
Digital Signal Processing

Markus Kuhn

Computer Laboratory

http://www.cl.cam.ac.uk/teaching/1112/DSP/

Michaelmas 2011 – Part II

Signals

→ flow of information

→ measured quantity that varies with time (or position)

→ electrical signal received from a transducer
(microphone, thermometer, accelerometer, antenna, etc.)

→ electrical signal that controls a process

Continuous-time signals: voltage, current, temperature, speed, . . .

Discrete-time signals: daily minimum/maximum temperature,
lap intervals in races, sampled continuous signals, . . .

Electronics (unlike optics) can only deal easily with time-dependent signals, therefore spatial
signals, such as images, are typically first converted into a time signal with a scanning process
(TV, fax, etc.).

2

Signal processing
Signals may have to be transformed in order to

→ amplify or filter out embedded information

→ detect patterns

→ prepare the signal to survive a transmission channel

→ prevent interference with other signals sharing a medium

→ undo distortions contributed by a transmission channel

→ compensate for sensor deficiencies

→ find information encoded in a different domain

To do so, we also need

→ methods to measure, characterise, model and simulate trans-
mission channels

→ mathematical tools that split common channels and transfor-
mations into easily manipulated building blocks

3

Analog electronics

Passive networks (resistors, capacitors,
inductances, crystals, SAW filters),
non-linear elements (diodes, . . .),
(roughly) linear operational amplifiers

Advantages:

• passive networks are highly linear
over a very large dynamic range
and large bandwidths

• analog signal-processing circuits
require little or no power

• analog circuits cause little addi-
tional interference

R

Uin UoutCL

0 ω (= 2πf)

U
o
u
t

1/
√

LC

Uin

Uin

Uout

t

Uin − Uout

R
=

1

L

∫
t

−∞

Uoutdτ + C
dUout

dt

4

Digital signal processing
Analog/digital and digital/analog converter, CPU, DSP, ASIC, FPGA.

Advantages:

→ noise is easy to control after initial quantization

→ highly linear (within limited dynamic range)

→ complex algorithms fit into a single chip

→ flexibility, parameters can easily be varied in software

→ digital processing is insensitive to component tolerances, aging,
environmental conditions, electromagnetic interference

But:

→ discrete-time processing artifacts (aliasing)

→ can require significantly more power (battery, cooling)

→ digital clock and switching cause interference

5

Typical DSP applications

→ communication systems
modulation/demodulation, channel
equalization, echo cancellation

→ consumer electronics
perceptual coding of audio and video
on DVDs, speech synthesis, speech
recognition

→ music
synthetic instruments, audio effects,
noise reduction

→ medical diagnostics
magnetic-resonance and ultrasonic
imaging, computer tomography,
ECG, EEG, MEG, AED, audiology

→ geophysics
seismology, oil exploration

→ astronomy
VLBI, speckle interferometry

→ experimental physics
sensor-data evaluation

→ aviation
radar, radio navigation

→ security
steganography, digital watermarking,
biometric identification, surveillance
systems, signals intelligence, elec-
tronic warfare

→ engineering
control systems, feature extraction
for pattern recognition

6

Sequences and systems
A discrete sequence {xn}

∞
n=−∞ is a sequence of numbers

. . . , x−2, x−1, x0, x1, x2, . . .

where xn denotes the n-th number in the sequence (n ∈ Z). A discrete
sequence maps integer numbers onto real (or complex) numbers.
We normally abbreviate {xn}∞

n=−∞
to {xn}, or to {xn}n if the running index is not obvious.

The notation is not well standardized. Some authors write x[n] instead of xn, others x(n).

Where a discrete sequence {xn} samples a continuous function x(t) as

xn = x(ts · n) = x(n/fs),

we call ts the sampling period and fs = 1/ts the sampling frequency.

A discrete system T receives as input a sequence {xn} and transforms
it into an output sequence {yn} = T{xn}:

. . . , x2, x1, x0, x−1, , y2, y1, y0, y−1, . . .
discrete

system T

11

Some simple sequences

Unit-step sequence:

un =

{
0, n < 0
1, n ≥ 0

0

1

−3 −2 −1 321. . . n. . .

un

Impulse sequence:

δn =

{
1, n = 0
0, n 6= 0

= un − un−1 0

1

−3 −2 −1 321. . . n. . .

δn

12

Properties of sequences

A sequence {xn} is

periodic ⇔ ∃k > 0 : ∀n ∈ Z : xn = xn+k

absolutely summable ⇔

∞∑

n=−∞

|xn| < ∞

square summable ⇔

∞∑

n=−∞

|xn|
2

︸ ︷︷ ︸

“energy′′

< ∞ ⇔ “energy signal”

0 < lim
k→∞

1

1 + 2k

k∑

n=−k

|xn|
2

︸ ︷︷ ︸

“average power”

< ∞ ⇔ “power signal”

This energy/power terminology reflects that if U is a voltage supplied to a load
resistor R, then P = UI = U2/R is the power consumed, and

∫
P (t) dt the energy.

It is used even if we drop physical units (e.g., volts) for simplicity in calculations.

13

Types of discrete systems
A causal system cannot look into the future:

yn = f(xn, xn−1, xn−2, . . .)

A memory-less system depends only on the current input value:

yn = f(xn)

A delay system shifts a sequence in time:

yn = xn−d

T is a time-invariant system if for any d

{yn} = T{xn} ⇐⇒ {yn−d} = T{xn−d}.

