plication: Representing Texture
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Source: Forsyth



exture and Material

http://www-cvr.ai.uiuc.edu/ponce_grp/data/texture_database/samples/



exture and Orientation

http://www-cvr.ai.uiuc.edu/ponce_grp/data/texture_database/samples/



exture and Scale

http://www-cvr.ai.uiuc.edu/ponce_grp/data/texture_database/samples/



What is texture?

Regular or stochastic patterns caused by bumps,
grooves, and/or markings



How can we represent texture?

 Compute responses of blobs and edges at various
orientations and scales



Overcomplete representation:
filter banks

{ orientations \
ENNIAEESNINZE
T A
!IIIII-~‘
---ﬂmmcl..-

Code for filter banks: www.robots.ox.ac.uk/~vgg/research/texclass/filters.html|

scales™




Filter banks

* Process image with each filter and keep responses
(or squared/abs responses




How can we represent texture?

* Measure responses of blobs and edges at various
orientations and scales

* |[dea 1: Record simple statistics (e.g., mean, std.) of
absolute filter responses



Can you match the texture to the
response?

Filters

Mean abs responses



Representing texture by mean abs
response

Filters

Mean abs responses



Representing texture

* |dea 2: take vectors of filter responses at each pixel and
cluster them, then take histograms (more on this in coming
weeks)




Hybrid Images

1

Bl
[ 1 S
w .

0

fre«qu‘}mcy (c/h)

* A. Oliva, A. Torralba, P.G. Schyns,
“Hybrid Images,” SIGGRAPH 2006

Slide credit: Derek Hoiem


http://cvcl.mit.edu/hybridimage.htm

Why do we get different, distance-dependent
interpretations of hybrid images?

Slide credit: Derek Hoiem



Jean Baptiste Joseph Fourier (1768-1830)
a

...the manner in which the author arrives at these
. equations is not exempt of difficulties and...his
had cra Zy idea (1807) . analysis to integrate them still leaves something to be

Any univariate function can be desired on the score of generality and even rigour.

rewritten as a weighted sum of
sines and cosines of different
frequencies.

e Don’t believe it?

* Neither did Lagrange,
Laplace, Poisson and
other big wigs

* Not translated into
English until 1878!

e But it’s (mostly) true!

* called Fourier Series

* there are some subtle == 1
restrictions Slides: Efros




Fourier, Joseph (1768-1830)

French mathematician who discovered that any periodic motion can be written as a
superposition of sinusoidal and cosinusoidal vibrations. He developed a
mathematical theory of heat & in Théorie Analytique de la Chaleur (Analytic
Theory of Heat), (1822), discussing it in terms of differential equations.

Fourier was a friend and advisor of Napoleon.
| ! The paper of Galois which he had
taken home to read shortly before his death was never recovered.

m Galois

Additional biographies: MacTutor (St. Andrews), Bonn

© 1996-2007 Eric W. Weisstein E — 1§V
- ot
How would math | ol
have changed if the if
Slanket or Snuggie . -
had been invented? Vo R et |

Slide credit: James Hays



A sum of sines

Our building block:

Asin( ax + @)

Add enough of them to get any
signal f(x) you want!

f(target)=

f1 + f2+ fg...+ fn+...




Frequency Spectra

« example : g(?) = sin(2xf 1) + (1/3)sin(27(3f) 1)

M
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Slides: Efros



Frequency Spectra
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Frequency Spectra
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Frequency Spectra
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Frequency Spectra
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Frequency Spectra
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Frequency Spectra

AZ % sin(27kt)
k=1

[TT—




Example: Music

* We think of music in terms of frequencies at

different magnitudes

voice waveform example
I

1
11.5

1 '] 1 1 L
g a5 10 10.5 11
seconds

decibels

Spectrum of a voice signal (15 seconds)

hertz



Other sighals

* We can also think of all kinds of other signals the
same way

Cats(?)

Hi, De. EF zaboeth ¢
Yeak vh.. T ac cadcn’fu\b TeoK
Jd'\e f—\a'urcer transform of My Ca)f

{8 Meow

xkcd.com



Fourier analysis in images

Intensity /
Image /
Fourier

Image

http://sharp.bu.edu/~slehar/fourier/fourier.ntml#filtering



Sighals can be composed

1
_

http://sharp.bu.edu/~slehar/fourier/fourier.html#filtering
More: http://www.cs.unm.edu/~brayer/vision/fourier.html



Fourier Transform

* Fourier transform stores the magnitude and phase at each
frequency
 Magnitude encodes how much signal there is at a particular frequency
* Phase encodes spatial information (indirectly)

* For mathematical convenience, this is often notated in terms of real
and complex numbers

Amplitude: A = i\/R(a))2 + I(a))z Phase: @) = tan”' —I(a))
R(®)

Euler’s formula: €% = CDS(HI) + 3'5'111[?111:)



Salvador Dali invented Hybrid Images?

