data, it is possible, given 
enough data, to recover the n independent 
sources. 

),0( T
AAN



Densities and linear transformations 

Suppose     is a r.v drawn according to 

Let            be a r.v. defined by          . The density of 

is given by: 

s ).(sps

Rx Asx  x

where 
1 AW

Example:       Uniform[0,1] :  ~s )10( 1)(  ssps

Let             then       ,2A .2sx  Clearly,  ~x Uniform[0,2] 

Thus ,   ).20( 5.0)(  xxpx

WWxpxp sx  )()(

(A is squared invertible matrix)  



ICA algorithm 

 Assume that the distribution of      is 

 The joint distribution is  

 

 

 

 Using the previous formulation, we can derive 

 

 

 

 We must specify a density for the individual 

sources     .   
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ICA algorithm  

 A cumulative distribution of a real r.v. z is defined by 

 

 

 

 The density of z can be found by 
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z

z dzzpzzPzF
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jsSpecify a density for the                   specify its cdf.  

 

If you have a prior knowledge that the sources' densities 

take a certain form, then use it here, otherwise make an 

assumption about cdf. 



Density of s 
cdf is has to be a monotonic function that increases 

from zero to one.  

 

sigmoid Gaussian CDF 

 

)1/(1)( s
esg


)(')( sgsp 
We assume that the data      has zero mean. This is necessary because 
our assumption that                       implies                 Thus  )(')( sgsp  .0)( sE 0)()(  AsExE

ix



ICA algorithm 

 W is a parameter of our model that we want to estimate.  

 Given a training set                         , the log likelihood is: 

 

 

 

 Maximize          using gradient ascent: 

 

                                         where     is the learning rate. 
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ICA algorithm 

 By taking the derivatives of            using: 

 

 

 

    we obtain the update rule: 

 

 

 

 

 

 When the algorithm converges, compute   
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Remarks 

 We assumed that                            are 

independent of each other. 

 This assumption is incorrect for time series where 
the xi's are dependent (e.g. speech data). 

 it can be shown, that having correlated training 

examples will not hurt the performance of the 

algorithm if we have sufficient data. 

 Tip: run stochastic gradient ascent on a randomly 

shuffled copy of the training set. 

 mixi ,...,1; 



Application domains of ICA 

 Blind source separation  
 Image denoising 
 Medical signal processing – fMRI, ECG, EEG 
 Modelling of the hippocampus and visual cortex  
 Feature extraction, face recognition 
 Compression, redundancy reduction 
 Watermarking 
 Clustering 
 Time series analysis (stock market, microarray 

data) 
 Topic extraction 
 Econometrics: Finding hidden factors in financial 

data 

Slide due B. Poczos 



Slide due B. Poczos 



Fig. from Jung 









Image denoising 

Wiener 
filtering 

ICA 
filtering 

Noisy 
image 

Original 
image 



Doing Machine Learning

1 Get new data
2 Select the right technique to build a model out of it

Question Time: is there any structure into the data?

Soon after, you start guessing about the best technique to be

used...

3 Train the model

4 Evaluate predictions

3rd party hints about data structure are always very welcome, but

looking for insights on your own is the suggested approach!

Random guessing is usually not the best approach...

L. Mussi (Camlin Italy s.r.l.) t-SNE June 1st, 2017 4 / 50



Doing Machine Learning

In the words of Laurens Van Der Maaten:

“Always visualize your data first, before you start to train

predictors on the data! Oftentimes, visualizations such as the

ones I made provide insight into the data distribution that may

help you in determining what types of prediction models to try.”

L. Mussi (Camlin Italy s.r.l.) t-SNE June 1st, 2017 5 / 50



Doing Machine Learning

Trying to visualize input data makes sense, but:

plotting 2D data is a fairly easy task

plotting 3D data is easy, but grasping data structures while

navigating the plot might be tricky!

how to visualize 4D data? . . .

how to visualize N-D data? . . .

The natural choice is to project input data onto a 2D space so to easily

visualize it!