T is a linear system if for any pair of sequences {xn} and {x′
n}

T{a · xn + b · x′
n} = a · T{xn}+ b · T{x′

n}.

16

Examples:

The accumulator system

yn =
n

∑

k=−∞

xk

is a causal, linear, time-invariant system with memory, as are the back-
ward difference system

yn = xn − xn−1,

the M-point moving average system

yn =
1

M

M−1
∑

k=0

xn−k =
xn−M+1 + · · ·+ xn−1 + xn

M

and the exponential averaging system

yn = α · xn + (1− α) · yn−1 = α

∞
∑

k=0

(1− α)k · xn−k.

17

Examples for time-invariant non-linear memory-less systems:

yn = x2
n, yn = log2 xn, yn = max{min{⌊256xn⌋, 255}, 0}

Examples for linear but not time-invariant systems:

yn =

{

xn, n ≥ 0
0, n < 0

= xn · un

yn = x⌊n/4⌋

yn = xn · ℜ(e
ωjn)

Examples for linear time-invariant non-causal systems:

yn =
1

2
(xn−1 + xn+1)

yn =
9

∑

k=−9

xn+k ·
sin(πkω)

πkω
· [0.5 + 0.5 · cos(πk/10)]

18

Convolution

All linear time-invariant (LTI) systems can be represented in the form

yn =
∞
∑

k=−∞

ak · xn−k

where {ak} is a suitably chosen sequence of coefficients.

This operation over sequences is called convolution and defined as

{pn} ∗ {qn} = {rn} ⇐⇒ ∀n ∈ Z : rn =
∞
∑

k=−∞

pk · qn−k.

If {yn} = {an} ∗ {xn} is a representation of an LTI system T , with
{yn} = T{xn}, then we call the sequence {an} the impulse response

of T , because {an} = T{δn}.

21

Convolution examples

A B C D

E F A∗B A∗C

C∗A A∗E D∗E A∗F

22

Properties of convolution
For arbitrary sequences {pn}, {qn}, {rn} and scalars a, b:

→ Convolution is associative

({pn} ∗ {qn}) ∗ {rn} = {pn} ∗ ({qn} ∗ {rn})

→ Convolution is commutative

{pn} ∗ {qn} = {qn} ∗ {pn}

→ Convolution is linear

{pn} ∗ {a · qn + b · rn} = a · ({pn} ∗ {qn}) + b · ({pn} ∗ {rn})

→ The impulse sequence (slide 12) is neutral under convolution

{pn} ∗ {δn} = {δn} ∗ {pn} = {pn}

→ Sequence shifting is equivalent to convolving with a shifted
impulse

{pn−d} = {pn} ∗ {δn−d}

23

Proof: all LTI systems just apply convolution

Any sequence {xn} can be decomposed into a weighted sum of shifted
impulse sequences:

{xn} =
∞
∑

k=−∞

xk · {δn−k}

Let’s see what happens if we apply a linear(∗) time-invariant(∗∗) system
T to such a decomposed sequence:

T{xn} = T

(

∞
∑

k=−∞

xk · {δn−k}

)

(∗)
=

∞
∑

k=−∞

xk · T{δn−k}

(∗∗)
=

∞
∑

k=−∞

xk · {δn−k} ∗ T{δn} =

(

∞
∑

k=−∞

xk · {δn−k}

)

∗ T{δn}

= {xn} ∗ T{δn} q.e.d.

⇒ The impulse response T{δn} fully characterizes an LTI system.
24

Exercise 1 What type of discrete system (linear/non-linear, time-invariant/
non-time-invariant, causal/non-causal, causal, memory-less, etc.) is:

(a) yn = |xn|

(b) yn = −xn−1 + 2xn − xn+1

(c) yn =
8
∏

i=0

xn−i

(d) yn = 1
2(x2n + x2n+1)

(e) yn =
3xn−1 + xn−2

xn−3

(f) yn = xn · en/14

(g) yn = xn · un

(h) yn =
∞
∑

i=−∞

xi · δi−n+2

Exercise 2

Prove that convolution is (a) commutative and (b) associative.

25

Convolution: optics example
If a projective lens is out of focus, the blurred image is equal to the
original image convolved with the aperture shape (e.g., a filled circle):

∗ =

Point-spread function h (disk, r = as
2f

):

h(x, y) =

{ 1
r2π

, x2 + y2 ≤ r2

0, x2 + y2 > r2

Original image I, blurred image B = I ∗ h, i.e.

B(x, y) =

∫∫

I(x−x′, y−y′) ·h(x′, y′) ·dx′dy′

a

f

image plane

s

focal plane

28

Why are sine waves useful?
1) Adding together sine waves of equal frequency, but arbitrary ampli-
tude and phase, results in another sine wave of the same frequency:

A1 · sin(ωt+ ϕ1) + A2 · sin(ωt+ ϕ2) = A · sin(ωt+ ϕ)

with

A =
√

A2
1 + A2

2 + 2A1A2 cos(ϕ2 − ϕ1)

tanϕ =
A1 sinϕ1 + A2 sinϕ2

A1 cosϕ1 + A2 cosϕ2

ωt

A2
A

A1

ϕ2

ϕ
ϕ1

A1 · sin(ϕ1)

A2 · sin(ϕ2)

A2 · cos(ϕ2)

A1 · cos(ϕ1)

Sine waves of any phase can be
formed from sin and cos alone:

A · sin(ωt+ ϕ) =

a · sin(ωt) + b · cos(ωt)
with a = A · cos(ϕ), b = A · sin(ϕ) and A =

√
a2 + b2, tanϕ = b

a
.

