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Label every pixel in an image with a class label from some
pre-defined set, i.e., y, € L.

sky
bldg

foreground

Interactive figure-ground  Surface context (Hoiem
segmentation  (Boykov et al., 2005)

and Jolly, 2001; Boykov

and Funka-Lea, 2006)

Semantic labeling (He et
al., 2004; Shotton et al.,
2006; Gould et al., 2009)

Stereo matching (Scharstein and Szeliski, Image denoising (Felzen-
2002) szwalb and Huttenlocher,

2004; Szeliski et al., 2008)
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Digital Photo Montage

(Agarwala et al., 2004)
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Probability Review

likelihood  prior

P(x|y) P(
X|y) vy
P(y|x)=

— P(x)
posterior

*

Maximum a Posteriori (MAP) inference: y* = argmax, P (y | x).
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Probability Review

likelihood  prior

P(xly)-P(
X|y) vy
21 =50
posterior

Maximum a Posteriori (MAP) inference: y* = argmax, P (y | x).

Random variables y and x are conditionally independent given z if
P(y,x[2)=P(y[2)P(x]|2).
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Graphical Models

We can exploit conditional independence assumptions to represent
probability distributions in a way that is both compact and efficient
for inference.

This tutorial is all about one particular representation, called
a Markov Random Field (MRF), and the associated inference
algorithms that are used in computer vision.

1l d | b, 1
? b ?\U(a,b)‘U(b,d)W(dm)W(Cva)
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Graphical Models

P (a,b, c,d) = %\U(a, bYW (b, d)W(d, c)¥(c, a)

= %exp{—@b(a, b) — (b, d) —¥(d, c) — ¥(c, a)}

where ¢ = —log V.

Stephen Gould 8/23
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Energy Functions

Let x be some observations (i.e., features from the image) and let
y = ()1,--.,¥n) be a vector of random variables. Then we can
write the conditional probability of y given x as

P(y|x)= ﬁexp{—ﬂy;x)}

where Z(x) = Z exp{—E (y;x)} is called the partition function.
yeL"
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Energy Functions

Let x be some observations (i.e., features from the image) and let
y = ()1,--.,¥n) be a vector of random variables. Then we can
write the conditional probability of y given x as

P(y|x)= ﬁexp{—ﬂy;x)}

where Z(x) = Z exp{—E (y;x)} is called the partition function.
yeLn
The energy function E (y; x) usually has some structured form:

x) = 3 ve(yeix)

where 9)c(y.; x) are clique potentials defined over a subset of
random variables y,. Cy.
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Conditional Markov Random Fields
E(yix) = ch YeiX)
=Zw,- irx) + > 0f (i yix) + ) vt (yeix).

ey jeg ceC

unary pairwise higher-order
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Binary MRF Example

Consider the following energy function for
two binary random variables, y; and y».

3|

5] o[L] oo
2] 3 [z

0]

E (y1,y2) = ¥1(y1) + ¥2(y2) + Y12(y1, y2)

Stephen Gould
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Consider the following energy function for
two binary random variables, y; and y».

o7

410

E (y1,y2) = ¥1(y1) + ¥2(y2) + ¥12(y1, y2)
=5y +2n
H—/

Y1
+y2 +3y2
—_—
V2
+ 31y + 4y1y
_——
12

where 7 =1 — y; and =1 — Vo
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Binary MRF Example

Consider the following energy function for
two binary random variables, y; and y».

B0

410]

E (y1,y2) = ¥1(y1) + ¥2(y2) + Y12(y1, y2)

=5y1 + 2y

nlrlE] P |

+y2+ 3y 0| 0| 6 |0.244

2 0| 1 | 11 0.002

+ 3y1y2 + 4y1¥o 1] 0] 7 [0.090

b1 1] 1| 5 ]0.664

where 7 =1 —y; and jp =1 — y».
12/23
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Compactness of Representation

Consider a 1 mega-pixel image, e.g., 1000 x 1000 pixels. We want
to annotate each pixel with a label from L. Let L = |L|.