How? Reducing data dimensionality, obvious!
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Dimensionality Reduction - Simplified Statement

Given as input a set of high-dimensional data vectors

X = {~x1, ~x2, . . . , ~xk}, ~xi ∈ R
m

determine a set of output vectors

Y = {~y1, ~y2, . . . , ~yk}, ~yi ∈ R
n, n < m

with lower dimensionality in a way to retain as much information

(data structure) as possible.
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Dimensionality Reduction - Simplified Statement

The problem can be also formulated as a minimization problem:

arg min
Y

f (P,Q)

where P is a square matrix which elements

pij = g(~xi , ~xj)

express a similarity measure for all pairs of input samples, Q is a

square matrix which elements

qij = h(~yi , ~yj)

express a similarity measure for all pairs of output samples, and f

judges whether Y shows a data structure different to the one of X or

not.
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Dimensionality Reduction - Examples of Known

Techniques

Linear techniques:

Principal Component Analysis (PCA)

Independent Component Analysis (ICA)

Non-Linear techniques:

Elastic Map

Deep Belief Networks, and Auto-encoders in general

t-Student Stochastic Neighborhood Embedding (tSNE)
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Dimensionality Reduction (a side note)

The course of dimensionality is a well known drawback in data

analysis for which the increase of the feature space dimension is

associated with a decrease on the performances of all techniques

based on distance computation. A few examples are:

K-Nearest Neighbor

K-Means

Hierarchical Clustering

For this reason dimensionality reduction is often the first processing

step applied to input data so to improve the performances of the

following steps.
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Dimensionality Reduction - Dummy Example

From 2D to 2D using P ≡ Q

In this case, requiring to get keep the very same data structure

unchanged should provide trivial results.
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The Idea Behind SNE

Abandon exact distance measures or exact relationships (no more

springs!)

Input space: building P using probability distributions so that picking

two similar points is much more probable than picking

two points which are well far apart.

Output space: building Q using probability distributions to judge

distances between points.
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SNE

Input Space Activations: Gaussian

neighborhoods’ dimension.

Output Space Activations: Gaussian

Despite the clever idea behind, SNE still suffer from the so called

crowding problem: it is impossible to preserve the whole structure due

to the distortions introduced by the dimensionality reduction.
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Local Structure - A Different Perspective

Landscape observed from Colle dell’Infinito, Recanati (Italy)
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Local Structure - A Different Perspective
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Local Structure - A Different Perspective
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The Idea Behind t-SNE

In order to overcome the so called crowding problem lets be sensible

to local structure only by:

Input space: using a Gaussian as for SNE but selecting

neighborhood size σ independently for each point

Output space: building Q using a heavy-tailed distribution:

Student’s t.

Cost Function: judging information loss going from X to Y using

KL-Divergence to ignore low pairwise activations

limx→+∞

tStudent(x)
Gaussian(x) = +∞
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tSNE

Input Space Activations: Gaussian

σi is selected for each point by initially setting a target perplexity.

Output Space Activations: Student’s t
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Kullback-Leibler Divergence

A natural way to measure how two probability distributions compare.

It also fits well with the t-SNE idea: “similar” points in the input space

will add a big penalty if in the output space they result “dissimilar”

large pij modelled with small qij result in a big penalty

small pij modelled with large qij result in a not so big penalty
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t-SNE - The Trick Explained

Gaussian activation vs. Student’s t activation

See the heavy-tail?!