30

Note: Convolution of a discrete sequence {xn} with another sequence
{yn} is nothing but adding together scaled and delayed copies of {xn}.
(Think of {yn} decomposed into a sum of impulses.)

If {xn} is a sampled sine wave of frequency f , so is {xn} ∗ {yn}!
=⇒ Sine-wave sequences form a family of discrete sequences

that is closed under convolution with arbitrary sequences.

The same applies for continuous sine waves and convolution.

2) Sine waves are orthogonal to each other:
∫

∞

−∞

sin(ω1t+ ϕ1) · sin(ω2t+ ϕ2) dt “=” 0

⇐⇒ ω1 6= ω2 ∨ ϕ1 − ϕ2 = (2k + 1)π/2 (k ∈ Z)

They can be used to form an orthogonal function basis for a transform.
The term “orthogonal” is used here in the context of an (infinitely dimensional) vector space,
where the “vectors” are functions of the form f : R → R (or f : R → C) and the scalar product
is defined as f · g =

∫
∞

−∞
f(t) · g(t) dt.

31

Why are exponential functions useful?
Adding together two exponential functions with the same base z, but
different scale factor and offset, results in another exponential function
with the same base:

A1 · zt+ϕ1 + A2 · zt+ϕ2 = A1 · zt · zϕ1 + A2 · zt · zϕ2

= (A1 · zϕ1 + A2 · zϕ2) · zt = A · zt

Likewise, if we convolve a sequence {xn} of values

. . . , z−3, z−2, z−1, 1, z, z2, z3, . . .

xn = zn with an arbitrary sequence {hn}, we get {yn} = {zn} ∗ {hn},

yn =
∞
∑

k=−∞

xn−k ·hk =
∞
∑

k=−∞

zn−k ·hk = zn ·
∞
∑

k=−∞

z−k ·hk = zn ·H(z)

where H(z) is independent of n.
Exponential sequences are closed under convolution with
arbitrary sequences. The same applies in the continuous case.

32

Why are complex numbers so useful?
1) They give us all n solutions (“roots”) of equations involving poly-
nomials up to degree n (the “

√
−1 = j ” story).

2) They give us the “great unifying theory” that combines sine and
exponential functions:

cos(ωt) =
1

2

(

e jωt + e− jωt
)

sin(ωt) =
1

2j

(

e jωt − e− jωt
)

or

cos(ωt+ ϕ) =
1

2

(

e jωt+ϕ + e− jωt−ϕ
)

or

cos(ωn+ ϕ) = ℜ(e jωn+ϕ) = ℜ[(e jω)n · e jϕ]
sin(ωn+ ϕ) = ℑ(e jωn+ϕ) = ℑ[(e jω)n · e jϕ]

Notation: ℜ(a+ jb) := a and ℑ(a+ jb) := b where j2 = −1 and a, b ∈ R.

33

We can now represent sine waves as projections of a rotating complex
vector. This allows us to represent sine-wave sequences as exponential
sequences with basis e jω.

A phase shift in such a sequence corresponds to a rotation of a complex
vector.

3) Complex multiplication allows us to modify the amplitude and phase
of a complex rotating vector using a single operation and value.

Rotation of a 2D vector in (x, y)-form is notationally slightly messy,
but fortunately j2 = −1 does exactly what is required here:

(

x3

y3

)

=

(

x2 −y2

y2 x2

)

·
(

x1

y1

)

=

(

x1x2 − y1y2

x1y2 + x2y1

)

z1 = x1 + jy1, z2 = x2 + jy2

z1 · z2 = x1x2 − y1y2 + j(x1y2 + x2y1)

(x2, y2)

(x1, y1)

(x3, y3)

(−y2, x2)

34

Recall: Fourier transform
We define the Fourier integral transform and its inverse as

F{g(t)}(f) = G(f) =

∫ ∞

−∞
g(t) · e−2π jft dt

F−1{G(f)}(t) = g(t) =

∫ ∞

−∞
G(f) · e2π jft df

Many equivalent forms of the Fourier transform are used in the literature. There is no strong
consensus on whether the forward transform uses e−2π jft and the backwards transform e2π jft,
or vice versa. The above form uses the ordinary frequency f , whereas some authors prefer the
angular frequency ω = 2πf :

F{h(t)}(ω) = H(ω) = α

∫ ∞

−∞

h(t) · e∓ jωt dt

F−1{H(ω)}(t) = h(t) = β

∫ ∞

−∞

H(ω)· e± jωt dω

This substitution introduces factors α and β such that αβ = 1/(2π). Some authors set α = 1
and β = 1/(2π), to keep the convolution theorem free of a constant prefactor; others prefer the
unitary form α = β = 1/

√
2π, in the interest of symmetry.

36

Properties of the Fourier transform

If
x(t) •−◦ X(f) and y(t) •−◦ Y (f)

are pairs of functions that are mapped onto each other by the Fourier
transform, then so are the following pairs.

