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Some notation
X random variable in R

X random variable in R
d

x, x observed values of X and X

Pr(X = x) probability that random variable X takes value x

X ∼ F or p X has distribution F or p

Xi
iid∼ F Xi independent and identically distributed as F

E(f(X)) Expectation, e.g.,
∫

f(x)p(x) dx.

U(S) Uniform distribution on set S

there will be more notation

MCQMC 2012, Sydney Australia
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The MC idea(s)
Two versions:

Informal MC

Simulate some random process and watch what happens.

Formal MC

Express an unknown quantity µ as the solution

µ = E(f(X)), X ∼ p

=

∫

f(x)p(x) dx

Then sample X1, . . . ,Xn
iid∼ p and take

µ̂ =
1

n

n
∑

i=1

f(Xi).

MCQMC 2012, Sydney Australia
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Nagel-Schreckenberg traffic
• N vehicles in a circular track

• M possible positions {0, 1, . . . ,M − 1} modM

• speed limit is vmax, e.g., 5

The algorithm

For a car at x ∈ {0, 1, . . . ,M − 1} with velocity v and d spaces behind the car in front:

v ← min(v + 1, vmax)

v ← min(v, d− 1)

v ← max(0, v − 1) with probability p

x← x+ v modM

MCQMC 2012, Sydney Australia
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Traffic results

Distance

T
im

e

Nagel−Schreckenberg traffic

• Dots = cars, start at top row

• Traffic jams ’emerge’

• and move backwards

• then disappear

• gaps move at the speed limit

• total flow not monotone in # cars

• one can elaborate the model

• (replace circular track by city map)

MCQMC 2012, Sydney Australia
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Average distance
For rectangle R = [0, a]× [0, b], let X,Z

iid∼ U(R). We want:

µ(a, b) = E(‖X −Z‖)

=

∫ a

0

∫ b

0

∫ a

0

∫ b

0

√

(x1 − z1)2 + (x2 − z2)2 dx1 dx2 dz1 dz2

Quick and easy by Monte Carlo.

Also available analytically Ghosh (1951).

µ(1, 3/5) = 0.4239 from closed form

µ̂(1, 3/5) = 0.4227 from n = 10,000 MC samples

Relative error 0.0027

MC vs closed form

Exact solution generalizes to new a and b.

MC solution generalizes to more complicated regions or distances.

The closed form is brittle. MCQMC 2012, Sydney Australia
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Properties of MC
1) MC works under minimal assumptions

the desired mean must exist, then

(law of large numbers) Pr(limn→∞ µ̂n = µ) = 1

2) MC does not deliver extreme accuracy

RMSE≡
√

E((µ̂− µ)2) = σ/
√
n

to cut RMSE by 10, we must raise n by 100

a less serious flaw, when the problem is only posed to low accuracy

3) MC is very competitive in high dimensional or non-smooth problems

(see next slide)

4) MC has extremely good error estimation

(see slide after that)

MCQMC 2012, Sydney Australia
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MC vs. classic quadrature
For f on [0, 1] with > r continuous derivatives,

quadrature gets
∫ 1

0
f(x) dx with error O(n−r)

e.g., r = 4 for Simpson’s rule.

Iterated integrals
∫

[0,1]d
f(x) dx =

∫ 1

0

· · ·
∫ 1

0

f(x) dx1 · · · dxd

Use Fubini’s rule in d dimensions:

N = nd points in a grid.

Error is O(n−r) = O(N−r/d)

Monte Carlo

RMSE = σN−1/2 for any dimension d

Best possible rate is O(N−1/2−r/d) Bakhvalov (1962)

MC is competitive for large d, low smoothness

MCQMC 2012, Sydney Australia
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Error estimation

µ = E(f(X)) and σ2 = Var(f(X)) X ∼ p

Central limit theorem: µ̂
·∼ N (µ, σ2/n)

lim
n→∞

Pr
( µ̂− µ

σ/
√
n
6 z

)

=

∫ z

−∞

e−t2/2

√
2π

dt

99% confidence interval

Pr

(

µ̂− 2.58σ̂√
n

6 µ 6 µ̂+
2.58σ̂√

n

)

= 0.99 +O(n−1) Hall (1986) Ann. Stat.