L. Mussi (Camlin Italy s.r.l.) t-SNE June 1st, 2017 35 / 50



t-SNE - The Trick Explained

Gaussian activation vs. Student’s t activation

Local neighbors are attracted to a little closer position.
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t-SNE - The Trick Explained

Gaussian activation vs. Student’s t activation

Non-local neighbors might get a little repulsed.
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t-SNE - The Trick Explained

Gaussian activation vs. Student’s t activation

Non-neighbors are potentially pushed away.
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Examples - Toy Problem (1)

Different local densities were recognized an reflected in the output

map!
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Examples - Toy Problem (2)

Input data actually comes from four different distributions...
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Examples - Toy Problem (3)

A different run of the t-SNE on the very same input data potentially

provides a very different result!
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Examples - MNIST

Projection of a subset of the famous MNIST dataset collecting a very

big number of hand written digits.
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Examples - Waveforms

Figure : color by source location
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Examples - Waveforms (map details)

Figure : color by source location
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Other ways of using t-SNE

asses how extracted features describe your data

asses how NNs transform your data: will the classifier at the top of

the net be able to separate data?

asses whether classifiers are doing well or not...
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Other ways of using t-SNE

Project onto a 2D place the output of 15 different classifiers trying to

distinguish 5 different classes of input data
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Conclusions

Good Things

tSNE performs very well in recognizing local structures

maps produced with tSNE looks much better than those obtained

with other techniques

tSNE was used on many different problems proving very robust

Bad Things

Does not scale well with high number of points: approximated

version were proposed (Barnes-Hut tSNE)

It is not possible to directly project a new point onto an

already computed map

(...but this is something Camlin Italy solved about one year ago!)
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L10: Linear discriminants analysis 

• Linear discriminant analysis, two classes 

• Linear discriminant analysis, C classes 

• LDA vs. PCA 

• Limitations of LDA 

• Variants of LDA 

• Other dimensionality reduction methods 
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Linear discriminant analysis, two-classes 

• Objective 

– LDA seeks to reduce dimensionality while preserving as much of the 

class discriminatory information as possible 

– Assume we have a set of ܦ-dimensional samples ݔሺଵ, ,ሺଶݔ … �ሺݔ , �ଵ 

of which belong to class �ଵ, and �ଶ to class �ଶ  

– We seek to obtain a scalar ݕ by projecting the samples ݔ onto a line ݕ =  ݔ்ݓ

– Of all the possible lines we would like to select the one that maximizes 

the separability of the scalars 
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– In order to find a good projection vector, we need to define a measure 

of separation 

– The mean vector of each class in ݔ-space and ݕ-space is ߤ௜ = ଵ�೔ ௫∈�೔ݔ   and ߤ ௜ = ଵ�೔ ௬∈�೔ݕ  = ଵ�೔ ௫∈�೔ݔ்ݓ  =  ௜ߤ்ݓ
– We could then choose the distance between the projected means as 

our objective function ܬ ݓ = ଵ ߤ − ଶ ߤ = ்ݓ ଵߤ − ଶߤ   

• However, the distance between projected means is not a good measure 

since it does not account for the standard deviation within classes 
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This axis yields better class separability 

This axis has a larger distance between means 



CSCE 666 Pattern Analysis | Ricardo Gutierrez-Osuna | CSE@TAMU 4 

• Fisher’s solutioŶ 

– Fisher suggested maximizing the difference between the means, 
normalized by a measure of the within-class scatter 

– For each class we define the scatter, an equivalent of the variance, as ݏ ௜ଶ = ݕ  − ௜ ߤ ଶ௬∈�೔   

• where the quantity ݏ ଵଶ + ଶଶ ݏ  is called the within-class scatter of the 
projected examples 

– The Fisher linear discriminant is defined as the linear function ݔ்ݓ that maximizes the criterion function 

ܬ   ݓ = � భ−� మ మ� భమ+� మమ   

– Therefore, we are looking for a  
projection where examples from  
the same class are projected very  
close to each other and, at the  
same time, the projected means  
are as farther apart as possible 
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• To find the optimum ݓ∗, we must express ܬሺݓሻ as a function of ݓ 

– First, we define a measure of the scatter in feature space ݔ ௜ܵ = ݔ  − ௜ߤ ݔ − ௜ߤ ்௫∈�೔   ଵܵ + ܵଶ = ܵ�  

• where ܵ� is called the within-class scatter matrix  

– The scatter of the projection ݕ can then be expressed as a function of the scatter 
matrix in feature space ݔ  