Linearity:
ax(t) + by(t) •−◦ aX(f) + bY (f)

Time scaling:

x(at) •−◦ 1

|a| X
(

f

a

)

Frequency scaling:

1

|a| x
(

t

a

)

•−◦ X(af)

37

Time shifting:

x(t−∆t) •−◦ X(f) · e−2π jf∆t

Frequency shifting:

x(t) · e2π j∆ft •−◦ X(f −∆f)

Parseval’s theorem (total energy):

∫ ∞

−∞
|x(t)|2dt =

∫ ∞

−∞
|X(f)|2df

38

Fourier transform example: rect and sinc

− 1
2

0 1
2

0

1

The Fourier transform of the “rectangular function”

rect(t) =

1 if |t| < 1
2

1
2

if |t| = 1
2

0 otherwise

is the “(normalized) sinc function”

F{rect(t)}(f) =
∫ 1

2

− 1
2

e−2π jftdt =
sinπf

πf
= sinc(f)

and vice versa
F{sinc(t)}(f) = rect(f).

−3 −2 −1 0 1 2 3
0

1
Some noteworthy properties of these functions:

•
∫∞
−∞

sinc(t) dt = 1 =
∫∞
−∞

rect(t) dt

• sinc(0) = 1 = rect(0)

• ∀n ∈ Z \ {0} : sinc(n) = 0

39

Convolution theorem
Continuous form:

F{(f ∗ g)(t)} = F{f(t)} · F{g(t)}

F{f(t) · g(t)} = F{f(t)} ∗ F{g(t)}

Discrete form:

{xn} ∗ {yn} = {zn} ⇐⇒ X(e jω) · Y (e jω) = Z(e jω)

Convolution in the time domain is equivalent to (complex) scalar mul-
tiplication in the frequency domain.

Convolution in the frequency domain corresponds to scalar multiplica-
tion in the time domain.

Proof: z(r) =
∫
s x(s)y(r − s)ds ⇐⇒

∫
r z(r)e

− jωrdr =
∫
r

∫
s x(s)y(r − s)e− jωrdsdr =

∫
s x(s)

∫
r y(r − s)e− jωrdrds =

∫
s x(s)e

− jωs
∫
r y(r − s)e− jω(r−s)drds

t:=r−s
=

∫
s x(s)e

− jωs
∫
t y(t)e

− jωtdtds =
∫
s x(s)e

− jωsds ·
∫
t y(t)e

− jωtdt. (Same for
∑

instead of
∫
.)

40

Dirac delta function
The continuous equivalent of the impulse sequence {δn} is known as
Dirac delta function δ(x). It is a generalized function, defined such
that

δ(x) =

{

0, x 6= 0
∞, x = 0

∫ ∞

−∞
δ(x) dx = 1

0 x

1

and can be thought of as the limit of function sequences such as

δ(x) = lim
n→∞

{

0, |x| ≥ 1/n
n/2, |x| < 1/n

or
δ(x) = lim

n→∞

n√
π

e−n2x2

The delta function is mathematically speaking not a function, but a distribution, that is an
expression that is only defined when integrated.

41

Some properties of the Dirac delta function:
∫ ∞

−∞
f(x)δ(x− a) dx = f(a)

∫ ∞

−∞
e±2π jxadx = δ(a)

∞
∑

n=−∞
e±2π jnxa =

1

|a|

∞
∑

n=−∞
δ(x− n/a)

δ(ax) =
1

|a|δ(x)

Fourier transform:

F{δ(t)}(f) =

∫ ∞

−∞
δ(t) · e−2π jft dt = e0 = 1

F−1{1}(t) =

∫ ∞

−∞
1 · e2π jft df = δ(t)

42

Sine and cosine in the frequency domain

cos(2πf0t) =
1

2
e2π jf0t +

1

2
e−2π jf0t sin(2πf0t) =

1

2j
e2π jf0t − 1

2j
e−2π jf0t

F{cos(2πf0t)}(f) =
1

2
δ(f − f0) +

1

2
δ(f + f0)

F{sin(2πf0t)}(f) = − j

2
δ(f − f0) +

j

2
δ(f + f0)

ℑ ℑ

ℜ ℜ
1
2

1
2

1
2 j

1
2 j

fff0−f0 −f0 f0

As any x(t) ∈ R can be decomposed into sine and cosine functions, the spectrum of any real-
valued signal will show the symmetry X(e jω) = [X(e− jω)]∗, where ∗ denotes the complex
conjugate (i.e., negated imaginary part).

43

Fourier transform symmetries
We call a function x(t)

odd if x(−t) = −x(t)

even if x(−t) = x(t)

and ·∗ is the complex conjugate, such that (a+ jb)∗ = (a− jb).

Then

x(t) is real ⇔ X(−f) = [X(f)]∗

x(t) is imaginary ⇔ X(−f) = −[X(f)]∗

x(t) is even ⇔ X(f) is even
x(t) is odd ⇔ X(f) is odd
x(t) is real and even ⇔ X(f) is real and even
x(t) is real and odd ⇔ X(f) is imaginary and odd
x(t) is imaginary and even ⇔ X(f) is imaginary and even
x(t) is imaginary and odd ⇔ X(f) is real and odd

44

Example: amplitude modulation

Communication channels usually permit only the use of a given fre-
quency interval, such as 300–3400 Hz for the analog phone network or
590–598 MHz for TV channel 36. Modulation with a carrier frequency
fc shifts the spectrum of a signal x(t) into the desired band.