Estimates µ̂ and σ̂ from f(X i)

Estimation error at O(n−1) is better than for µ̂ itself!

MCQMC 2012, Sydney Australia



Example: MC for numerical integration

Consider the definite integral

α =

∫

R

f (x) dx .

Note that
∫

R

f (x) dx =

∫

R

f (y)

p(y)
p(y) dy =

∫

R

h(y) p(y) dy = E
{
h(Y )

}
,

where Y is a random variable with density p(y) and h(y) = f (y)/p(y).
Thus, it is possible to estimate α by

α̂ =
1

M

M∑

m=1

h(Ym),

where Y1, · · · ,YM are independent observations of Y .

c© A. Cunha Jr (UERJ) Modeling and Quantification of Uncertainties in Physical Systems 25 / 30



Example: MC for numerical integration

Consider the integral

α =

∫ 2π

0
sin2 (x) dx

=

∫ 2π

0
2π sin2 (x)

1

2π
dx

=

∫

R

h(y) p(y)dy

where

h(y) = 2π sin2 (y)

p(y) =
1

2π
1(0,2π)(y) i.e., Y ∼ U(0, 2π).

c© A. Cunha Jr (UERJ) Modeling and Quantification of Uncertainties in Physical Systems 26 / 30



Example: MC for numerical integration

Table: Evaluation of the integral
via Monte Carlo Method.

samples α̂ |α− α̂| ∗∗

10 3.7543 3.1392
100 3.2420 0.1004

1000 3.1349 0.0066
10000 3.1256 0.0159

100000 3.1324 0.0091

∗∗
Analytical solution α = π

c© A. Cunha Jr (UERJ) Modeling and Quantification of Uncertainties in Physical Systems 27 / 30



Analysis of Monte Carlo convergence

Convergence metric (2nd moment estimator):

α̂
(M)
2 =

1

M

M∑

m=1

X 2
m

X ∼ N (0, 1) X ∼ Cauchy(0, 1)

c© A. Cunha Jr (UERJ) Modeling and Quantification of Uncertainties in Physical Systems 28 / 30



Analysis of Monte Carlo convergence

Why is this behavior observed?

X ∼ N (0, 1)

X ∼ Cauchy(0, 1)

c© A. Cunha Jr (UERJ) Modeling and Quantification of Uncertainties in Physical Systems 29 / 30



Analysis of Monte Carlo convergence

Why is this behavior observed?

X ∼ N (0, 1)

E

{
X 2

}
=

∫ +∞

−∞

x2√
2π σ

exp

{
−(k − µ)2

2σ2

}
dx = µ2+σ2 < +∞

X ∼ Cauchy(0, 1)

c© A. Cunha Jr (UERJ) Modeling and Quantification of Uncertainties in Physical Systems 29 / 30



Analysis of Monte Carlo convergence

Why is this behavior observed?

X ∼ N (0, 1)

E

{
X 2

}
=

∫ +∞

−∞

x2√
2π σ

exp

{
−(k − µ)2

2σ2

}
dx = µ2+σ2 < +∞

X ∼ Cauchy(0, 1)

E

{
X 2

}
∝

∫
∞

−∞

x2

1 + x2
dx =

∫
∞

−∞

dx − π = ∞

c© A. Cunha Jr (UERJ) Modeling and Quantification of Uncertainties in Physical Systems 29 / 30
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Randomness
• We need a source of randomness

• Physics offers several

• But true random numbers are not reproducible (or compressable (Kolmogorov))

• Some physical RNGs fail tests of randomness (Marsaglia)

Pseudo-randomness

• Most MC uses pseudo-random numbers

• I.e., deterministic computer programs that simulate randomness, reproducibly.