௜ଶ ݏ  = ݕ  − ௜ ߤ ଶ௬∈�೔ = ݔ்ݓ  − ௜ߤ்ݓ ଶ௫∈�೔ = 

 = ்ݓ  ݔ − ௜ߤ ݔ − ௜ߤ ௫∈�೔ݓ் = ்ݓ ௜ܵݓ 

ଵଶ ݏ  + ଶଶ ݏ =  ݓ�்ܵݓ

– Similarly, the difference between the projected means can be expressed in terms 
of the means in the original feature space ߤ ଵ − ଶ ߤ ଶ = ଵߤ்ݓ − ଶߤ்ݓ ଶ = ்ݓ ଵߤ − ଶߤ ଵߤ − ଶߤ ்ௌ� ݓ =   ݓ஻்ܵݓ

• The matrix ܵ஻ is called the between-class scatter.  Note that, since ܵ஻ is the outer 
product of two vectors, its rank is at most one 

– We can finally express the Fisher criterion in terms of ܵ� and ܵ஻ as ܬ ݓ =  ݓ�்ܵݓݓ஻்ܵݓ
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– To find the maximum of ܬሺݓሻ we derive and equate to zero ��ݓ ܬ ݓ = ݓ�� ݓ�்ܵݓݓ஻்ܵݓ = Ͳ ݓ�்ܵݓ ⇒ � ݓ�ݓ஻்ܵݓ − ݓ஻்ܵݓ � ݓ�ݓ�்ܵݓ = Ͳ ݓ�்ܵݓ ⇒ ʹܵ஻ݓ − ݓ஻்ܵݓ ݓ�ܵʹ = Ͳ 

– Dividing by ݓ�்ܵݓ 

 
௪�ௌ�௪௪�ௌ�௪ ܵ஻ݓ − ௪�ௌ�௪௪�ௌ�௪ ݓ�ܵ = Ͳ ⇒ 

 ܵ஻ݓ − ݓ�ܵܬ = Ͳ ⇒ 

 ܵ�−ଵܵ஻ݓ − ݓܬ = Ͳ 

– Solving the generalized eigenvalue problem (ܵ�−ଵܵ஻ݓ =  yields (ݓܬ

∗ݓ  = arg max ௪�ௌ�௪௪�ௌ�௪ = ܵ�−ଵ ଵߤ − ଶߤ  

– This is know as Fisher’s linear discriminant (1936), although it is not a 

discriminant but rather a specific choice of direction for the projection 

of the data down to one dimension 
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Example 

• Compute the LDA projection for the  
following 2D dataset 

 ܺͳ = {ሺͶ,ͳሻ, ሺʹ,Ͷሻ, ሺʹ,͵ሻ, ሺ͵,͸ሻ, ሺͶ,Ͷሻ} 

 ܺʹ = {ሺͻ,ͳͲሻ, ሺ͸,ͺሻ, ሺͻ,ͷሻ, ሺͺ,͹ሻ, ሺͳͲ,ͺሻ} 

• SOLUTION (by hand) 

– The class statistics are 

  ଵܵ = .ͺ −.Ͷʹ.͸Ͷ    ܵଶ = ͳ.ͺͶ −.ͲͶʹ.͸Ͷ  

 
ଵߤ   = ͵.Ͳ ͵.͸ ்; ଶߤ   = ͺ.Ͷ ͹.͸ ் 

– The within- and between-class scatter are 

 ܵ஻ = ʹͻ.ͳ͸ ʹͳ.͸ͳ͸.Ͳ    ܵ� = ʹ.͸Ͷ −.ͶͶͷ.ʹͺ  

– The LDA projection is then obtained as the solution of the generalized 
eigenvalue problem 