Amplitude modulation (AM):

y(t) = A · cos(2πtfc) · x(t)

0 0f f ffl fc−fl −fc

∗ =

−fc fc

X(f) Y (f)

The spectrum of the baseband signal in the interval −fl < f < fl is
shifted by the modulation to the intervals ±fc − fl < f < ±fc + fl.
How can such a signal be demodulated?

45

Sampling using a Dirac comb

The loss of information in the sampling process that converts a con-
tinuous function x(t) into a discrete sequence {xn} defined by

xn = x(ts · n) = x(n/fs)

can be modelled through multiplying x(t) by a comb of Dirac impulses

s(t) = ts ·
∞
∑

n=−∞
δ(t− ts · n)

to obtain the sampled function

x̂(t) = x(t) · s(t)

The function x̂(t) now contains exactly the same information as the
discrete sequence {xn}, but is still in a form that can be analysed using
the Fourier transform on continuous functions.

46

The Fourier transform of a Dirac comb

s(t) = ts ·
∞
∑

n=−∞
δ(t− ts · n) =

∞
∑

n=−∞
e2π jnt/ts

is another Dirac comb

S(f) = F
{

ts ·
∞
∑

n=−∞
δ(t− tsn)

}

(f) =

ts ·
∞
∫

−∞

∞
∑

n=−∞
δ(t− tsn) e

2π jftdt =
∞
∑

n=−∞
δ

(

f − n

ts

)

.

ts

s(t) S(f)

fs−2ts −ts 2ts −2fs −fs 2fs0 0 ft

47

Sampling and aliasing

0

sample

cos(2π tf)
cos(2π t(k⋅ f

s
± f))

Sampled at frequency fs, the function cos(2πtf) cannot be distin-
guished from cos[2πt(kfs ± f)] for any k ∈ Z.

48

Frequency-domain view of sampling

x(t)

t t t

X(f)

f f f

0 0

0

=
.

−1/fs 1/fs1/fs0−1/fs

s(t)

·

∗ =

−fs fs 0 fs−fs

.

S(f)

x̂(t)

X̂(f)

.

Sampling a signal in the time domain corresponds in the frequency
domain to convolving its spectrum with a Dirac comb. The resulting
copies of the original signal spectrum in the spectrum of the sampled
signal are called “images”.

49

Discrete-time Fourier transform

The Fourier transform of a sampled signal

x̂(t) = ts ·
∞
∑

n=−∞
xn · δ(t− ts · n)

is

F{x̂(t)}(f) = X̂(f) =

∫ ∞

−∞
x̂(t) · e−2π jftdt = ts ·

∞
∑

n=−∞
xn · e−2π j f

fs
n

Some authors prefer the notation X̂(e jω) =
∑

n xn · e− jωn to highlight the periodicity of X̂ and
its relationship with the z-transform (slide 103).

The inverse transform is

x̂(t) =

∫ ∞

−∞
X̂(f) · e2π jftdf or xm =

∫ fs/2

−fs/2

X̂(f) · e2π j
f
fs
mdf.

50

Nyquist limit and anti-aliasing filters

If the (double-sided) bandwidth of a signal to be sampled is larger than
the sampling frequency fs, the images of the signal that emerge during
sampling may overlap with the original spectrum.

Such an overlap will hinder reconstruction of the original continuous
signal by removing the aliasing frequencies with a reconstruction filter.

Therefore, it is advisable to limit the bandwidth of the input signal to
the sampling frequency fs before sampling, using an anti-aliasing filter.

In the common case of a real-valued base-band signal (with frequency
content down to 0 Hz), all frequencies f that occur in the signal with
non-zero power should be limited to the interval −fs/2 < f < fs/2.

The upper limit fs/2 for the single-sided bandwidth of a baseband
signal is known as the “Nyquist limit”.

51

Nyquist limit and anti-aliasing filters

ffs−2fs −fs 0 2fs ffs−2fs −fs 0 2fs

f−fs 0f0 fs

With anti-aliasing filter

X(f)

X̂(f)

X(f)

X̂(f)

Without anti-aliasing filter

double-sided bandwidth

bandwidth
single-sided Nyquist

limit = fs/2

reconstruction filter

anti-aliasing filter

Anti-aliasing and reconstruction filters both suppress frequencies outside |f | < fs/2.

52

Reconstruction of a continuous
band-limited waveform

The ideal anti-aliasing filter for eliminating any frequency content above
fs/2 before sampling with a frequency of fs has the Fourier transform

H(f) =

{

1 if |f | < fs
2

0 if |f | > fs
2

= rect(tsf).

This leads, after an inverse Fourier transform, to the impulse response

h(t) = fs ·
sinπtfs
πtfs

=
1

ts
· sinc

(

t

ts

)

.

The original band-limited signal can be reconstructed by convolving
this with the sampled signal x̂(t), which eliminates the periodicity of
the frequency domain introduced by the sampling process:

x(t) = h(t) ∗ x̂(t)
Note that sampling h(t) gives the impulse function: h(t) · s(t) = δ(t).

