
Integration of ODE Initial Value Problems

In this chapter we consider problems of the form

y ′(t) = f (t, y), y(0) = y0

Here y(t) ∈ R
n and f : R× R

n → R
n

Writing this system out in full, we have:

y ′(t) =

y ′1(t)
y ′2(t)
...

y ′n(t)

=

f1(t, y)
f2(t, y)

...
fn(t, y)

= f (t, y(t))

This is a system of n coupled ODEs for the variables y1, y2, . . . , yn

ODE IVPs

Initial Value Problem implies that we know y(0), i.e.
y(0) = y0 ∈ R

n is the initial condition

The order of an ODE is the highest-order derivative that appears

Hence y ′(t) = f (t, y) is a first order ODE system

ODE IVPs

We only consider first order ODEs since higher order problems can
be transformed to first order by introducing extra variables

For example, recall Newton’s Second Law:

y ′′(t) =
F (t, y , y ′)

m
, y(0) = y0, y

′(0) = v0

Let v = y ′, then

v ′(t) =
F (t, y , v)

m

y ′(t) = v(t)

and y(0) = y0, v(0) = v0

ODE IVPs: A Predator–Prey ODE Model
For example, a two-variable nonlinear ODE, the Lotka–Volterra
equation, can be used to model populations of two species:

y ′ =

[

y1(α1 − β1y2)
y2(−α2 + β2y1)

]

≡ f (y)

The α and β are modeling parameters, describe birth rates, death
rates, predator-prey interactions

ODEs in Python and MATLAB

Both Python and MATLAB have very good ODE IVP solvers

They employ adaptive time-stepping (h is varied during the
calculation) to increase efficiency

Python has functions odeint (a general purpose routine) and ode

(a routine with more options)

Most popular MATLAB function is ode45, which uses the classical
fourth-order Runge–Kutta method

In the remainder of this chapter we will discuss the properties of
methods like the Runge–Kutta method

Approximating an ODE IVP

Given y ′ = f (t, y), y(0) = y0: suppose we want to approximate y

at tk = kh, k = 1, 2, . . .

Notation: Let yk be our approx. to y(tk)

Euler’s method: Use finite difference approx. for y ′ and sample
f (t, y) at tk :

2

yk+1 − yk

h
= f (tk , yk)

Note that this, and all methods considered in this chapter, are
written the same regardless of whether y is a vector or a scalar

2Note that we replace y(tk) by yk

Euler’s Method

Quadrature-based interpretation: integrating the ODE y ′ = f (t, y)
from tk to tk+1 gives

y(tk+1) = y(tk) +

∫ tk+1

tk

f (s, y(s))ds

Apply n = 0 Newton–Cotes quadrature to
∫ tk+1

tk
f (s, y(s))ds, based

on interpolation point tk :

∫ tk+1

tk

f (s, y(s))ds ≈ (tk+1 − tk)f (tk , yk) = hf (tk , yk)

Again, this gives Euler’s method:

yk+1 = yk + hf (tk , yk)

Python example: Euler’s method for y ′ = λy

Backward Euler Method

We can derive other methods using the same quadrature-based
approach

Apply n = 0 Newton–Cotes quadrature based on interpolation
point tk+1 to

y(tk+1) = y(tk) +

∫ tk+1

tk

f (s, y(s))ds

to get the backward Euler method:

yk+1 = yk + hf (tk+1, yk+1)

Backward Euler Method

(Forward) Euler method is an explicit method: we have an explicit
formula for yk+1 in terms of yk

yk+1 = yk + hf (tk , yk)

Backward Euler is an implicit method, we have to solve for yk+1

which requires some extra work

yk+1 = yk + hf (tk+1, yk+1)

Backward Euler Method

For example, approximate y ′ = 2 sin(ty) using backward Euler:

At the first step (k = 1), we get

y1 = y0 + h sin(t1y1)

To compute y1, let F (y1) ≡ y1 − y0 − h sin(t1y1) and solve for
F (y1) = 0 via, say, Newton’s method

Hence implicit methods are more complicated and more
computationally expensive at each time step

Why bother with implicit methods? We’ll see why shortly...