• There are many high quality and well tested RNGs. I like

1) the Mersenne Twister of Matsumoto, Nishimura (1998),

2) and MRG32k3a of L’Ecuyer (1999),

and there are other high quality RNGs.

Today’s MC would be impossible without the efforts of people who work on the

algebra of finite fields. MCQMC 2012, Sydney Australia



An early attempt to contruct a RNG

Donald E. Knuth

Knuth’s “Super-random”algorithm

1 Take N to be the most significant digit of X , a 10-digit decimal
number. Steps 2-13 are repeated exactly N + 1 times.

2 Let M be the second most significant digit of X . Jump to step
3 + M.

3 If X < 5 × 10
9
, set X = X + 5 × 10

9
.

4 Replace X by ⌊X
2
/10

5
⌋ mod 10

10
.

5 Replace X by (1001001001 × X ) mod 10
10
.

6 If X < 10
8
then X = X + 9814055677; otherwise X = 10

10
− X .

7 Interchange the lower-order five digits of X with the higher-order
five digits of X .

8 Replace X by (1001001001 × X ) mod 10
10
.

9 For each digit d of X , decrease d by 1 if d > 0.

10 If X < 10
5
, set X = X

2
+ 99999; otherwise X = X − 99999.

11 If X < 10
9
, set X = 10 × X and repeat this step.

12 Replace X by the middle 10 digits of X (X − 1).

13 If N > 0, decrease N by one and return to step 2. If N = 0, the
algorithm terminates with the current value of X as the next value
in the sequence.

c© A. Cunha Jr (UERJ) Modeling and Quantification of Uncertainties in Physical Systems 6 / 30

R. W. Shonkwiler, and F. Mendivil, Explorations in Monte Carlo Methods, Springer, 2009.



Sequence generated by Knuth’s algorithm

Sometimes complexity hides simple behaviour:

The first time Knuth ran this algorithm it almost immediately
converged to 6065038420 (a fixed point for the algorithm).

After this, when he ran it with a different starting value, it
converged to a cycle having length 3178!

Lessons from this example:

Complexity is not a substitute for randomness.

Random numbers should not be generated with a method
chosen at random!

c© A. Cunha Jr (UERJ) Modeling and Quantification of Uncertainties in Physical Systems 7 / 30

R. W. Shonkwiler, and F. Mendivil, Explorations in Monte Carlo Methods, Springer, 2009.



Linear Congruential Generators (LCG)

Fix the positive integer parameters m, a, c, and X0

m – modulus, 0 < m

a – multiplier, 0 ≤ a < m

c – increment, 0 ≤ c < m

X0 – seed, 0 ≤ x0 < m

Given an integer Xn , the following iteration is computed

Xn+1 = (a Xn + c) mod m, n ∈ N.

c© A. Cunha Jr (UERJ) Modeling and Quantification of Uncertainties in Physical Systems 8 / 30

R. W. Shonkwiler, and F. Mendivil, Explorations in Monte Carlo Methods, Springer, 2009.



Sequence generated by LCG

Example: (m = 8, a = 5, c = 1, x0 = 0)

X0 = 0
X1 = 1
X2 = 6
X3 = 7
X4 = 4
X5 = 5
X6 = 2
X7 = 3

X8 = 0
X9 = 1
X10 = 6
X11 = 7
X12 = 4
X13 = 5
X14 = 2
X15 = 3

X16 = 0
X17 = 1
X18 = 6
X19 = 7
X20 = 4
X21 = 5
X22 = 2
X23 = 3

· · ·

maximum number of possible different outcome is equal to m

in real applications, a very large m is taken (e.g. m = 232)

c© A. Cunha Jr (UERJ) Modeling and Quantification of Uncertainties in Physical Systems 9 / 30

R. W. Shonkwiler, and F. Mendivil, Explorations in Monte Carlo Methods, Springer, 2009.



Choosing a Good Random Number Generator

Like choosing a new car: for some people speed is preferred,
while for others robustness and reliability are more important.

For Monte Carlo simulation distributional properties of RNG are
paramount, whereas in coding/cryptography unpredictability is
crucial.