6 . .
o There are 19 possible ways to label such an image.

. . . . . 6
o A naive encoding—i.e., one big table—would require [19° — 1
parameters.

o A pairwise MRF over N} requires 10°L parameters for the
unary terms and 2 x 1000 x (1000 — 1)L? parameters for the
pairwise terms, i.e., 0(106L2). Even less are required if we
share parameters.

Stephen Gould 13/23
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Inference and Energy Minimization

We are usually interested in finding the most probable labeling,

y* = argmax P (y | x) = argmin E (y; x) .
y y

This is known as maximum a posteriori (MAP) inference or energy
minimization.

Stephen Gould 14/23
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Inference and Energy Minimization

We are usually interested in finding the most probable labeling,

y* = argmax P (y | x) = argmin E (y; x) .
y y

This is known as maximum a posteriori (MAP) inference or energy
minimization.

A number of techniques can be used to find y*, including:
o message-passing (dynamic programming)
o integer programming
o graph-cuts

However, in general, inference is NP-hard.

Stephen Gould 14/23
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Markov random fields can be categorized via a number of different
dimensions:

o Label space: binary vs. multi-label; homogeneous vs.
heterogeneous.

o Order: unary vs. pairwise vs. higher-order.

@ Structure: chain vs. tree vs. grid vs. general graph;
neighbourhood size.
o Potentials: submodular, convex, compressible.

These all affect tractability of inference.

Stephen Gould 15/23
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Markov Random Fields for Pixel Labeling
P(y[x)ocP(x|y)P(y) =exp{-E(yix)}

energy
=D " (yix) + A D v (i yyix)

i€V jENs
unary pairwise
likelihood
1/1: yiiX) = Z [yvi = ]log P (x; | £)
el

Of (vi yiix) = Lyi # yjl
——

Potts prior

Here the prior acts to “smooth” predictions (independent of x).

Stephen Gould 16/23



Prior Strength

A=1
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Interactive Segmentation Model

o Label space: foreground or background

£ =101}

o Unary term: Gaussian mixture models for foreground and
background

O (i %) = > 41Tkl + 3 (0 — ) T E (36 — ) — log Ak
k

o Pairwise term: contrast-dependent smoothness prior

No + A ex ( M)’ TRV
¢5(yi’}ﬁ;x): 0 1exp 28 Yi 7éyj
, otherwise

Stephen Gould 18/23
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Geometric/Semantic Labeling Model

£

T sky
i bldg v

*gre‘qisufid‘
o Label space: pre-defined label set, e.g., e~ P

L = {sky, tree, grass, ...}

o Unary term: Boosted decision-tree classifiers over
“texton-layout” features [Shotton et al., 2006]

o7 (yi = £;x) = b log P (¢i(x) | £)

o Pairwise term: contrast-dependent smoothness prior

|| 1 X” 1
p Ao+ Arexp (— L) if yr #£

, otherwise

Stephen Gould 19/23
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Stereo Matching Model

o Label space: pixel disparity I"

£=1{01,...,127}

o Unary term: sum of absolute differences (SAD) or
normalized cross-correlation (NCC)

¢P(Yi; X) = Z |xleft(u7 V) - Xright(u — Vi, V)|

(u,v)ew

o Pairwise term: ‘“discontinuity preserving” prior

05 (vis ) = max {]; =, duax}

Stephen Gould 20/23
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Image Denoising Model

o Label space: pixel intensity or colour
L£=10,1,...,255}
o Unary term: square distance

¥ (yiix) = llyi — xil]?

o Pairwise term: truncated L, distance

1/}5()/”)/]) = max {Hyl - yjH27 dglax}

Stephen Gould 21/23
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Digital Photo Montage Model

o Label space: image index
L£L={12,...,K}

o Unary term: none!

o Pairwise term: seem penalty

Vi (i, 53 %) = 1%y, (1) = %3, (D] + 1%, G) = %, ()]

(or edge-normalized variant)

Stephen Gould 22/23
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Outline of Energy Minimization via Graph-cuts