Trapezoid Method

We can derive methods based on higher-order quadrature

Apply n = 1 Newton–Cotes quadrature (Trapezoid rule) at tk ,
tk+1 to

y(tk+1) = y(tk) +

∫ tk+1

tk

f (s, y(s))ds

to get the Trapezoid Method:

yk+1 = yk +
h

2
(f (tk , yk) + f (tk+1, yk+1))

One-Step Methods

The three methods we’ve considered so far have the form

yk+1 = yk + hΦ(tk , yk ; h) (explicit)

yk+1 = yk + hΦ(tk+1, yk+1; h) (implicit)

yk+1 = yk + hΦ(tk , yk , tk+1, yk+1; h) (implicit)

where the choice of the function Φ determines our method

These are called one-step methods: yk+1 depends on yk

(One can also consider multistep methods, where yk+1 depends on
earlier values yk−1, yk−2, . . .; we’ll discuss this briefly later)

Convergence

We now consider whether one-step methods converge to the exact
solution as h → 0

Convergence is a crucial property, we want to be able to satisfy an
accuracy tolerance by taking h sufficiently small

In general a method that isn’t convergent will give misleading
results and is useless in practice!

Convergence

We define global error, ek , as the total accumulated error at t = tk

ek ≡ y(tk)− yk

We define truncation error, Tk , as the amount “left over” at step
k when we apply our method to the exact solution and divide by h

e.g. for an explicit one-step ODE approximation, we have

Tk ≡
y(tk+1)− y(tk)

h
− Φ(tk , y(tk); h)

Convergence

The truncation error defined above determines the local error
introduced by the ODE approximation

For example, suppose yk = y(tk), then for the case above we have

hTk ≡ y(tk+1)− yk − hΦ(tk , yk ; h) = y(tk+1)− yk+1

Hence hTk is the error introduced in one step of our ODE
approximation3

Therefore the global error ek is determined by the accumulation of
the Tj for j = 0, 1, . . . , k − 1

Now let’s consider the global error of the Euler method in detail

3Because of this fact, the truncation error is defined as hTk in some texts

Convergence

Theorem: Suppose we apply Euler’s method for steps 1, 2, . . . ,M,
to y ′ = f (t, y), where f satisfies a Lipschitz condition:

|f (t, u)− f (t, v)| ≤ Lf |u − v |,

where Lf ∈ R>0 is called a Lipschitz constant. Then

|ek | ≤

(

eLf tk − 1
)

Lf

[

max
0≤j≤k−1

|Tj |

]

, k = 0, 1, . . . ,M,

where Tj is the Euler method truncation error.4

4Notation used here supposes that y ∈ R, but the result generalizes
naturally to y ∈ R

n for n > 1

Convergence

Proof: From the definition of truncation error for Euler’s method
we have

y(tk+1) = y(tk) + hf (tk , y(tk); h) + hTk

Subtracting yk+1 = yk + hf (tk , yk ; h) gives

ek+1 = ek + h [f (tk , y(tk))− f (tk , yk)] + hTk ,

hence

|ek+1| ≤ |ek |+ hLf |ek |+ h|Tk | = (1 + hLf)|ek |+ h|Tk |

Convergence

Proof (continued...):

This gives a geometric progression, e.g. for k = 2 we have

|e3| ≤ (1 + hLf)|e2|+ h|T2|

≤ (1 + hLf)((1 + hLf)|e1|+ h|T1|) + h|T2|

≤ (1 + hLf)
2h|T0|+ (1 + hLf)h|T1|+ h|T2|

≤ h

[

max
0≤j≤2

|Tj |

] 2
∑

j=0

(1 + hLf)
j

Or, in general

|ek | ≤ h

[

max
0≤j≤k−1

|Tj |

] k−1
∑

j=0

(1 + hLf)
j

Convergence

Proof (continued...):

