
Application: Representing Texture

Source: Forsyth



Texture and Material

http://www-cvr.ai.uiuc.edu/ponce_grp/data/texture_database/samples/



Texture and Orientation

http://www-cvr.ai.uiuc.edu/ponce_grp/data/texture_database/samples/



Texture and Scale

http://www-cvr.ai.uiuc.edu/ponce_grp/data/texture_database/samples/



What is texture?

Regular or stochastic patterns caused by bumps, 
grooves, and/or markings



How can we represent texture?

• Compute responses of blobs and edges at various 
orientations and scales



Overcomplete representation: 

filter banks

Code for filter banks: www.robots.ox.ac.uk/~vgg/research/texclass/filters.html

scales

orientations

“Edges” “Bars”

“Spots”



Filter banks

• Process image with each filter and keep responses 
(or squared/abs responses)



How can we represent texture?

• Measure responses of blobs and edges at various 
orientations and scales

• Idea 1: Record simple statistics (e.g., mean, std.) of 
absolute filter responses



Can you match the texture to the 

response?

Mean abs responses

Filters
A

B
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Representing texture by mean abs 

response

Mean abs responses

Filters



Representing texture

• Idea 2: take vectors of filter responses at each pixel and 
cluster them, then take histograms (more on this in coming 
weeks)



Hybrid Images

• A. Oliva, A. Torralba, P.G. Schyns, 

͞Hyďrid Iŵages,͟ SIGGRAPH 2006
Slide credit: Derek Hoiem

http://cvcl.mit.edu/hybridimage.htm


Why do we get different, distance-dependent 

interpretations of hybrid images?

?

Slide credit: Derek Hoiem



Jean Baptiste Joseph Fourier (1768-1830)

had crazy idea (1807):

Any univariate function can be 
rewritten as a weighted sum of 
sines and cosines of different 
frequencies. 

• DoŶ’t ďelieǀe it?  
• Neither did Lagrange, 

Laplace, Poisson and 
other big wigs

• Not translated into 
English until 1878!

• But it’s ;ŵostlyͿ true!
• called Fourier Series

• there are some subtle 
restrictions

...the manner in which the author arrives at these 

equations is not exempt of difficulties and...his 

analysis to integrate them still leaves something to be 

desired on the score of generality and even rigour.

Laplace

Lagrange
Legendre

Slides: Efros



How would math 

have changed if the 

Slanket or Snuggie 

had been invented?
Slide credit: James Hays



A sum of sines

Our building block:

Add enough of them to get any 
signal f(x) you want!

xAsin(



Frequency Spectra

• example : g(t) = sin(2πf t) + (1/3)sin(2π(3f) t)
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Slides: Efros



Frequency Spectra
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Example: Music

• We think of music in terms of frequencies at 
different magnitudes



Other signals

• We can also think of all kinds of other signals the 
same way

xkcd.com

Cats(?)



Fourier analysis in images

http://sharp.bu.edu/~slehar/fourier/fourier.html#filtering

Intensity 

Image

Fourier 

Image



Signals can be composed

+ =

http://sharp.bu.edu/~slehar/fourier/fourier.html#filtering

More: http://www.cs.unm.edu/~brayer/vision/fourier.html



Fourier Transform

• Fourier transform stores the magnitude and phase at each 
frequency

• Magnitude encodes how much signal there is at a particular frequency

• Phase encodes spatial information (indirectly)

• For mathematical convenience, this is often notated in terms of real 
and complex numbers

22
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IAmplitude:

Euler’s forŵula: 

Phase:



Salvador Dali invented Hybrid Images?

Salvador Dali
“Gala Contemplating the Mediterranean Sea, 
which at 30 meters becomes the portrait 

of Abraham Lincoln”, 1976
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Fourier: A nice set of basis
Teases away fast vs. slow changes in the image.
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Fourier Transform

)()()( ωωω iIRF +=

We want to understand the frequency ω of our signal.  So, 

let’s reparametrize the signal by ω instead of x:
)+φωxAsin(

f(x) F(ω)Fourier 

Transform

F(ω) f(x)Inverse Fourier 

Transform

For every ω from 0 to inf, (actually –inf to inf), F(ω) holds 

the amplitude A and phase φ of the corresponding sine  

• How can F hold both?  Complex number trick!
22 )()( ωω IRA +±=
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)(
tan 1

ω
ωφ

R

I−=

And we can go back:

Even Odd
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Frequency Spectra – Even/Odd

Frequency actually goes from –inf to inf. 