Big picture:

©

Start with a pixel labeling problem

Formulate as a (multilabel) graphical model inference problem
Convert to a series of binary pairwise MRF inference problems
Write MRF as a quadratic pseudo-Boolean function

Convert pseudo-Boolean minimization to min-cut problem

Equivalently, formulate as a max-flow problem

o
o
o
o
o
o

Solve using augmented-path algorithm

‘ {0,1}" - R /O\
. Q0
. 013" >R Ngf

Stephen Gould 3/41
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point of confusion:
graphs are used to represent many different things

In this talk we use graphs to...

o represent probabilistic models (or energy functions),
e.g., Markov random fields and factor graphs.

o represent optimization problems, e.g., psuedo-Boolean
function minimization.

Stephen Gould 4/41
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Pseudo-boolean Functions [Boros and Hammer, 2001]

A mapping f : {0,1}" — R is called a pseudo-Boolean function. J
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A mapping f : {0,1}" — R is called a pseudo-Boolean function. J

o Pseudo-boolean functions can be uniquely represented as
multi-linear polynomials, e.g., f(y1,y2) = 6+ y1+5y2 — Ty1y».
o Pseudo-boolean functions can also be represented in posiform,

e.g., f(y1,y2) = 2y1 + 591 + 3y2 + 32 + 371y2 + 4y17. This
representation is not unique.
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Pseudo-boolean Functions [Boros and Hammer, 2001]

A mapping f : {0,1}" — R is called a pseudo-Boolean function. J

o Pseudo-boolean functions can be uniquely represented as
multi-linear polynomials, e.g., f(y1,y2) = 6+ y1+5y2 — Ty1y».

o Pseudo-boolean functions can also be represented in posiform,
e.g., f(y1,2) = 2y1 + 551 + 3y2 + ¥2 + 3V1y2 + 4y1y2. This
representation is not unique.

o A binary pairwise Markov random field (MRF) is just a
gquadratic pseudo-Boolean function.

Stephen Gould 5/41
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Representing a Binary Pairwise MRF

Consider a binary pairwise MRF over two variables: A
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Representing a Binary Pairwise MRF

Consider a binary pairwise MRF over two variables: Al B
c|D
AL 0 0 +OD—C+OB+C—A—D
C-A|C-A 0|D-C 0 0

E(y1,y2) =A+(C=Ay1+(D-C)y2 +(B+C—A—-D)y1y>

[Kolmogorov and Zabih, 2004]

Stephen Gould 6/41
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Pseudo-boolean Optimization [Boros and Hammer, 2001]

A large number of classical combinatorial optimization problems
can be formulated in terms of pseudo-boolean optimization, e.g.,

© Maximum independent set problem: find the largest set of
verticies in a graph such that no two are adjacent.

a(G) =maxee 0,137 (Ziev Xi—> (i jee i)

© Minimum vertex cover: find the smallest set of verticies such that
every edge in the graph is adjacent to at least one vertex in the set.

T(G) :minXE{UJ}"(ZieV Xi+z(i,j)€£ )_(,'>_<j)

o Maximum satisfiability problem: find an assignment to a set of
variables that satisfy as many clauses as possible.

maxxe{o,l}”(ZCec(l_ZueC E))

Stephen Gould 7/41



Australian

National

Pseudo-boolean Optimization [Boros and Hammer, 2001]

A large number of classical combinatorial optimization problems
can be formulated in terms of pseudo-boolean optimization, e.g.,

© Maximum independent set problem: find the largest set of
verticies in a graph such that no two are adjacent.

O‘(G) :maXXE{Owl}”(Ziev Xi—=2 (i j)ee Xixj)

© Minimum vertex cover: find the smallest set of verticies such that
every edge in the graph is adjacent to at least one vertex in the set.

T(G) :minXE{UJ}"(ZieV Xi+z(i,j)€£ )_(,'>_<j)

o Maximum satisfiability problem: find an assignment to a set of
variables that satisfy as many clauses as possible.

maxxe{o,l}”(ZCec(l_ZueC E))

These problems are all NP-hard.