Hence use the formula

k−1
∑

j=0

r j =
1− rk

1− r

with r ≡ (1 + hLf), to get

|ek | ≤
1

Lf

[

max
0≤j≤k−1

|Tj |

]

((1 + hLf)
k − 1)

Finally, we use the bound5 1 + hLf ≤ exp(hLf) to get the desired
result. �

5For x ≥ 0, 1 + x ≤ exp(x) by power series expansion 1 + x + x2/2 + · · ·

Convergence: Lipschitz Condition

A simple case where we can calculate a Lipschitz constant is if
y ∈ R and f is continuously differentiable

Then from the mean value theorem we have:

|f (t, u)− f (t, v)| = |fy (t, θ)||u − v |,

for θ ∈ (u, v)

Hence we can set:
Lf = max

t∈[0,tM]
θ∈(u,v)

|fy (t, θ)|

Convergence: Lipschitz Condition

However, f doesn’t have to be continuously differentiable to satisfy
Lipschitz condition!

e.g. let f (x) = |x |, then |f (x)− f (y)| = ||x | − |y || ≤ |x − y |,6

hence Lf = 1 in this case

6This is the reverse triangle inequality

Convergence

For a fixed t (i.e. t = kh, as h → 0 and k → ∞), the factor
(eLf t − 1)/Lf in the bound is a constant

Hence the global convergence rate for each fixed t is given by the
dependence of Tk on h

Our proof was for Euler’s method, but the same dependence of
global error on local error holds in general

We say that a method has order of accuracy p if |Tk | = O(hp)
(where p is an integer)

Hence ODE methods with order ≥ 1 are convergent

Order of Accuracy

Forward Euler is first order accurate:

Tk ≡
y(tk+1)− y(tk)

h
− f (tk , y(tk))

=
y(tk+1)− y(tk)

h
− y ′(tk)

=
y(tk) + hy ′(tk) + h2y ′′(θ)/2− y(tk)

h
− y ′(tk)

=
h

2
y ′′(θ)

Order of Accuracy

Backward Euler is first order accurate:

Tk ≡
y(tk+1)− y(tk)

h
− f (tk+1, y(tk+1))

=
y(tk+1)− y(tk)

h
− y ′(tk+1)

=
y(tk+1)− y(tk+1) + hy ′(tk+1)− h2y ′′(θ)/2

h
− y ′(tk+1)

= −
h

2
y ′′(θ)

Order of Accuracy

Trapezoid method is second order accurate:

Let’s prove this using a quadrature error bound, recall that:

y(tk+1) = y(tk) +

∫ tk+1

tk

f (s, y(s))ds

and hence

y(tk+1)− y(tk)

h
=

1

h

∫ tk+1

tk

f (s, y(s))ds

So

Tk =
1

h

∫ tk+1

tk

f (s, y(s))ds −
1

2
[f (tk , y(tk)) + f (tk+1, y(tk+1))]

Order of Accuracy

Hence

Tk =
1

h

[
∫ tk+1

tk

f (s, y(s))ds −
h

2
(f (tk , y(tk)) + f (tk+1, y(tk+1)))

]

=
1

h

[
∫ tk+1

tk

y ′(s)ds −
h

2

(

y ′(tk) + y ′(tk+1)
)

]

Therefore Tk is determined by the trapezoid rule error for the
integrand y ′ on t ∈ [tk , tk+1]

Recall that trapezoid quadrature rule error bound depended on
(b − a)3 = (tk+1 − tk)

3 = h3 and hence

Tk = O(h2)

Order of Accuracy

The table below shows global error at t = 1 for y ′ = y , y(0) = 1
for (forward) Euler and trapezoid

h EEuler ETrap

2.0e-2 2.67e-2 9.06e-05
1.0e-2 1.35e-2 2.26e-05
5.0e-3 6.76e-3 5.66e-06
2.5e-3 3.39e-3 1.41e-06

h → h/2 =⇒ EEuler → EEuler/2

h → h/2 =⇒ ETrap → ETrap/4

Stability

So far we have discussed convergence of numerical methods for
ODE IVPs, i.e. asymptotic behavior as h → 0

It is also crucial to consider stability of numerical methods: for
what (finite and practical) values of h is our method stable?