As with cars, there are many poorly designed and outdated
models available that should be avoided. Several of standard
generators that come with popular programming languages and
computing packages can be appallingly poor.

c© A. Cunha Jr (UERJ) Modeling and Quantification of Uncertainties in Physical Systems 10 / 30

D. P. Kroese, T. Taimre, and Z. I. Botev, Handbook of Monte Carlo Methods, Wiley, 2011.
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Basic (pseudo) RNGs
First: make sure your software is using a good and thoroughly tested RNG.

Typical usage

x← rand() // x is now a simulated U(0, 1)

rand:

state← update(state)

return f(state)

Period

The state space is finite ⇒ the RNG eventually repeats: xi+M = xi for period M .

Use no more than
√
M draws in one simulation. (L’Ecuyer)

Seed

Setting a seed (e.g. setseed(s) ) lets you control the initial state of the RNG.

Getting the seed (e.g. s← getseed() ) lets you save state for later.

MCQMC 2012, Sydney Australia
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Streams
Sophisticated use of RNGs requires multiple independent streams

X
(s)
i

iid∼ U(0, 1), i = 1, . . . , Ns, s = 1, . . . , S

Coupling

Use stream 1 for coffee shop customer arrival:

− random wait . . . 148.7 seconds for next customer group

− it has 3 customers

− first one orders double decaf soy latte with bacon bits

− and so on until 10 pm

Use stream 2 for service times. Now compare two store configs on given customer stream.

Processes

Simulate S physical systems for N time steps

Use one stream per system

Later add systems (larger S) or do longer simulations (larger N ) compatibly
MCQMC 2012, Sydney Australia
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Parallelism
May want one stream per processor.

Challenging to seed them all.

Still an area of active research.

Hellekalek (1998) warns “Don’t trust parallel Monte Carlo!”

I like RngStreams of L’Ecuyer, Simard, Chen & Kelton (2002)

lots of long random streams, tested

Also, the Mersenne Twister can be seeded

with output of a cryptographically secure RNG to make streams Matsumoto

MCQMC 2012, Sydney Australia
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Making random things
1) Random variables: X ∈ R but not U(0, 1) (e.g. N (0, 1))

2) Random vectors: X ∈ R
d

3) Random objects: graphs, permutations, projection matrices

4) Random processes: Brownian motion, Poisson, Cox, Chinese restaurant

Non-uniform random numbers

See Devroye (1986)

If the distribution has a name (normal, Poisson, Gamma, χ2, beta, etc.)

it is probably already in Matlab or R or python or · · ·
Vectors and processes are another story

MCQMC 2012, Sydney Australia
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Inversion of the CDF
F (x) = Pr(X 6 x) invertible ⇒ X ≡ F−1(U(0, 1)) ∼ F

Pr(X 6 x) = Pr(F−1(U) 6 x)

= Pr(F (F−1(U)) 6 F (x))

= Pr(U 6 F (x))

= F (x)

More generally

F−1(u) may not exist or may not be unique.

We solve both problems with:

F−1(u) = inf{x | F (x) > u}, 0 < u < 1

X = F−1(U(0, 1)) ∼ F, ∀F

MCQMC 2012, Sydney Australia
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Inversion ctd

0.0 0.5 1.0 1.5 2.0
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Random variable X

U
=

F
(X

)

●

●

0.9

0.6

0.15

Inverting the CDF

F−1(u) = inf{x | F (x) > u} MCQMC 2012, Sydney Australia



An example with the inverse transform method

Generate X from

pX (x) =

{

2 x , 0 ≤ x ≤ 1

0, otherwise.

The CDF of X is given by

FX (x) = x2, 0 ≤ x ≤ 1

and its inverse by

F −1
X

(u) =
√
u, 0 ≤ u ≤ 1.