 ܵ�−ଵܵ஻ݒ = ݒߣ ⇒ ܵ�−ଵܵ஻ − = ܫߣ Ͳ ⇒ ͳͳ.ͺͻ − ߣ ͺ.ͺͳͷ.Ͳͺ ͵.͹͸ − ߣ = Ͳ ⇒ ߣ = ͳͷ.͸ͷ 

 
ͳͳ.ͺͻ ͺ.ͺͳͷ.Ͳͺ ͵.͹͸ ଶݒଵݒ = ͳͷ.͸ͷ ଶݒଵݒ ⇒ ଶݒଵݒ = .ͻͳ.͵ͻ  

– Or directly by 

∗ݓ  = ܵ�−ଵ ଵߤ − ଶߤ = −.ͻͳ − .͵ͻ ் 
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LDA, C classes 

• Fisher’s LDA geŶeralizes gracefully for C-class problems  

– Instead of one projection ݕ, we will now seek (ܥ − ͳ) projections [ݕଵ, ,ଶݕ … ܥ) ஼−ଵ] by means ofݕ − ͳ) projection vectors ݓ௜arranged by 
columns into a projection matrix ܹ = |ଶݓ|ଵݓ] … ௜ݕ :[஼−ଵݓ| = ௜்ݓ ݔ ⇒ ݕ =  ݔ்ܹ

• Derivation 

– The within-class scatter generalizes as 

  ܵ� =  ௜ܵ஼௜=ଵ  

• where ௜ܵ = ݔ  − ௜ߤ ݔ − ௜ߤ ்௫∈�೔   

and ߤ௜ = ଵ�೔ ௫∈�೔ݔ   

– And the between-class scatter becomes 

 ܵ஻ =  �௜ ௜ߤ − ߤ ௜ߤ − ߤ ்஼௜=ଵ  

• where ߤ = ଵ� ௫∀ݔ  = ଵ�  �௜ߤ௜஼௜=ଵ  

 

– Matrix ்ܵ = ܵ஻ + ܵ� is called the total scatter 
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– Similarly, we define the mean vector and scatter matrices for the 

projected samples as 

௜ ߤ   = ଵN೔ ௬∈�೔ݕ      ܵ� = ݕ   − ௜ ߤ ݕ − ௜ ߤ ்௬∈�೔஼௜=ଵ  

= ߤ   ଵ� ௬∀ݕ      ܵ஻ =  �௜ ௜ ߤ − ௜ ߤ ߤ − ஼௜=ଵ் ߤ  

– From our derivation for the two-class problem, we can write  ܵ� = ்ܹܵ�ܹ  ܵ஻ = ்ܹܵ஻ܹ 

– Recall that we are looking for a projection that maximizes the ratio of 

between-class to within-class scatter.  Since the projection is no longer 

a scalar (it has ܥ − ͳ dimensions), we use the determinant of the 

scatter matrices to obtain a scalar objective function ܬ ܹ =  ܵ஻ ܵ� = ்ܹܵ஻்ܹܹܵ�ܹ  

– And we will seek the projection matrix ܹ∗ that maximizes this ratio 
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– It can be shown that the optimal projection matrix ܹ∗ is the one 

whose columns are the eigenvectors corresponding to the largest 

eigenvalues of the following generalized eigenvalue problem 

 ܹ∗ = ∗ଵݓ ∗ଶݓ ∗஼−ଵݓ… = arg max ��ௌ����ௌ�� ⇒ ܵ஻ − �௜ܵߣ ∗௜ݓ = Ͳ 

• NOTES 

– ܵ஻ is the sum of ܥ matrices of rank ≤ ͳ and the mean vectors are 

constrained by 
ଵ஼ ௜஼௜=ଵߤ  =  ߤ

• Therefore, ܵ஻ will be of rank (ܥ − ͳ) or less 

• This means that only (ܥ − ͳ) of the eigenvalues ߣ௜  will be non-zero 

– The projections with maximum class separability information are the 

eigenvectors corresponding to the largest eigenvalues of ܵ�−ଵܵ஻ 

– LDA can be derived as the Maximum Likelihood method for the case of 

normal class-conditional densities with equal covariance matrices 
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LDA vs. PCA 
• This example illustrates the performance of PCA 

and LDA on an odor recognition problem 
– Five types of coffee beans were presented to an array 

of gas sensors 

– For eaĐh Đoffee tǇpe, ϰϱ ͞sŶiffs͟ were perforŵed aŶd 
the response of the gas sensor array was processed in 
order to obtain a 60-dimensional feature vector 