We want our method to be well-behaved for as large a step size as
possible

All else being equal, larger step sizes =⇒ fewer time steps =⇒
more efficient!

Stability

In this context, the key idea is that we want our methods to inherit
the stability properties of the ODE

If an ODE is unstable, then we can’t expect our discretization to
be stable

But if an ODE is stable, we want our discretization to be stable as
well

Hence we first discuss ODE stability, independent of numerical
discretization

ODE Stability

Consider an ODE y ′ = f (t, y), and

◮ Let y(t) be the solution for initial condition y(0) = y0

◮ Let ŷ(t) be the solution for initial condition ŷ(0) = ŷ0

The ODE is stable if:

For every ǫ > 0, ∃δ > 0 such that

‖ŷ0 − y0‖ ≤ δ =⇒ ‖ŷ(t)− y(t)‖ ≤ ǫ

for all t ≥ 0

“Small input perturbation leads to small perturbation in the
solution”

ODE Stability

Stronger form of stability, asymptotic stability: ‖ŷ(t)− y(t)‖ → 0
as t → ∞, perturbations decay over time

These two definitions of stability are properties of the ODE,
independent of any numerical algorithm

This nomenclature is a bit confusing compared to previous Units:

◮ We previously referred to this type of property as the
conditioning of the problem

◮ Stability previously referred only to properties of a numerical
approximation

In ODEs (and PDEs), it is standard to use stability to refer to
sensitivity of both the mathematical problem and numerical approx.

ODE Stability

Consider stability of y ′ = λy (assuming y(t) ∈ R) for different
values of λ

y(t)− ŷ(t) = (y0 − ŷ0)e
λt

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

y0 = 1

ŷ0 = 2

λ = −1, asymptotically stable

ODE Stability

y(t)− ŷ(t) = (y0 − ŷ0)e
λt

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

y0 = 1

ŷ0 = 2

λ = 0, stable

ODE Stability

y(t)− ŷ(t) = (y0 − ŷ0)e
λt

0 1 2 3 4 5
0

50

100

150

200

250

300

y0 = 1

ŷ0 = 2

λ = 1, unstable

ODE Stability

More generally, we can allow λ to be a complex number: λ = a+ ib

Then y(t) = y0e
(a+ib)t = y0e

ate ibt = y0e
at(cos(bt) + i sin(bt))

The key issue for stability is now the sign of a = Re(λ):

◮ Re(λ) < 0 =⇒ asymptotically stable

◮ Re(λ) = 0 =⇒ stable

◮ Re(λ) > 0 =⇒ unstable

ODE Stability

Our understanding of the stability of y ′ = λy extends directly to
the case y ′ = Ay , where y ∈ R

n,A ∈ R
n×n

Suppose that A is diagonalizable, so that we have the eigenvalue
decomposition A = VΛV−1, where

◮ Λ = diag(λ1, λ2, . . . , λn), where the λj are eigenvalues

◮ V is matrix with eigenvectors as columns, v1, v2, . . . , vn

Then,

y ′ = Ay = VΛV−1y =⇒ V−1y ′ = ΛV−1y =⇒ z ′ = Λz

where z ≡ V−1y and z0 ≡ V−1y0

ODE Stability

Hence we have n decoupled ODEs for z , and stability of zi is
determined by λi for each i

Since z and y are related by the matrix V , then (roughly speaking)
if all zi are stable then all yi will also be stable3

Hence assuming that V is well-conditioned, then we have:
Re(λi) ≤ 0 for i = 1, . . . , n =⇒ y ′ = Ay is a stable ODE