Algorithm :

1 draw U ∼ U(0, 1)
2 set X =

√
U

c© A. Cunha Jr (UERJ) Modeling and Quantification of Uncertainties in Physical Systems 17 / 30

D. P. Kroese, T. Taimre, and Z. I. Botev, Handbook of Monte Carlo Methods, Wiley, 2011.



An example with the inverse transform method

64 samples

1024 samples

256 samples

65536 samples

c© A. Cunha Jr (UERJ) Modeling and Quantification of Uncertainties in Physical Systems 18 / 30

D. P. Kroese, T. Taimre, and Z. I. Botev, Handbook of Monte Carlo Methods, Wiley, 2011.
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Many to one transformations
Box, Muller (1958)

Z =
√

−2 log(U1) cos(2πU2) ∼ N (0, 1)

Beta via ranks

Sort U1, . . . , Un
iid
∼ U(0, 1) getting U(1) 6 U(2) 6 · · · 6 U(n). Then

X = U(r) ∼ Beta(r, n− r + 1)

f(x) ∝ xr−1(1− x)n−r+1 0 < x < 1

In reverse

Sample 10th smallest of 10100 random variables via

F−1(X), X ∼ Beta(10, 10100 − 9)

Devroye (1986) has a cornucopia of transformations.

MCQMC 2012, Sydney Australia
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Acceptance-rejection sampling
We want X ∼ f

we can get X ∼ g

where f(x) 6 cg(x), known c < ∞.

Algorithm

Sample candidate Y ∼ g

Accept Y = y with probability A(y) = f(y)/(cg(y)) 6 1

If accepted deliver X = Y . Else try again.

Outcome

Result has density ∝ g(x)A(x) = g(x) f(x)
cg(x) ∝ f(x).

Nice proof in Knuth (1998)

Algorithm from von Neumann (1951)

MCQMC 2012, Sydney Australia
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Acceptance−rejection sampling

cg(x)

f(x)

The cost is proportional to c = 1/acceptance probability.

MCQMC 2012, Sydney Australia
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Geometry of acceptance-rejection
Define the region under Mh:

SM (h) = {(x, z) | 0 6 z 6 Mh(x), x ∈ R} ⊂ R
2,

for 0 < M < ∞ and a probability density function h

If (X,Z) ∼ U(SM ) then X ∼ h

Conversely if X ∼ h and Z given X = x is U(0,Mh(x)) then (X,Z) ∼ U(SM ).

We sample uniformly under the envelope cg(x).

Accepted points are uniform under f(x).

MCQMC 2012, Sydney Australia
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Mixtures
Suppose that

f(x) =
J
∑

j=1

αjfj(x)

for αj > 0 and
∑J

j=1 αj = 1

If we can sample fj then we can sample f :

1) Take random J with Pr(J = j) = αj .

2) Deliver X ∼ fJ .

machine-generated algorithms based on mixtures

1) Rectangle-tail-wedge Marsaglia, MacLaren, Bray (1964)

2) Ziggurat Marsaglia, Tsang (2000)

3) Adaptive rejection samp. Gilks, Wild (1992), Hörmann, Leydold, Derflinger (2004)

MCQMC 2012, Sydney Australia
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Random vectors
Random vectors can be very hard to generate.

This fact has motivated both Sequential Monte Carlo (SMC)

and Markov chain Monte Carlo (MCMC).

Sequential generation

Let X = (X1, . . . , Xd) ∼ F

we could sample Xj given X1, . . . , Xj−1 for j = 1, . . . , d

Difficulties

1) Inversion (sequentially) . . . easier said than done. It requires lots of F−1(·)’s

2) Acceptance-rejection: c may grow exponentially with d

3) Transformations: we might not know any

4) Mixtures: geometry gets computationally problematic

MCQMC 2012, Sydney Australia
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Random vectors
There are good methods for the following important distributions

1) Multivariate normal N (µ,Σ)

2) Multivariate t: X = µ+N (0,Σ)/
√

χ2
ν/ν

3) Multinomial1

4) Dirichlet2

1e.g. number of counts in bucket j = 1, . . . , J out of n independent trials, each bucket has

probability πj (think of somebody tabulating an imperfect roulette wheel)

2
X has nonnegative components summing to 1 with density proportional to

∏d

j=1 x
αj−1
j .