Salvador Dali

“Gala Contemplating the Mediterranean Sea,
which at 30 meters becomes the portrait
of Abraham Lincoln’, 1976
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Fourier: A nice set of basis

Teases away fast vs. slow changes in the image.
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Fourier Transform

We want to understand the frequency w of our signal. So,
let’s reparametrize the signal by w instead of x:

Four Asin(ax + @)

f(X) - ourier —_— F(w)
Transform

For every w from O to inf, (actually —nf to inf), F(@) holds
the amplitude A and phase ¢ of the corresponding sine
 How can F hold both? Complex number trick!

A=+R(0)* + ()’

F(ow)=R(w)+il(w) 4= tan” [(w)
Even Odd R(w)
And we can go back:

F(w) — Inverse Fourier —  f(x)
Transform
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Frequency Spectra — Even/Odd

Frequency actually goes from —inf to inf.
Sinusoid example:

Even (cos) Odd (sin) Magnitude
N N T N T
< T T > < T > < >
® l ® ®
v v v

Real Imaginary Power
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2D Fourier Transforms

- The two dimensional version: .

F(u,v) =[" j:f(x, y)e‘””(”"””dx dy

- And the 2D Discrete FT:

1

_iz;z(kxx+kyy)
F(k k)=— xX,v)e Y
(kok)=—22 2 f(xy

- Works best when you put the origin of kin the middle....

x=N-1 y=N-1
=0

y=0



Linearity of Sum
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Extension to 2D — Complex plane

Discrete Fourier Transform 13

Both a Real and Im version
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Examples

B.K. Gunturk
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Fourier Transform and Convolution
Let g=f*h

Then G(u)= B g(x)e ™ dx

o —00

._o:o .‘: f (z')h(x — r)e"iz’zuxd dx

. rooo [f (r)e‘izwrdr][h(x — T)e_ﬂ””(x_r)dx]

o —00 o —

— _O:O [ f (z')e_i g z']foo [h(x')e_iz’z”x'dx']

= F(u)H(u)

Convolution in spatial domain
<= Muiltiplication in frequency domain
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Fourier Transform and Convolution

Spatial Domain (x) Frequency Domain (u)

g=f*h <« G=FH
g=fh ﬁﬁ' G=F=*H

So, we can find g(x) by Fourier transform

g = f 2 h
4 | |
IFT FT FT
I v v
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Example use: Smoothing/Blurring

« We want a smoothed function of f(x) Afox
g(x)= f(x)*h(x) W ' il
» Let us use a Gaussian kernel h(x) 1
1 x
hlx)= \/_0 exp{___} /;7\ :
X
« Convolution in space is multiplication in freq: H(u)
— . 1
Gu)= F(u)H (u) e e

frequency. Why?

H(u) attenuates high frequencies in F(u) (Low-pass Filter)!



2D convolution theorem example

[F(8x:8))
(or [Fu,v)])

[H(Sx:S))l

|G(8,8,))]
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Frequency and Fourier Transform

Low and ngh Pass filtering

{FFT of ARCOSL.TGA

ARCOSL.TGA 1

' 19F 40

Ringing

J FFT of AL BMP

‘AL.BMP 1
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Fourier Transform smoothing pairs

Spatial domain Frequency domain
f(z) F(s) = [OO f(z)e 2T 4y
tbox(x) sinn::(s]_OO
Ry S
4 gauss(x; ) » gauss(s; 1/o)
e X / \ S
sinc(s) tbox(x)
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Properties of Fourier Transform

Spatial Domain (x) Frequency Domain (u)
Linearity ¢, f (x)+ C, g(x : c F (u) + ch(u)
Shrink | y
Scaling f (ax) H F (;j
Shifting flx—x,) e F (u)

Conjugation 1 *(x)

Symmetry F (x) E f (— u)

Convolution  f (x) * g (x)

Differentiation d"f (x (i27zu)"F (u)

dx" .
Multiply by u /
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Fourier Pairs (from Szeliski)