Sinusoid example:   

Even (cos)

ω ω

Odd (sin)

ω

Magnitude 

Real Imaginary Power
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2D Fourier Transforms

• The two dimensional version: .

• And the 2D Discrete FT:

• Works best when you put the origin of k in the middle….
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Linearity of Sum
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Extension to 2D – Complex plane

Both a Real and Im version
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Examples

B.K. Gunturk
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Fourier Transform and Convolution
hfg ∗=
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Let

Then

( ) ( )uHuF=

Convolution in spatial domain

Multiplication in frequency domain⇔
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Fourier Transform and Convolution

hfg ∗= FHG =
fhg = HFG ∗=

Spatial Domain (x) Frequency Domain (u)

So, we can find g(x) by Fourier transform

g = f ∗ h

G = F × H

FT FTIFT
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Example use: Smoothing/Blurring
• We want a smoothed function of  f(x)

( ) ( ) ( )xhxfxg ∗=

H(u) attenuates high frequencies in F(u) (Low-pass Filter)!

• Convolution in space is multiplication in freq:

( ) ( ) ( )uHuFuG = πσ2
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• Let us use a Gaussian kernel

σ

( )xh

x

Fat Gaussian in space is 

skinny Gaussian in 

frequency.  Why? 
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2D convolution theorem example

*

f(x,y)

h(x,y)

g(x,y)

|F(sx,sy)|

|H(sx,sy)|

|G(sx,sy)|

( or  |F(u,v)| )
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Low and High Pass filtering

Ringing
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Fourier Transform smoothing pairs
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Properties of Fourier Transform
Spatial Domain (x) Frequency Domain (u)

Linearity ( ) ( )xgcxfc 21 + ( ) ( )uGcuFc 21 +

Shifting ( )0xxf − ( )uFe
uxi 02π−

Symmetry ( )xF ( )uf −

Conjugation ( )xf
∗ ( )uF −∗

Convolution ( ) ( )xgxf ∗ ( ) ( )uGuF

Differentiation
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n

n
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xfd ( ) ( )uFui
nπ2

Scaling ( )axf 






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u
F
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1
Shrink

Stretch

Differentiate

Multiply by u
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Fourier Pairs  (from Szeliski)
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Fourier Transform Sampling Pairs

FT of an “impulse train” 

is an impulse train
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Sampling and Aliasing
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Sampling and Reconstruction
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Sampled representations

• How to store and compute with continuous functions?

• Common scheme for representation: samples

• write down the function’s values at many points

S. Marschner
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Reconstruction

• Making samples back into a continuous function

• for output (need realizable method)

• for analysis or processing (need mathematical method)

• amounts to “guessing” what the function did in between

S. Marschner
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1D Example: Audio

low high

frequencies
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Sampling in digital audio

• Recording: sound to analog to samples to disc

• Playback: disc to samples to analog to sound again

• how can we be sure we are filling in the gaps correctly?

S. Marschner
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Sampling and Reconstruction

• Simple example: a sign wave

S. Marschner
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Undersampling

• What if we “missed” things between the samples?

• Simple example: undersampling a sine wave

• unsurprising result: information is lost

S. Marschner
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Undersampling

• What if we “missed” things between the samples?

• Simple example: undersampling a sine wave

• unsurprising result: information is lost

• surprising result: indistinguishable from lower frequency

S. Marschner
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Undersampling

• What if we “missed” things between the samples?

• Simple example: undersampling a sine wave

• unsurprising result: information is lost

• surprising result: indistinguishable from lower frequency

• also was always indistinguishable from higher frequencies

• aliasing: signals “traveling in disguise” as other frequencies

S. Marschner
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Aliasing in video

S. Seitz



Image sub-sampling

Source: F. Durand
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Aliasing in images
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What’s happening?
Input signal:

x = 0:.05:5;  imagesc(sin((2.^x).*x))

Plot as image:

Alias!

Not enough samples



Sampling an image

Examples of GOOD sampling



Undersampling

Examples of BAD sampling -> Aliasing
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Antialiasing

• What can we do about aliasing?