Next we consider stability of numerical approximations to ODEs

3“Roughly speaking” here because V can be ill-conditioned — a more

precise statement is based on “pseudospectra”, outside the scope of AM205

ODE Stability

Numerical approximation to an ODE is stable if:

For every ǫ > 0, ∃δ > 0 such that

‖ŷ0 − y0‖ ≤ δ =⇒ ‖ŷk − yk‖ ≤ ǫ

for all k ≥ 0

Key idea: We want to develop numerical methods that mimic the
stability properties of the exact solution

That is, if the ODE we’re approximating is unstable, we can’t
expect the numerical approximation to be stable!

Stability

Since ODE stability is problem dependent, we need a standard
“test problem” to consider

The standard test problem is the simple scalar ODE y ′ = λy

Experience shows that the behavior of a discretization on this test
problem gives a lot of insight into behavior in general

Ideally, to reproduce stability of the ODE y ′ = λy , we want our
discretization to be stable for all Re(λ) ≤ 0

Stability: Forward Euler

Consider forward Euler discretization of y ′ = λy :

yk+1 = yk + hλyk = (1 + hλ)yk =⇒ yk = (1 + hλ)ky0

Here 1 + hλ is called the amplification factor

Hence for stability, we require |1 + h̄| ≤ 1, where h̄ ≡ hλ

Let h̄ = a+ ib, then |1 + a+ ib|2 ≤ 12 =⇒ (1 + a)2 + b2 ≤ 1

Stability: Forward Euler

Hence forward Euler is stable if h̄ ∈ C is inside the disc with radius
1, center (−1, 0): This is a subset of “left-half plane,” Re(h̄) ≤ 0

As a result we say that the forward Euler method is conditionally
stable: when Re(λ) ≤ 0 we have to restrict h to ensure stability

For example, given λ ∈ R<0, we require

−2 ≤ hλ ≤ 0 =⇒ h ≤ −2/λ

Hence “larger negative λ” implies tighter restriction on h:

λ = −10 =⇒ h ≤ 0.2

λ = −200 =⇒ h ≤ 0.01

Stability: Backward Euler

In comparison, consider backward Euler discretization for y ′ = λy :

yk+1 = yk + hλyk+1 =⇒ yk =

(

1

1− hλ

)k

y0

Here the amplification factor is 1
1−hλ

Hence for stability, we require 1
|1−hλ| ≤ 1

Stability: Backward Euler

Again, let h̄ ≡ hλ = a+ ib, we need 12 ≤ |1− (a+ ib)|2, i.e.
(1− a)2 + b2 ≥ 1

Hence, for Re(λ) ≤ 0, this is satisfied for any h > 0

As a result we say that the backward Euler method is
unconditionally stable: no restriction on h for stability

Stability

Implicit methods generally have larger stability regions than explicit
methods! Hence we can take larger timesteps with implicit

But explicit methods are require less work per time-step since
don’t need to solve for yk+1

Therefore there is a tradeoff: The choice of method should depend
on the details of the problem at hand

Runge–Kutta Methods

Runge–Kutta (RK) methods are another type of one-step
discretization, a very popular choice

Aim to achieve higher order accuracy by combining evaluations of
f (i.e. estimates of y ′) at several points in [tk , tk+1]

RK methods all fit within a general framework, which can be
described in terms of Butcher tableaus

We will first consider two RK examples: two evaluations of f and
four evaluations of f

Runge–Kutta Methods

The family of Runge–Kutta methods with two intermediate
evaluations is defined by

yk+1 = yk + h(ak1 + bk2),

where k1 = f (tk , yk), k2 = f (tk + αh, yk + βhk1)

The Euler method is a member of this family, with a = 1 and b = 0

Runge–Kutta Methods

The family of Runge–Kutta methods with two intermediate
evaluations is defined by

yk+1 = yk + h(ak1 + bk2),

where k1 = f (tk , yk), k2 = f (tk + αh, yk + βhk1)