53

Impulse response of ideal low-pass filter with cut-off frequency fs/2:

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3

0

t⋅ f
s

54

Reconstruction filter example

1 2 3 4 5

sampled signal

interpolation result

scaled/shifted sin(x)/x pulses

55

Spectrum of a periodic signal
A signal x(t) that is periodic with frequency fp can be factored into a
single period ẋ(t) convolved with an impulse comb p(t). This corre-
sponds in the frequency domain to the multiplication of the spectrum
of the single period with a comb of impulses spaced fp apart.

=

x(t)

t t t

= ∗

·

X(f)

f f f

p(t)ẋ(t)

Ẋ(f) P (f)

.

.

−1/fp 1/fp0 −1/fp 1/fp0

0 fp−fp 0 fp−fp

68

Spectrum of a sampled signal

A signal x(t) that is sampled with frequency fs has a spectrum that is
periodic with a period of fs.

x(t)

t t t

X(f)

f f f

0 0

0

=
.

−1/fs 1/fs1/fs0−1/fs

s(t)

·

∗ =

−fs fs 0 fs−fs

.

S(f)

x̂(t)

X̂(f)

69

Continuous vs discrete Fourier transform

• Sampling a continuous signal makes its spectrum periodic

• A periodic signal has a sampled spectrum

We sample a signal x(t) with fs, getting x̂(t). We take n consecutive
samples of x̂(t) and repeat these periodically, getting a new signal ẍ(t)
with period n/fs. Its spectrum Ẍ(f) is sampled (i.e., has non-zero
value) at frequency intervals fs/n and repeats itself with a period fs.

Now both ẍ(t) and its spectrum Ẍ(f) are finite vectors of length n.

ft

.

f−1
sf−1

s 0−n/fs n/fs 0 fsfs/n−fs/n−fs

ẍ(t) Ẍ(f)

70

Discrete Fourier Transform (DFT)

Xk =
n−1
∑

i=0

xi · e
−2π j ik

n xk =
1

n
·
n−1
∑

i=0

Xi · e
2π j ik

n

The n-point DFT multiplies a vector with an n× n matrix

Fn =

1 1 1 1 · · · 1

1 e−2π j 1
n e−2π j 2

n e−2π j 3
n · · · e−2π jn−1

n

1 e−2π j 2
n e−2π j 4

n e−2π j 6
n · · · e−2π j

2(n−1)
n

1 e−2π j 3
n e−2π j 6

n e−2π j 9
n · · · e−2π j

3(n−1)
n

...
...

...
...

. . .
...

1 e−2π jn−1
n e−2π j

2(n−1)
n e−2π j

3(n−1)
n · · · e−2π j

(n−1)(n−1)
n

Fn ·

x0

x1

x2

...
xn−1

=

X0

X1

X2

...
Xn−1

,
1

n
· F ∗

n
·

X0

X1

X2

...
Xn−1

=

x0

x1

x2

...
xn−1

71

Discrete Fourier Transform visualized

·

x0

x1

x2

x3

x4

x5

x6

x7

=

X0

X1

X2

X3

X4

X5

X6

X7

The n-point DFT of a signal {xi} sampled at frequency fs contains in
the elements X0 to Xn/2 of the resulting frequency-domain vector the
frequency components 0, fs/n, 2fs/n, 3fs/n, . . . , fs/2, and contains
in Xn−1 downto Xn/2 the corresponding negative frequencies. Note
that for a real-valued input vector, both X0 and Xn/2 will be real, too.
Why is there no phase information recovered at fs/2?

72

Inverse DFT visualized

1

8
·

·

X0

X1

X2

X3

X4

X5

X6

X7

=

x0

x1

x2

x3

x4

x5

x6

x7

73

Fast Fourier Transform (FFT)

(

Fn{xi}
n−1
i=0

)

k
=

n−1
∑

i=0

xi · e
−2π j ik

n

=

n
2
−1

∑

i=0

x2i · e
−2π j ik

n/2 + e−2π j k
n

n
2
−1

∑

i=0

x2i+1 · e
−2π j ik

n/2

=

(

Fn
2
{x2i}

n
2
−1

i=0

)

k
+ e−2π j k

n ·
(

Fn
2
{x2i+1}

n
2
−1

i=0

)

k
, k < n

2

(

Fn
2
{x2i}

n
2
−1

i=0

)

k−n
2

+ e−2π j k
n ·

(

Fn
2
{x2i+1}

n
2
−1

i=0

)

k−n
2

, k ≥ n
2

The DFT over n-element vectors can be reduced to two DFTs over
n/2-element vectors plus n multiplications and n additions, leading to
log2 n rounds and n log2 n additions and multiplications overall, com-
pared to n2 for the equivalent matrix multiplication.
A high-performance FFT implementation in C with many processor-specific optimizations and
support for non-power-of-2 sizes is available at http://www.fftw.org/.

74

Efficient real-valued FFT
The symmetry properties of the Fourier transform applied to the discrete
Fourier transform {Xi}

n−1
i=0 = Fn{xi}

n−1
i=0 have the form

∀i : xi = ℜ(xi) ⇐⇒ ∀i : Xn−i = X∗
i

∀i : xi = j · ℑ(xi) ⇐⇒ ∀i : Xn−i = −X∗
i

These two symmetries, combined with the linearity of the DFT, allows us
to calculate two real-valued n-point DFTs

{X ′
i}

n−1
i=0 = Fn{x

′
i}

n−1
i=0 {X ′′

i }
n−1
i=0 = Fn{x

′′
i }

n−1
i=0

simultaneously in a single complex-valued n-point DFT, by composing its
input as

xi = x′i + j · x′′i

and decomposing its output as

X ′
i =

1

2
(Xi +X∗

n−i) X ′′
i =

1

2
(Xi −X∗

n−i)

To optimize the calculation of a single real-valued FFT, use this trick to calculate the two half-size
real-value FFTs that occur in the first round.