• Results 
– From the 3D scatter plots it is clear that LDA 

outperforms PCA in terms of class discrimination 

– This is one example where the discriminatory 
information is not aligned with the direction of 
maximum variance 
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Limitations of LDA 

• LDA produces at most ܥ − ͳ feature projections 

– If the classification error estimates establish that more features are needed, 

some other method must be employed to provide those additional features  

• LDA is a parametric method (it assumes unimodal Gaussian likelihoods) 

– If the distributions are significantly non-Gaussian, the LDA projections may not 

preserve complex structure in the data needed for classification 
 

 

 

 

 

 

 

• LDA will also fail if discriminatory information is  

not in the mean but in the variance of the data 
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Evaluating Hypotheses – Lecture Overview 

• Measures of classification performance 
– Classification Error Rate 

– UAR 

– Recall, Precision, Confusion Matrix 

– Imbalanced Datasets 

– Overfitting 

– Cross-validation 

 

• Estimating hypothesis accuracy 
– Sample Error vs. True Error 

– Confidence Intervals 

– Binomial and Normal Distributions 

 

• Comparing Learning Algorithms 
– t-test 
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Classification Measures – Confusion Matrix  

Class 1 

Predicted 

Class 2 

Predicted 

Class 1 

Actual 

TP FN 

Class 2 

Actual 

FP TN 

• Class 1: Positive 

• Class 2: Negative 

• TP: True Positive 

• FN: False Negative 

• FP:  False Positive 

• TN: True Negative 

• Visualisation of the performance of an algorithm 

• Allows easy identification of confusion between between classes  

      e.g. one class is commonly mislabelled as the other 

• Most performance measures are computed from the confusion matrix 
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Classification Measures – Classification Rate 

Class 1 

Predicted 

Class 2 

Predicted 

Class 1 

Actual 

TP FN 

Class 2 

Actual 

FP TN 

• Class 1: Positive 

• Class 2: Negative 

• TP: True Positive 

• FN: False Negative 

• FP:  False Positive 

• TN: True Negative 

• Classification Rate / Accuracy: 

 

• Number of correctly classified examples divided by the total  

     number of examples 

• Classification Error = 1 – Classification Rate 

• Classification Rate = Pr(correct classification) 
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Classification Measures – Recall  

Class 1 

Predicted 

Class 2 

Predicted 

Class 1 

Actual 

TP FN 

Class 2 

Actual 

FP TN 

• Class 1: Positive 

• Class 2: Negative 

• TP: True Positive 

• FN: False Negative 

• FP:  False Positive 

• TN: True Negative 

• Recall:  

 

• Number of correctly classified positive examples divided by the total  

     number of positive examples 

• High recall: The class is correctly recognised (small number of FN) 

• Recall = Pr(correctly classified | positive example) 
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Classification Measures – Precision 

Class 1 

Predicted 

Class 2 

Predicted 

Class 1 

Actual 

TP FN 

Class 2 

Actual 

FP TN 

• Class 1: Positive 

• Class 2: Negative 

• TP: True Positive 

• FN: False Negative 

• FP:  False Positive 

• TN: True Negative 

• Precision:  

 

• Number of correctly classified positive examples divided by the total  

     number of predicted positive examples  

• High precision: An example labeled as positive is indeed positive 

     (small number of FP) 

• Precision = Pr(positive example | example is classified as positive) 

 

���� + �� 
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Classification Measures – Recall/Precision 

Class 1 

Predicted 

Class 2 

Predicted 

Class 1 

Actual 

TP FN 

Class 2 

Actual 

FP TN 

• Class 1: Positive 

• Class 2: Negative 

• TP: True Positive 

• FN: False Negative 

• FP:  False Positive 

• TN: True Negative 

• High recall, low precision: Most of the positive examples are correctly 

     recognised (low FN) but there are a lot of false positives. 