MCQMC 2012, Sydney Australia
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Some Dirichlet samples

αj on the corners, density ∝
∏d

j=1
x
αj−1

j

MCQMC 2012, Sydney Australia



Tutorial on Monte Carlo 27

The multivariate xxx distribution
There is no unique multivariate distribution with given margins.

E.g. Kotz, Balakrishnan & Johnson (2000) list 12 bivariate Gamma distributions.

Generalize one property · · · lose another.

MCQMC 2012, Sydney Australia
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Classic multivariate Poisson
Zj ∼ Poi(λj) independent
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





































Z1

Z2

Z3

Z4

Z5

Z6



























X = AZ for binary matrix A and independent Poisson Z .

Xi are dependent Poisson random variables.

Aij = 1 encodes cause-effect relationships (cause j =⇒ failure i).

We never get negative dependence for Xi and Xi′ this way.

MCQMC 2012, Sydney Australia



Tutorial on Monte Carlo 29

Copula-marginal sampling
X = (X1, . . . , Xd) with Xj ∼ Fj , known Fj

Glue them together with the dependence structure of Y ∼ G.

1) Y = (Y1, . . . , Yd) ∼ G

2) Uj = Gj(Yj) Gj is CDF of Yj

3) Xj = F−1
j (Uj)

4) deliver X = (X1, . . . , Xd), so Xj ∼ Fj

The vector U = (U1, . . . , Ud) is a ‘copula’, i.e., random vector with Uj ∼ U(0, 1)

MCQMC 2012, Sydney Australia
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Gaussian copula
Also called NORTA (normal to anything) or the Nataf transformation Nataf (1962)

The Gaussian is convenient.

That doesn’t mean it is correct.

The t copula has some advantages too.

(Which doesn’t mean it is correct either.)

Tail independence

The Gaussian copula is poorly suited for finance and insurance because

lim
u→1−

Pr(Xj > F−1
j (u) | Xk > F−1

k (u)) = 0

When Xk gives a big loss, a big loss on Xj is unlikely (under this model)

McNeil, Frey, Embrechts (2005)
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Poisson with Gaussian copula
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X = (X1, X2)

Each Xj ∼ Poi(2)

Gaussian copula

N
(

( 00 ) ,
(

1 −0.7
−0.7 1

))

Jittered
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Random processes
Like a vector but the index has infinite cardinality

E.g. X(t) is particle’s position at time

t ∈ [0,∞), or,

t ∈ {0, 1, 2, . . . }.

We only get finitely points t1 < t2 < · · · < tM on the trajectory

Challenges

1) Sampling consistently

2) and efficiently

3) biases, e.g.

min{X(t1), X(t2), . . . , X(tM )} > min
06t61

X(t)
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Gaussian processes
For any t1, . . . , tM ∈ T ⊆ R

d















X(t1)

X(t2)
.
.
.

X(tM )















∼ N





























µ(t1)

µ(t2)
.
.
.

µ(tM )















,















Σ(t1, t1) Σ(t1, t2) · · · Σ(t1, tM )

Σ(t2, t1) Σ(t2, t2) · · · Σ(t2, tM )
.
.
.

.

.

.
. . .

.

.

.

Σ(tM , t1) Σ(tM , t2) · · · Σ(tM , tM )





























Comments

• Σ(·, ·) has to be a positive definite function

• in principle we can choose to sample at any tj+1 given X(t1), . . . , X(tj)

• in practice, computation favors special Σ(·, ·)

• very special case: Brownian motion on [0,∞)

• Brownian motion drives stochastic differential equations (Kloeden & Platen (1999) )

New methods based on multilevel MC Giles et al.
MCQMC 2012, Sydney Australia
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Poisson processes
Random points ti ∈ T ⊆ R

d representing:

arrival times, flaws in a semiconductor, forest fire locations · · ·

N(A) = Number of process points in A ⊂ T

For disjoint A1, . . . , AJ ⊆ T

N(Aj) ∼ Poi

(∫

Aj

λ(t) dt

)

independently

λ(t) > 0
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Some sampling methods
Exponential spacings