The Euler method is a member of this family, with a = 1 and
b = 0. By careful analysis of the truncation error, it can be shown
that we can choose a, b, α, β to obtain a second-order method

Runge–Kutta Methods

Three such examples are:

◮ The modified Euler method (a = 0, b = 1, α = β = 1/2):

yk+1 = yk + hf

(

tk +
1

2
h, yk +

1

2
hf (tk , yk)

)

◮ The improved Euler method (or Heun’s method)
(a = b = 1/2, α = β = 1):

yk+1 = yk +
1

2
h[f (tk , yk) + f (tk + h, yk + hf (tk , yk))]

◮ Ralston’s method (a = 1/4, b = 3/4, α = 2/3, β = 2/3)

yk+1 = yk +
1

4
h[f (tk , yk) + 3f (tk +

2h
3 , yk +

2h
3 f (tk , yk))]

Runge–Kutta Methods

The most famous Runge–Kutta method is the “classical
fourth-order method”, RK4 (used by MATLAB’s ode45):

yk+1 = yk +
1

6
h(k1 + 2k2 + 2k3 + k4)

where

k1 = f (tk , yk)

k2 = f (tk + h/2, yk + hk1/2)

k3 = f (tk + h/2, yk + hk2/2)

k4 = f (tk + h, yk + hk3)

Analysis of the truncation error in this case (which gets quite
messy!) gives Tk = O(h4)

Runge–Kutta Methods: Stability
We can also examine stability of RK4 methods for y ′ = λy

Figure shows stability regions for four different RK methods
(higher order RK methods have larger stability regions here)

Butcher tableau
Can summarize an s + 1 stage Runge–Kutta method using a
triangular grid of coefficients

α0

α1 β1,0
...

...
αs βs,0 βs,1 . . . βs,s−1

γ0 γ1 . . . γs−1 γs

The ith intermediate step is

f (tk + αih, yk + h

i−1∑

j=0

βi ,jkj).

The (k + 1)th answer for y is

yk+1 = yk + h

s∑

j=0

γjkj .

Higher-order methods
Fehlberg’s 7(8) method1

1From Solving Ordinary Differential Equations by Hairer, Nørsett, and

Wanner.

Stiff systems

You may have heard of “stiffness” in the context of ODEs: an
important, though somewhat fuzzy, concept

Common definition of stiffness for a linear ODE system y ′ = Ay is
that A has eigenvalues that differ greatly in magnitude2

The eigenvalues determine the time scales, and hence large
differences in λ’s =⇒ resolve disparate timescales simultaneously!

2Nonlinear case: stiff if the Jacobian, Jf , has large differences in eigenvalues,

but this defn. isn’t always helpful since Jf changes at each time-step

Stiff systems

Suppose we’re primarily interested in the long timescale. Then:

◮ We’d like to take large time steps and resolve the long
timescale accurately

◮ But we may be forced to take extremely small timesteps to
avoid instabilities due to the fast timescale

In this context it can be highly beneficial to use an implicit method
since that enforces stability regardless of timestep size

Stiff systems

From a practical point of view, an ODE is stiff if there is a
significant benefit in using an implicit instead of explicit method

e.g. this occurs if the time-step size required for stability is much
smaller than size required for the accuracy level we want

Example: Consider y ′ = Ay , y0 = [1, 0]T where

A =

[

998 1998
−999 −1999

]

which has λ1 = −1, λ2 = −1000 and exact solution

y(t) =

[

2e−t
− e−1000t

−e−t + e−1000t

]

Multistep Methods

So far we have looked at one-step methods, but to improve
efficiency why not try to reuse data from earlier time-steps?