 

• Low recall, high precision: We miss a lot of positive examples (high FN) 

      but those we predict as positive are indeed positive (low FP). 
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Classification Measures – F1 Measure/Score 
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Classification Measures – UAR 

Class 1 

Predicted 

Class 2 

Predicted 

Class 1 

Actual 

TP FN 

Class 2 

Actual 

FP TN 

• Class 1: Positive 

• Class 2: Negative 

• TP: True Positive 

• FN: False Negative 

• FP:  False Positive 

• TN: True Negative 

• We compute recall for class1 (R1) and for class2 (R2). 

 

• Unweighted Average Recall (UAR) = mean(R1, R2) 
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Classification Measures – Extension to  
Multiple Classes 

Class 1 

Predicted 

Class 2 

Predicted 

Class 3 

Predicted 

Class 1 

Actual 

TP FN FN 

Class 2 

Actual 

FP TN 

 

? 

Class 3 

Actual 

FP ? TN 

• In the multiclass case it is still  

     very useful to compute the  

     confusion matrix. 

• We can define one class as  

     positive and the other as negative. 

• We can compute the performance 

     measures in exactly the same way. 

• CR = number of correctly classified examples (trace) divided by the 

total number of examples. 
 

• Recall and precision and F1 are still computed for each class. 
 

• UAR = mean(R1, R2, R3,…, RN) 
 



Stavros Petridis                          Machine Learning (course 395) 

Classification Measures – Balanced Dataset 

Class 1 

Predicted 

Class 2 

Predicted 

Class 1 

Actual 

70 30 

Class 2 

Actual 

10 90 

• CR: 80% 

• Recall (cl.1): 70%  

• Precision (cl.1): 87.5% 

• F1 (cl.1): 77.8% 

• UAR: 80% 

• Recall (cl.2): 90% 

• Precision (cl.2): 75% 

• F1 (cl.2): 81.8% 

• Balanced Dataset: The number of examples in each class 

are similar 

• All measures result in similar performance 
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Classification Measures – Imbalanced Dataset 
Case 1: Both classifiers are good 

Class 1 

Predicted 

Class 2 

Predicted 

Class 1 

Actual 

700 300 

Class 2 

Actual 

10 90 

• CR: 71.8% 

• Recall (cl.1): 70%  

• Precision (cl.1): 98.6% 

• F1 (cl.1): 81.9% 

• UAR: 80% 

• Recall (cl.2): 90% 

• Precision (cl.2): 23.1% 

• F1 (cl.2): 36.8% 

• Imbalanced Dataset: Classes are not equally represented  

• CR goes down, is affected a lot by the majority class 

• Precision  (and F1) for Class 2 is significantly affected –  

     - 30% of class1 examples are misclassified leads to a     

     higher number of FP than TN due to imbalance 
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Classification Measures – Imbalanced Dataset 
Case 2: One classifier is useless 

Class 1 

Predicted 

Class 2 

Predicted 

Class 1 

Actual 

700 300 

Class 2 

Actual 

100 0 

• CR: 70% 

• Recall (cl.1): 70%  

• Precision (cl.1): 87.5% 

• F1 (cl.1): 77.8% 

• UAR: 35% 

• Recall (cl.2): 0% 

• Precision (cl.2): 0% 

• F1 (cl.2): Not defined 

• CR is misleading, one classifier is useless. 

• F1 for class2 and UAR tell us that something is wrong. 