75

Fast complex multiplication

Calculating the product of two complex numbers as

(a+ jb) · (c+ jd) = (ac− bd) + j(ad+ bc)

involves four (real-valued) multiplications and two additions.

The alternative calculation

(a+ jb) · (c+ jd) = (α− β) + j(α + γ) with
α = a(c+ d)
β = d(a+ b)
γ = c(b− a)

provides the same result with three multiplications and five additions.

The latter may perform faster on CPUs where multiplications take three
or more times longer than additions.
This “Karatsuba multiplication” is most helpful on simpler microcontrollers. Specialized signal-
processing CPUs (DSPs) feature 1-clock-cycle multipliers. High-end desktop processors use
pipelined multipliers that stall where operations depend on each other.

76

FFT-based convolution
Calculating the convolution of two finite sequences {xi}

m−1
i=0 and {yi}

n−1
i=0

of lengths m and n via

zi =

min{m−1,i}
∑

j=max{0,i−(n−1)}

xj · yi−j, 0 ≤ i < m+ n− 1

takes mn multiplications.

Can we apply the FFT and the convolution theorem to calculate the
convolution faster, in just O(m logm+ n log n) multiplications?

{zi} = F−1 (F{xi} · F{yi})

There is obviously no problem if this condition is fulfilled:

{xi} and {yi} are periodic, with equal period lengths

In this case, the fact that the DFT interprets its input as a single period
of a periodic signal will do exactly what is needed, and the FFT and
inverse FFT can be applied directly as above.

77

In the general case, measures have to be taken to prevent a wrap-over:

A B F
−1

[F(A)⋅F(B)]

A’ B’ F
−1

[F(A’)⋅F(B’)]

Both sequences are padded with zero values to a length of at least m+n−1.

This ensures that the start and end of the resulting sequence do not overlap.
78

Deconvolution
A signal u(t) was distorted by convolution with a known impulse re-
sponse h(t) (e.g., through a transmission channel or a sensor problem).
The “smeared” result s(t) was recorded.

Can we undo the damage and restore (or at least estimate) u(t)?

∗ =

∗ =

81

The convolution theorem turns the problem into one of multiplication:

s(t) =

∫
u(t− τ) · h(τ) · dτ

s = u ∗ h

F{s} = F{u} · F{h}

F{u} = F{s}/F{h}

u = F−1{F{s}/F{h}}

In practice, we also record some noise n(t) (quantization, etc.):

c(t) = s(t) + n(t) =

∫
u(t− τ) · h(τ) · dτ + n(t)

Problem – At frequencies f where F{h}(f) approaches zero, the
noise will be amplified (potentially enormously) during deconvolution:

ũ = F−1{F{c}/F{h}} = u+ F−1{F{n}/F{h}}

82

Typical workarounds:

→ Modify the Fourier transform of the impulse response, such that
|F{h}(f)| > ǫ for some experimentally chosen threshold ǫ.

→ If estimates of the signal spectrum |F{s}(f)| and the noise
spectrum |F{n}(f)| can be obtained, then we can apply the
“Wiener filter” (“optimal filter”)

W (f) =
|F{s}(f)|2

|F{s}(f)|2 + |F{n}(f)|2

before deconvolution:

ũ = F−1{W · F{c}/F{h}}

Exercise 13 Use MATLAB to deconvolve the blurred stars from slide 28.

The files stars-blurred.png with the blurred-stars image and stars-psf.png with the impulse
response (point-spread function) are available on the course-material web page. You may find
the MATLAB functions imread, double, imagesc, circshift, fft2, ifft2 of use.

Try different ways to control the noise (see above) and distortions near the margins (window-
ing). [The MATLAB image processing toolbox provides ready-made “professional” functions
deconvwnr, deconvreg, deconvlucy, edgetaper, for such tasks. Do not use these, except per-
haps to compare their outputs with the results of your own attempts.]

83

Spectral estimation

0 10 20 30
−1

0

1

Sine wave 4×f
s
/32

0 10 20 30
0

5

10

15

Discrete Fourier Transform

0 10 20 30
−1

0

1

Sine wave 4.61×f
s
/32

0 10 20 30
0

5

10

15

Discrete Fourier Transform

84

We introduced the DFT as a special case of the continuous Fourier
transform, where the input is sampled and periodic.

If the input is sampled, but not periodic, the DFT can still be used
to calculate an approximation of the Fourier transform of the original
continuous signal. However, there are two effects to consider. They
are particularly visible when analysing pure sine waves.

Sine waves whose frequency is a multiple of the base frequency (fs/n)
of the DFT are identical to their periodic extension beyond the size
of the DFT. They are, therefore, represented exactly by a single sharp
peak in the DFT. All their energy falls into one single frequency “bin”
in the DFT result.

Sine waves with other frequencies, which do not match exactly one of
the output frequency bins of the DFT, are still represented by a peak
at the output bin that represents the nearest integer multiple of the
DFT’s base frequency. However, such a peak is distorted in two ways:

→ Its amplitude is lower (down to 63.7%).