Stephen Gould 7/41



Submodular Functions

Let V be a set. A set function f : 2¥ — R is called submodular if
f(X)+f(Y)>f(XUY)+Ff(XNY) for all subsets X, Y C V.

(D )+ ( Q)20

Stephen Gould 8/41
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Submodular Binary Pairwise MRFs

A pseudo-Boolean function f : {0,1}" — R is called submodular if
f(x)+ f(y) > f(xVy)+ f(x Ay) for all vectors x,y € {0,1}".

Stephen Gould 9/41
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Submodular Binary Pairwise MRFs

A pseudo-Boolean function f : {0,1}" — R is called submodular if
f(x)+ f(y) > f(xVy)+ f(x Ay) for all vectors x,y € {0,1}".

Submodularity checks for pairwise binary MRFs:

o polynomial form (of pseudo-boolean function) has negative
coefficients on all bi-linear terms;

o posiform has pairwise terms of the form uv;

o all pairwise potentials satisfy
$P(0,1) + ¢ (1,0) > v (1,1) + £ (0,0).

Stephen Gould 9/41
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Minimum-cut Problem

Let G = (V, &) be a capacitated digraph with two distinguished
vertices s and t. An st-cut is a partitioning of ) into two disjoint
sets S and T such that s € S and t € 7. The cost of the cut is
the sum of edge capacities for all edges going from S to 7.

~
~~ @
A
\
\

L

Stephen Gould 10/41
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Main idea:

o construct a graph such that every st-cut corresponds to a
joint assignment to the variables y

o the cost of the cut should be equal to the energy of the
assignment, E (y;x).*

o the minimum-cut then corresponds to the the minimum
energy assignment, y* = argmin, E (y; x).

*Requires non-negative energies.
Stephen Gould 11/41
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Example st-Graph Construction for Binary MRF

E (y1.y2) = ¥1(y1) + ¥2(y2) + ij(y1, y2)

®

Stephen Gould 12/41
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Example st-Graph Construction for Binary MRF

E (y1,y2) = ¥1(y1) + ¥2(y2) + ¥ij(y1, y2)
=2y1+5n
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Example st-Graph Construction for Binary MRF

E (y1,y2) = ¥1(y1) + ¥a2(y2) + ¥ij(y1, y2)
=21 +5n+3y2+

-
\@/
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Example st-Graph Construction for Binary MRF

E (y1,y2) = ¥1(y1) + ¥a2(y2) + ¥ij(y1, y2)
=2y1 + 5% +3y2 +y2 +3y1y2

©,
N
@Yﬁ/®

\G)

Stephen Gould 12/41
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Example st-Graph Construction for Binary MRF

E (y1,y2) = ¥1(y1) + ¥a2(y2) + ¥ij(y1, y2)
=2y1 +5y1 +3y2 + y2 + 3y1y2 +4y1y

Stephen Gould 12/41
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An Example st-Cut

E (0, ].) = 1/)1(0) + 1/12(1) + 1/1,;(0, ].)
=2y1 +5y1 +3y2 +y2 +3y1y2 +4y1y

Stephen Gould 13/41



Australian
National

University

Another st-Cut

E(l, ].) = 1/)1(1) + "L/Jz(l) + ’l/},'j(l, ].)
=2y1 +5y1 +3y2 + y2 +3y1y2 +4y1y

©

5 4 1

~—
B ®
3"—_6---~~3~

4 >
’ A3

®

Stephen Gould 14/41
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This is not a valid cut, since it does not correspond to a
partitioning of the nodes into two sets—one containing s and one
containing t.

Stephen Gould 15/41
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Alternative st-Graph Construction

Sometimes you will see the roles of s and t switched.

® @\@
O__® OO

@ @ o

These graphs represent the same energy function.

Stephen Gould 16/41
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Big Picture: Where are we?

We can now formulate inference in a submodular binary
pairwise MRF as a minimum-cut problem.