• UAR also detects that there is a problem. 
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Classification Measures – Imbalanced Dataset 
Conclusions 

• CR can be misleading, simply follows the performance of the 

majority class 

• UAR is useful and can help to detect that one or more classifiers are 

not good but it does not give us any information about FP 

• F1 is useful as well but is also affected by the class imbalance 

problem 

     - We are not sure if the low score is due to one/more classifiers being  

     useless or class imbalance 

 

• That’s why we should always have a look at the confusion matrix 
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Classification Measures – Imbalanced Dataset 
Some solutions 

• Report performance ALSO on the “normalised matrix” 

Class 1 

Predicted 

Class 2 

Predicted 

Class 1 

Actual 

700  300 

Class 2 

Actual 

10 90 

Class 1 

Predicted 

Class 2 

Predicted 

Class 1 

Actual 

0.7  0.3 

Class 2 

Actual 

0.1 0.9 

Divide by the 

total number 

of examples 

per class 

• CR: 71.8% 

• Recall (cl.1): 70%  

• Precision (cl.1): 98.6% 

• F1 (cl.1): 81.9% 

• UAR: 80% 

• Recall (cl.2): 90% 

• Precision (cl.2): 23.1% 

• F1 (cl.2): 36.8% 

• CR: 80% 

• Recall (cl.1): 70%  

• Precision (cl.1): 87.5% 

• F1 (cl.1): 77.8% 

• UAR: 80% 

• Recall (cl.2): 90% 

• Precision (cl.2): 75% 

• F1 (cl.2): 81.8% 
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� A ranking or scoring classifier can be used with 

a threshold to produce a binary classifier.

� If the classifier output is above the threshold, 

the classifier produces a Y, else a N.
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Moving from unranked to ranked evaluation

Precision/recall/F are measures for unranked sets.

We can easily turn set measures into measures of ranked lists.

Just compute the set measure for each “prefix”: the top 1,
top 2, top 3, top 4 etc results

This is called Precision/Recall at Rank

Rank statistics give some indication of how quickly user will
find relevant documents from ranked list
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Precision/Recall @ Rank

Rank Doc

1 d12
2 d123
3 d4
4 d57
5 d157
6 d222
7 d24
8 d26
9 d77
10 d90

Blue documents are relevant

P@n: P@3=0.33, P@5=0.2, P@8=0.25

R@n: R@3=0.33, R@5=0.33, R@8=0.66
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A precision-recall curve

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

Recall

P
re
c
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n

Each point corresponds to a result for the top k ranked hits
(k = 1, 2, 3, 4, . . .)

Interpolation (in red): Take maximum of all future points

Rationale for interpolation: The user is willing to look at more
stuff if both precision and recall get better.
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Another idea: Precision at Recall r

Rank S1 S2

1 X
2 X
3 X
4
5 X
6 X X
7 X
8 X
9 X
10 X

→

S1 S2

p @ r 0.2 1.0 0.5
p @ r 0.4 0.67 0.4
p @ r 0.6 0.5 0.5
p @ r 0.8 0.44 0.57
p @ r 1.0 0.5 0.63
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Averaged 11-point precision/recall graph

0
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Recall
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Compute interpolated precision at recall levels 0.0, 0.1, 0.2,
. . .

Do this for each of the queries in the evaluation benchmark

Average over queries

The curve is typical of performance levels at TREC (more
later).
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Mean Average Precision (MAP)

Also called “average precision at seen relevant documents”

Determine precision at each point when a new relevant
document gets retrieved

Use P=0 for each relevant document that was not retrieved

Determine average for each query, then average over queries

MAP =
1

N

N∑

j=1

1

Qj

Qj∑

i=1

P(doci)

with:
Qj number of relevant documents for query j

N number of queries
P(doci ) precision at ith relevant document
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Mean Average Precision: example
(MAP = 0.564+0.623

2 = 0.594)

Query 1
Rank P(doci )

1 X 1.00
2
3 X 0.67
4
5
6 X 0.50
7
8
9

10 X 0.40
11
12
13
14
15
16
17
18
19
20 X 0.25
AVG: 0.564

Query 2
Rank P(doci )

1 X 1.00
2
3 X 0.67
4
5
6
7
8
9

10
11
12
13
14
15 X 0.2
AVG: 0.623
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