Frequency and Fourier Transform

Name Signal Transform
impulse { d(x) 1 “_
shifted . :
impulse — L i) eI 74_
T
box filter  _ . box(z/a) asinc(aw) A V‘D‘
f'J? 1
tent / tent(z/a) asinc® (aw) )
Gaussian ~ __/ | G(z;0) JECG{M’ 7 5 —dn
Laplacian ? ) 2 1\ V2, 2y 1 u
1\ &L - 5)GE (o — X G(w; o~ AT
of Gaussian =~=7F=-= (Gz = 3)C(z:9) 7 Gl —L XN
5 O I T h
- il fi
I 4 f V’E . y—1 |I | |I II
Gabor LU cos(woz)G(z; 0) YEG(w L we;077) AL
ol A
unsharp (1+7)6(z) (1+7)- \ i
mask —1G(z;0) EOGwiot) ]
: il
windowed rc-:)f.(m JABI) (see Figure 3.29) Il
sinc sinc(x/a) = -
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Frequency and Fourier Transform

Fourier Transform Sampling Pairs

FT of an “impulse train™

1s an impulse train

Comb function 1 L n
oo — z S(k——)
I 8 (x—nxg) 0 pe-w Xo
ln H
—2X0 -Xo I Xo 2)(0 __2 __1 I 1 2
¥o  Xo Xo  Xg
€os 2mwq x

N /N [
U\

sin 2mw  x

3 [8(E=wg) + 6 (£ + wg) ]

3718 (E=wo) + 8 (£ + wg) |

l ImF
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Sampling and Aliasing
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Sampling and Reconstruction

Ilumination (energy)

‘//'/ l\ source

‘ & ]magm&

(Internal) image plane

Scene element

v
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Sampled representations

- How to store and compute with continuous functions?

- Common scheme for representation: samples
- write down the function’s values at many points

TV s

l Sampling

mm

S. Marschner
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Reconstruction

- Making samples back into a continuous function
- for output (need realizable method)
- for analysis or processing (need mathematical method)
- amounts to “guessing” what the function did in between

|| | | |
T T ‘ | |
] | | |
| i | { |
HAAATRRRARARAA '
A IRRaRnaaNl | l. 'J.l ! 1l ' L

S. Marschner
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1D Example: Audio

low high
frequencies
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Sampling in digital audio

- Recording: sound to analog to samples to disc

- Playback: disc to samples to analog to sound again
- how can we be sure we are filling in the gaps correctly?

A/D conv.

—>» |D/A conv.

S. Marschner
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Sampling and Reconstruction

- Simple example: a sign wave

AWAWAWAWAWA
[VARVARVARVERVERV.

S. Marschner
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Undersampling

- What if we “missed” things between the samples?

- Simple example: undersampling a sine wave
- unsurprising result: information is lost

AN AN
A\/\/ VARVARY.

S. Marschner
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Undersampling

- What if we “missed” things between the samples?

- Simple example: undersampling a sine wave
- unsurprising result: information is lost
- surprising result: indistinguishable from lower frequency

S. Marschner
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Undersampling

- What if we “missed” things between the samples?

- Simple example: undersampling a sine wave
- unsurprising result: information is lost
- surprising result: indistinguishable from lower frequency
- also was always indistinguishable from higher frequencies
- aliasing: signals “traveling in disguise” as other frequencies

AR AAAAAAAAD
CYVUVYVV IV

S. Marschner
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Aliasing in video

Imagine a spoked wheel moving to the right (rotating clockwise).
Mark wheel with dot so we can see what’s happening.

[t camera shutter 1s only open for a fraction of a frame time (frame
time = 1/30 sec. for video, 1/24 sec. for film):

DDIRPB

frame 0 frame 1 frame 2 frame 3 frame 4
0 I n 1,
shutter open time

Without dot, wheel appears to be rotating slowly backwards!
(counterclockwise)

S. Seitz



Image sub-sampling

Source: F. Durand



Aliasing in images

Disintegrating textures
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What's happening?

Input signal:

L

Plot as image:

1 - .U Not enough samples
X = 0: 055 imagesc(sin((2.7x).*x))

vV Vv yvivVyvy\ywvy




Sampling an image

Examples of GOOD sampling



Undersampling

> B

Examples of BAD sampling -> Aliasing
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Antialiasing

What can we do about aliasing?