For T = [0,∞) (e.g., time) and λ(t) = λ (constant) take

1) T0 ≡ 0 (not part of the process)

2) For j > 1, Tj = Tj−1 + Ej/λ, Ej
iid
∼ exp(1)

3) Until either tj > T or j > N

Finite integrated intensity

If
∫

T
λ(t) dt < ∞:

1) N ∼ Poi
(∫

T
λ(t) dt

)

2) T 1, . . . ,TN
iid
∼ f where f(·) ∝ λ(·).

So they look like a random sample

no clustering, no avoidance
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Isotropic Non−isotropic

Poisson lines

Polar coordinate definitions of the line follow Poisson process

There are Poisson planes too
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Non-Poisson points
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Finnish pines

Two Spatial Point Sets

Centers of insect cells from Crick via Ripley.

They avoid each other.

Locations of pine trees from Penttinen via van

Lieshout (2004). They cluster.MCQMC 2012, Sydney Australia
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Non-Poisson models
Clumping is easy. E.g. Cox model

1) λ(·) ∼ Spatial process ≡ random function

2) T i ∼ Poisson process(λ)

Avoidance is hard. E.g. hard shell model T i ∼ U(T ) subject to

min
16i<j6N(T )

‖T i − T j‖ > ε

Has O(N2) constraints. May proceed via:

• Dart throwing, or,

• Markov chain Monte Carlo
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Chinese restaurant process

• Start with unbounded tables and no customers

• For k > 1, the kth customer

• starts a new table with prob α/(α+ k − 1), or else,

• joins existing table with prob ∝ # people there

Notes

CRP used in statistical machine learning

See Jordan (2005)

Counterpart: Indian buffet process

Still no known vegemite stochastic process (VSP)
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Importance sampling
Consider µ = E(f(X)) =

∫
Rd f(x)p(x) dx

where f ≈ 0 outside of A and Pr(X ∈ A) is tiny

Examples: rare events, small probabilities, spiky functions,

floods, power outages, way out of money options,

probability of network failure, etc.

The idea

Arrange for X ∈ A to happen more often.

Then adjust for bias.
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Importance sampling ctd.
Probability density q(x) > 0 whenever f(x)p(x) 6= 0

µ =

∫
f(x)p(x) dx =

∫
f(x)p(x)

q(x)
q(x) dx

µ̂q =
1

n

n∑
i=1

f(Xi)p(Xi)

q(Xi)
, Xi

iid
∼ q

Variance

Var(µ̂q) =
σ2
q

n
where σ2

q =

∫
(f(x)p(x))2

q(x)
dx− µ2

small q(x) are problematic
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Variance again

σ2

q =

∫
(f(x)p(x))2

q(x)
dx− µ2 =

∫
(f(x)p(x)− µq(x))2

q(x)
dx

Consequences

1) If q(x) ∝ f(x)p(x) then σ2
q = 0

2) Best is q(x) ∝ |f(x)p(x)|

3) For safety, take q(x) ’heavier tailed’ than p(x)

E.g. p = N (0, 1) with q = t5

Finding a good importance sampler is an art and a science.

Success is not assured.

A poor choice can give σ2
q = ∞ even when σ2 < ∞

For adaptive importance sampling, see Evans & Swartz, Rubinstein
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Main problems with MC
1) We often cannot sample X

iid∼ p for desired p

2) Sometimes
√
n rate is too slow

Solutions (partial credit only)

1) MCMC: greatly expands the range of problems

evolves out of acceptance-rejection

uses dependent values

2) QMC, RQMC: improves the convergence rate

evolves out of stratification

exploits smoothness

Combinations

Latest MCMC ∩ QMC in Stanford thesis of S. Chen (2011)

Deeper theory than before

Good performance for GARCH and stochastic volatility models
MCQMC 2012, Sydney Australia