{0,1}" - R ®)

How do we solve the minimum-cut problem?

Stephen Gould

17/41
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The maximum flow f from vertex s to vertex t is equal to the
minimum cost st-cut.

Stephen Gould 18/41
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Maximum Flow Example

©)
_—
O————()
N

Stephen Gould 19/41




Maximum Flow Example (Augmenting Path)

@ 0
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0/1
@ and current flow f.
x //5
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Maximum Flow Example (Augmenting Path)

Stephen Gould
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Maximum Flow Example (Augmenting Path)
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Maximum Flow Example (Augmenting Path)

®
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®

Stephen Gould
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Maximum Flow Example (Augmenting Path)
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Maximum Flow Example (Push-Relabel)
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Current state-of-the-art algorithm for exact minimization of general
submodular pseudo-Boolean functions is O(n®T + n%), where T is
the time taken to evaluate the function [Orlin, 2007].

fassumes integer capacities
Stephen Gould 24/41
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Comparison of Maximum Flow Algorithms

Current state-of-the-art algorithm for exact minimization of general
submodular pseudo-Boolean functions is O(n®T + n%), where T is
the time taken to evaluate the function [Orlin, 2007].

| Algorithm | Complexity ‘
Ford-Fulkerson O(E max f)T
Edmonds-Karp (BFS) | O(VE?)
Push-relabel o(V?)
Boykov-Kolmogorov | O(V?E max f)
(~ O(V) in practice)

fassumes integer capacities
Stephen Gould 24/41
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Big Picture: Where are we now?

We can perform inference in submodular binary pairwise
Markov random fields exactly.

{0,1}" >R O

What about...
@ non-submodular binary pairwise Markov random fields?
o multi-label Markov random fields?

o higher-order Markov random fields?

Stephen Gould

31/41



Australian
National

The quadratic pseudo-Boolean optimization techniques described
above cannot be applied directly to multi-label MRFs.

However...

o ...for certain MRFs we can transform the multi-label problem
into a binary one exactly.

o ...we can project the multi-label problem onto a series of
binary problems in a so-called move-making algorithm.

Stephen Gould 36/41
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The “Battleship” Transform [ishikawa, 2003]

If the multi-label MRFs has pairwise potentials that are convex
functions over the label differences, i.e., v/ (yi,y;) = &(|yi — yjl)
where g(+) is convex, then we can transform the energy function
into an equivalent binary one.

y=1<2z=(0,0,0
y=2ez=(1,0,0
y=3<z=(1,1,0
y=4ez=(1,1,1

)
)
)
)
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The “Battleship” Transform [ishikawa, 2003]

If the multi-label MRFs has pairwise potentials that are convex
functions over the label differences, i.e., v/ (yi,y;) = &(|yi — yjl)
where g(+) is convex, then we can transform the energy function

into an equivalent binary one.
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Idea:
o initialize yP™V to any valid assignment
o restrict the label-space of each variable y; from £ to V; C L
(with y>™" € )))
o transform E : L" — R to E:yl X XYy — R

o find the optimal assignment y for E and repeat

each move results in an assignment with lower energy

Stephen Gould 38/41
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lterated Conditional Modes [Besag, 1986]

Reduce multi-variate inference to solving a series of
univariate inference problems.

For one of the variables y;, set J; = L. Set ); = {yjprev} for all
J # i (i.e., hold all other variables fixed).
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Reduce multi-variate inference to solving a series of
univariate inference problems.

For one of the variables y;, set J; = L. Set ); = {yjprev} for all
J # i (i.e., hold all other variables fixed).

Can be used for arbitrary energy functions.
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Alpha Expansion and Alpha-Beta Swap [Boykov et al., 2001]

Reduce multi-label inference to solving a series of binary
(submodular) inference problems.

Choose some a € L. Then for all variables, set Vi = {a, y/"*"}.

Choose two labels «, 8 € L. Then for each variable y; such that
P e {a, B}, set Vi = {a,B}. Otherwise set V; = {y’""}.

1

Stephen Gould 40/41