Sample more often
Join the Mega-Pixel craze of the photo industry
But this can’t go on forever

Make the signal less “wiggly”
Get rid of some high frequencies
Will loose information
But it’s better than aliasing
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Preventing aliasing

- Introduce lowpass filters:
- remove high frequencies leaving only safe, low frequencies
- choose lowest frequency in reconstruction (disambiguate)

+— lowpass filter

T | I
—_— MDED“\I. — T |1| ||| Y ||| Ill —_—

Iowpass filter

||I“1I||”|,_[III|||l L. —» |D/A conv. _’FIMOBDQU—L 'j >>>

S. Marschner
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Impulse Train

m Define a comb function (impulse train) in 1D as follows
comb,,[x]= Z Olx—kM ]
k=—0o0

where M is an integer

comb, [ x]
1
MJ‘L X

B.K. Gunturk
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Impulse Trainin 1D

1

111, = "L
::Ien; e. Flax) ﬁF@

B.K. Gunturk
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Impulse Train in 2D (bed of nails)

comb,, \(x,y) = i i 5(x—kM,y—lN)

k=—00 [=—00

- Fourier Transform of an impulse train is also an impulse train:

5 Sotemmr ) g $ S ou ko)
k——ool——oo
—

k=—00 [=—0
. J J
e V"
comb,, \ (x,y) comb, | (u,v)
M'N

As the comb samples get further apart, the

spectrum samples get closer together!
P p & & B.K. Gunturk
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Impulse Train

T, = JO0L

Remember:

Scaling f(ax) 1 F(Ej

B.K. Gunturk
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Sampling low frequency signal

f(x) F(u)
- A
< > X < > U
comb,, (x) comb, ()
gttt <t
L -
M 1
M
Multiply: Convolve:
F(u)*comb, (u)
f(x)comb,, (x) —

JHMm)x@(ﬂﬂtL/L)u

B.K. Gunturk
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Sampling low frequency signal
J(x) F(u)

F(u)* b
J (x)comb,, (x) ()™ comb  (u)

e, @ oA,

. e

|
No ‘problem” if v > 2W

B.K. Gunturk
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Sampling low frequency signal

f (x)comb,, (x) F(u)*comb  (u)

e, oA,

T _vgx

If there is no overlap, the original signal
can be recovered from its samples by
low-pass filtering.

B.K. Gunturk
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Sampling high frequency signal

J () F(u)

A M

f(x)comb,, (x)

i@g_

Overlap: The high frequency
energy is folded over into low
frequency. It is “aliasing” as lower
frequency energy. And you
cannot fix it once it has happened.
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Sampling high frequency signal

J ()

A

J(x)*h(x)

[ f(x)* h(x)] comb,, (x)

—

—

N

F(u)
1 -, Anti-aliasing

filt
\\:\I e)r )

r-

Xﬁ

W \»\
A 1
2M

Tt

N

.
LI
%(_J

M

B.K. Gunturk
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Sampling high frequency signal

= Without anti-aliasing filter:

f(x)comb,, (x)

7
<

= With anti-aliasing filter:

[f () *h(x)]comb,, (x) K W

N
v

1W
AV
1

B.K. Gunturk
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NyquistlTheorem

If umax > g

F )

» LS

0 Iyi Aline:
Ve iasin

Y XY XYYV J

.o 1
o %
o .
o s |
s

u.. . u

max
1

<>

y .
X0

When can we recover F(u) from Fy(u) ?

. 1 .
Only if u_,. <—— (Nyquist Frequency)
2x,

We can use 1
C(u) = {xo ‘u‘ ) Axo

0 otherwise

Then F(u)=F (u)C(u) and f(x)=TFT[F(u)]

Sampling frequency must be greater than 2u_
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Image half-sizing

This image is too big to
fit on the screen. How
can we reduce it?

How to generate a half-
sized version?




CS 4495 Computer Vision — A. Bobick Frequency and Fourier Transform

Image sub-sampling

Throw away every other row and

column to create a 1/2 size image

- called image sub-sampling ¢ oo
. etz
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Image sub-sampling

1/2 1/4 (2x zoom) 1/8 (4x zoom)

Aliasing! What do we do?

S. Seitz
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Gaussian (lowpass) pre-filtering

Gaussian 1/2

Solution: filter the image, then subsample
« Filter size should double for each "2 size reduction. Why? S. Seitz
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Subsampling with Gaussian pre-filtering

Gaussian 1/2 G 1/4 G 1/8

S. Seitz
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Cmare with...

1/2 1/4 (2x zoom) 1/8 (4x zoom)

S. Seitz



Campbell-Robson contrast sensitivity curve

3 RO

!

The higher the frequency the less sensitive
human visual system is...



Lossy Image Compression (JPEG
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Block-based Discrete Cosine Transform (DCT) on 8x8
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