This is exactly what multistep methods do:

yk+1 =
m
∑

i=1

αiyk+1−i + h

m
∑

i=0

βi f (tk+1−i , yk+1−i)

If β0 = 0 then the method is explicit

We can derive the parameters by interpolating and then integrating
the interpolant

Multistep Methods

The stability of multistep methods, often called “zero stability,” is
an interesting topic, but not considered here

Question: Multistep methods require data from several earlier
time-steps, so how do we initialize?

Answer: The standard approach is to start with a one-step method
and move to multistep once there is enough data

Some key advantages of one-step methods:

◮ They are “self-starting”

◮ Easier to adapt time-step size

ODE Boundary Value Problems

ODE BVPs

Consider the ODE Boundary Value Problem (BVP):3 find
u ∈ C 2[a, b] such that

−αu′′(x) + βu′(x) + γu(x) = f (x), x ∈ [a, b]

for α, β, γ ∈ R and f : R → R

The terms in this ODE have standard names:

−αu′′(x): diffusion term
βu′(x): convection (or transport) term
γu(x): reaction term
f (x): source term

3Often called a “Two-point boundary value problem”

ODE BVPs

Also, since this is a BVP u must satisfy some boundary conditions,
e.g. u(a) = c1, u(b) = c2

u(a) = c1, u(b) = c2 are called Dirichlet boundary conditions

Can also have:

◮ A Neumann boundary condition: u′(b) = c2

◮ A Robin (or “mixed”) boundary condition:4

u′(b) + c2u(b) = c3

4With c2 = 0, this is a Neumann condition

ODE BVPs

This is an ODE, so we could try to use the ODE solvers from III.3

to solve it!

Question: How would we make sure the solution satisfies
u(b) = c2?

ODE BVPs

Answer: Solve the IVP with u(a) = c1 and u′(a) = s0, and then
update sk iteratively for k = 1, 2, . . . until u(b) = c2 is satisfied

This is called the “shooting method”, we picture it as shooting a
projectile to hit a target at x = b (just like Angry Birds!)

However, the shooting method does not generalize to PDEs hence
it is not broadly useful

ODE BVPs

A more general approach is to formulate a coupled system of
equations for the BVP based on a finite difference approximation

Suppose we have a grid xi = a+ ih, i = 0, 1, . . . , n − 1, where
h = (b − a)/(n − 1)

Then our approximation to u ∈ C 2[a, b] is represented by a vector
U ∈ R

n, where Ui ≈ u(xi)

ODE BVPs

Recall the ODE:

−αu′′(x) + βu′(x) + γu(x) = f (x), x ∈ [a, b]

Let’s develop an approximation for each term in the ODE

For the reaction term γu, we have the pointwise approximation
γUi ≈ γu(xi)

Differentiation Matrices

We need a map from the vector F ≡ [f (x1), f (x2), . . . , f (xn)] ∈ R
n

to the vector of derivatives F ′
≡ [f ′(x1), f

′(x2), . . . , f
′(xn)] ∈ R

n

Let F̃ ′ denote our finite difference approximation to the vector of
derivatives, i.e. F̃ ′

≈ F ′

Differentiation is a linear operator1, hence we expect the map from
F to F̃ ′ to be an n × n matrix

This is indeed the case, and this map is a differentiation matrix, D

1Since (αf + βg)′ = αf ′ + βg ′

Differentiation Matrices

Row i of D corresponds to the finite difference formula for f ′(xi),
since then D(i ,:)F ≈ f ′(xi)

e.g. for forward difference approx. of f ′, non-zero entries of row i

are

Dii = −
1

h
, Di ,i+1 =

1

h

This is a sparse matrix with two non-zero diagonals

Differentiation Matrices

n=100

h=1/(n-1)

D=np.diag(-np.ones(n)/h)+np.diag(np.ones(n-1)/h,1)

plt.spy(D)

plt.show()

0 20 40 60 80 100

0

10

20

30

40

50

60

70

80

90

100

nz = 199

Differentiation Matrices

But what about the last row?

80 85 90 95 100

80

85

90

95

100

nz = 199

Dn,n+1 =
1
h
is ignored!