• Sample more often

• Join the Mega-Pixel craze of the photo industry

• But this can’t go on forever

• Make the signal less “wiggly” 

• Get rid of some high frequencies

• Will loose information

• But it’s better than aliasing
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Preventing aliasing

• Introduce lowpass filters:

• remove high frequencies leaving only safe, low frequencies

• choose lowest frequency in reconstruction (disambiguate)

S. Marschner
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Impulse Train

■ Define a comb function (impulse train) in 1D as follows

[ ] [ ]M

k

comb x x kMδ
∞

=−∞

= −∑

where M is an integer

2[ ]comb x

x

1

B.K. Gunturk
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Impulse Train in 1D

2 ( )comb x

x u

1 1
2

1

2

1
( )

2
comb u

1

2

2

Scaling ( )axf 







a

u
F

a

1

Remember:

B.K. Gunturk
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• Fourier Transform of an impulse train is also an impulse train:

Impulse Train in 2D (bed of nails)

( ) 1
, ,

k l k l

k l
x kM y lN u v

MN M N
δ δ

∞ ∞ ∞ ∞

=−∞ =−∞ =−∞ =−∞
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 
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1 1
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comb u v
, ( , )M Ncomb x y

( ), ( , ) ,M N

k l

comb x y x kM y lNδ
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≡ − −∑ ∑

As the comb samples get further apart, the 

spectrum samples get closer together!
B.K. Gunturk
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Impulse Train

2[ ]comb n

n u

1 1
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2

1
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2
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B.K. Gunturk
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Remember:
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Sampling low frequency signal

x

( )f x

x

M

( )Mcomb x

u

( )F u

u

1

M

1 ( )
M

comb u

x

( ) ( )Mf x comb x

u

1( )* ( )
M

F u comb u

B.K. Gunturk

Multiply: Convolve:
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Sampling low frequency signal

x

( )f x

u

( )F u

u

1( )* ( )
M

F u comb u

x

( ) ( )Mf x comb x

WW−

M

W

1

M
1

2W
M

>No “problem” if

B.K. Gunturk
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Sampling low frequency signal

u

1( )* ( )
M

F u comb u

x

( ) ( )Mf x comb x

M

W

1

M

If there is no overlap, the original signal 

can be recovered from its samples by 

low-pass filtering.

1

2M

B.K. Gunturk
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Sampling high frequency signal

u

( )F u

WW−

u

1( )* ( )
M

F u comb u

( ) ( )Mf x comb x

W

1

M

Overlap:  The high frequency 

energy is folded over into low 

frequency.  It is “aliasing” as lower 

frequency energy.  And you 

cannot fix it once it has happened. 

x

( )f x
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Sampling high frequency signal

u

( )F u

u

[ ]( )* ( ) ( )Mf x h x comb x

WW−

1
M

Anti-aliasing 

filter

u
WW−

( )* ( )f x h x

1

2M

B.K. Gunturk

x

( )f x
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Sampling high frequency signal

u

[ ]( )* ( ) ( )Mf x h x comb x

1

M

u

( ) ( )Mf x comb x

W

1

M

■ Without anti-aliasing filter: 

■ With anti-aliasing filter: 

B.K. Gunturk
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Nyquist Theorem
If

0

max

2

1

x
u >

( )uFS

max
u

0
x

A

0

1
x

u

Aliasing

When can we recover          from           ?( )uF ( )uFS

Only if
0

max

2

1

x
u ≤ (Nyquist Frequency)

We can use

( )




 <

=
otherwise0

2
1

0

0 x
ux

uC

Then ( ) ( ) ( )uCuFuF S= ( ) ( )[ ]uFxf IFT=and

Sampling frequency must be greater than 
max

2u
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Image half-sizing

This image is too big to

fit on the screen.  How

can we reduce it?

How to generate a half-

sized version?

S. Seitz
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Image sub-sampling

Throw away every other row and 

column to create a 1/2 size image

- called image sub-sampling

1/4

1/8

S. Seitz
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Image sub-sampling

1/4  (2x zoom) 1/8  (4x zoom)

Aliasing!  What do we do?

1/2

S. Seitz
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Gaussian (lowpass) pre-filtering

G 1/4

G 1/8

Gaussian 1/2

Solution:  filter the image, then subsample
• Filter size should double for each ½ size reduction.  Why? S. Seitz
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Subsampling with Gaussian pre-filtering

G 1/4 G 1/8Gaussian 1/2

S. Seitz
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Compare with...

1/4  (2x zoom) 1/8  (4x zoom)1/2

S. Seitz
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Campbell-Robson contrast sensitivity curve

The higher the frequency the less sensitive 

human visual system is…
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Lossy Image Compression (JPEG)

Block-based Discrete Cosine Transform (DCT) on 8x8
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