→ Much signal energy has “leaked” to other frequencies.
85

Windowing

0 200 400

−1

0

1

Sine wave

0 200 400
0

100

200

300
Discrete Fourier Transform

0 200 400

−1

0

1

Sine wave multiplied with window function

0 200 400
0

50

100
Discrete Fourier Transform

87

The reason for the leakage and scalloping losses is easy to visualize with the
help of the convolution theorem:

The operation of cutting a sequence of the size of the DFT input vector out
of a longer original signal (the one whose continuous Fourier spectrum we
try to estimate) is equivalent to multiplying this signal with a rectangular
function. This destroys all information and continuity outside the “window”
that is fed into the DFT.

Multiplication with a rectangular window of length T in the time domain is
equivalent to convolution with sin(πfT)/(πfT) in the frequency domain.

The subsequent interpretation of this window as a periodic sequence by
the DFT leads to sampling of this convolution result (sampling meaning
multiplication with a Dirac comb whose impulses are spaced fs/n apart).

Where the window length was an exact multiple of the original signal period,
sampling of the sin(πfT)/(πfT) curve leads to a single Dirac pulse, and
the windowing causes no distortion. In all other cases, the effects of the con-
volution become visible in the frequency domain as leakage and scalloping
losses.

88

Some better window functions

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Rectangular window

Triangular window

Hann window

Hamming window

All these functions are 0 outside the interval [0,1].

89

0 0.5 1
−60

−40

−20

0

20

Normalized Frequency (×π rad/sample)

M
a
g
n
it
u
d
e
 (

d
B

)

Rectangular window (64−point)

0 0.5 1
−60

−40

−20

0

20

Normalized Frequency (×π rad/sample)

M
a
g
n
it
u
d
e
 (

d
B

)

Triangular window

0 0.5 1
−60

−40

−20

0

20

Normalized Frequency (×π rad/sample)

M
a
g
n
it
u
d
e
 (

d
B

)

Hann window

0 0.5 1
−60

−40

−20

0

20

Normalized Frequency (×π rad/sample)

M
a
g
n
it
u
d
e
 (

d
B

)

Hamming window

90

Numerous alternatives to the rectangular window have been proposed
that reduce leakage and scalloping in spectral estimation. These are
vectors multiplied element-wise with the input vector before applying
the DFT to it. They all force the signal amplitude smoothly down to
zero at the edge of the window, thereby avoiding the introduction of
sharp jumps in the signal when it is extended periodically by the DFT.

Three examples of such window vectors {wi}
n−1
i=0 are:

Triangular window (Bartlett window):

wi = 1−

∣

∣

∣

∣

1−
i

n/2

∣

∣

∣

∣

Hann window (raised-cosine window, Hanning window):

wi = 0.5− 0.5× cos

(

2π
i

n− 1

)

Hamming window:

wi = 0.54− 0.46× cos

(

2π
i

n− 1

)

91

Zero padding increases DFT resolution
The two figures below show two spectra of the 16-element sequence

si = cos(2π · 3i/16) + cos(2π · 4i/16), i ∈ {0, . . . , 15}.

The left plot shows the DFT of the windowed sequence

xi = si · wi, i ∈ {0, . . . , 15}

and the right plot shows the DFT of the zero-padded windowed sequence

x′i =

{

si · wi, i ∈ {0, . . . , 15}
0, i ∈ {16, . . . , 63}

where wi = 0.54− 0.46× cos (2πi/15) is the Hamming window.

0 5 10 15
0

2

4
DFT without zero padding

0 20 40 60
0

2

4
DFT with 48 zeros appended to window

92

Applying the discrete Fourier transform to an n-element long real-
valued sequence leads to a spectrum consisting of only n/2+1 discrete
frequencies.

Since the resulting spectrum has already been distorted by multiplying
the (hypothetically longer) signal with a windowing function that limits
its length to n non-zero values and forces the waveform smoothly down
to zero at the window boundaries, appending further zeros outside the
window will not distort the signal further.

The frequency resolution of the DFT is the sampling frequency divided
by the block size of the DFT. Zero padding can therefore be used to
increase the frequency resolution of the DFT.

Note that zero padding does not add any additional information to the
signal. The spectrum has already been “low-pass filtered” by being
convolved with the spectrum of the windowing function. Zero padding
in the time domain merely samples this spectrum blurred by the win-
dowing step at a higher resolution, thereby making it easier to visually
distinguish spectral lines and to locate their peak more precisely.

93

Frequency inversion
In order to turn the spectrum X(f) of a real-valued signal xi sampled at fs
into an inverted spectrum X ′(f) = X(fs/2 − f), we merely have to shift
the periodic spectrum by fs/2:

= ∗

0 0f f f

X(f)

−fs fs 0−fs fs

X ′(f)

fs
2

−
fs
2

.

This can be accomplished by multiplying the sampled sequence xi with yi =
cosπfst = cosπi, which is nothing but multiplication with the sequence

. . . , 1,−1, 1,−1, 1,−1, 1,−1, . . .

So in order to design a discrete high-pass filter that attenuates all frequencies
f outside the range fc < |f | < fs/2, we merely have to design a low-pass
filter that attenuates all frequencies outside the range −fc < f < fc, and
then multiply every second value of its impulse response with −1.

94