Differentiation Matrices

We can use the backward difference formula (which has the same
order of accuracy) for row n instead

Dn,n−1 = −
1

h
, Dnn =

1

h

80 85 90 95 100

80

85

90

95

100

nz = 200

Python demo: Differentiation matrices

ODE BVPs

Similarly, for the derivative terms:

◮ Let D2 ∈ R
n×n denote diff. matrix for the second derivative

◮ Let D1 ∈ R
n×n denote diff. matrix for the first derivative

Then −α(D2U)i ≈ −αu
′′(xi) and β(D1U)i ≈ βu′(xi)

Hence, we obtain (AU)i ≈ −αu
′′(xi) + βu′(xi) + γu(xi), where

A ∈ R
n×n is:

A ≡ −αD2 + βD1 + γI

Similarly, we represent the right hand side by sampling f at the
grid points, hence we introduce F ∈ R

n, where Fi = f (xi)

ODE BVPs

Therefore, we obtain the linear1 system for U ∈ R
n:

AU = F

Hence, we have converted a linear differential equation into a linear
algebraic equation

(Similarly we can convert a nonlinear differential equation into a
nonlinear algebraic system)

However, we are not finished yet, need to account for the boundary
conditions!

1
It is linear here since the ODE BVP is linear

ODE BVPs

Dirichlet boundary conditions: we need to impose U0 = c1,
Un−1 = c2

Since we fix U0 and Un−1, they are no longer variables: we should
eliminate them from our linear system

However, instead of removing rows and columns from A, it is
slightly simpler from the implementational point of view to:

◮ “zero out” first row of A, then set A(0, 0) = 1 and F0 = c1

◮ “zero out” last row of A, then set A(n − 1, n − 1) = 1 and
Fn−1 = c2

ODE BVPs

We can implement the above strategy for AU = F in Python

Useful trick2 for checking your code:

1. choose a solution u that satisfies the BCs

2. substitute into the ODE to get a right-hand side f

3. compute the ODE approximation with f from step 2

4. verify that you get the expected convergence rate for the
approximation to u

e.g. consider x ∈ [0, 1] and set u(x) = ex sin(2πx):

f (x) ≡ −αu′′(x) + βu′(x) + γu(x)

= −αex
[

4π cos(2πx) + (1− 4π2) sin(2πx)
]

+

βex [sin(2πx) + 2π cos(2πx)] + γex sin(2πx)

2
Sometimes called the “method of manufactured solutions”

ODE BVPs

Python example: ODE BVP via finite differences

Convergence results:

h error

2.0e-2 5.07e-3
1.0e-2 1.26e-3
5.0e-3 3.17e-4
2.5e-3 7.92e-5

O(h2), as expected due to second order differentiation matrices

ODE BVPs: BCs involving derivatives

Question: How would we impose the Robin boundary condition
u′(b) + c2u(b) = c3, and preserve the O(h2) convergence rate?

Option 1: Introduce a “ghost node” at xn = b + h, this node is
involved in both the B.C. and the (n − 1)th matrix row

Employ central difference approx. to u′(b) to get approx. B.C.:

Un − Un−2

2h
+ c2Un−1 = c3,

or equivalently

Un = Un−2 − 2hc2Un−1 + 2hc3

ODE BVPs: BCs involving derivatives

The (n − 1)th equation is

−α
Un−2 − 2Un−1 + Un

h2
+ β

Un − Un−2

2h
+ γUn−1 = Fn−1

We can substitute our expression for Un into the above equation,
and hence eliminate Un:

(

−
2αc3
h

+ βc3

)

−
2α

h2
Un−2+

(

2α

h2
(1 + hc2)− βc2 + γ

)

Un−1 = Fn−1

Set Fn−1 ← Fn−1 −

(

−
2αc3

h
+ βc3

)

, we get n × n system AU = F

Option 2: Use a one-sided difference formula for u′(b) in the Robin
BC, as in III.2

