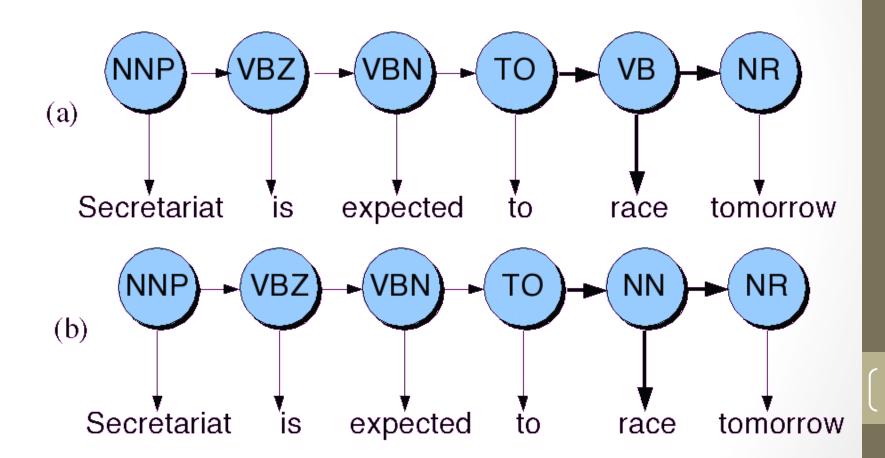
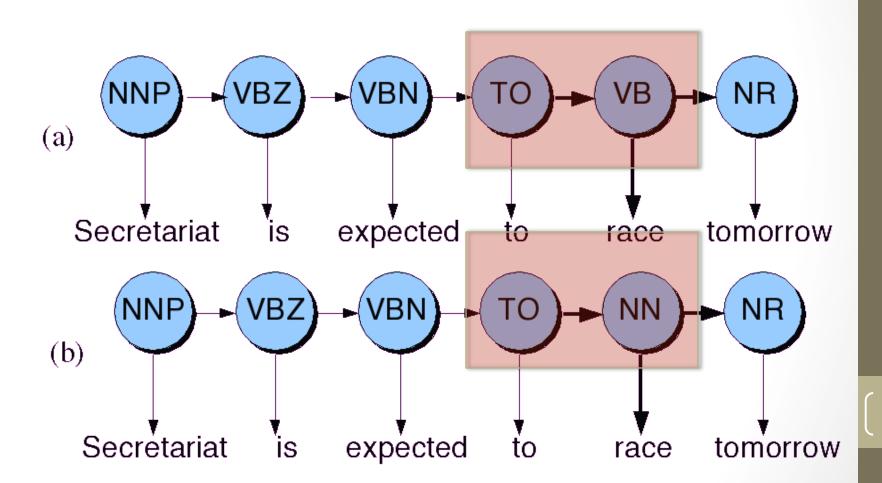
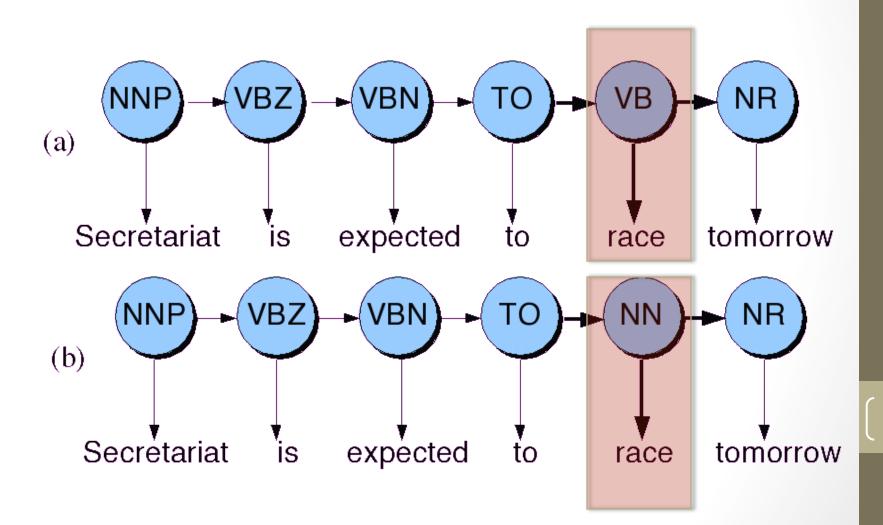
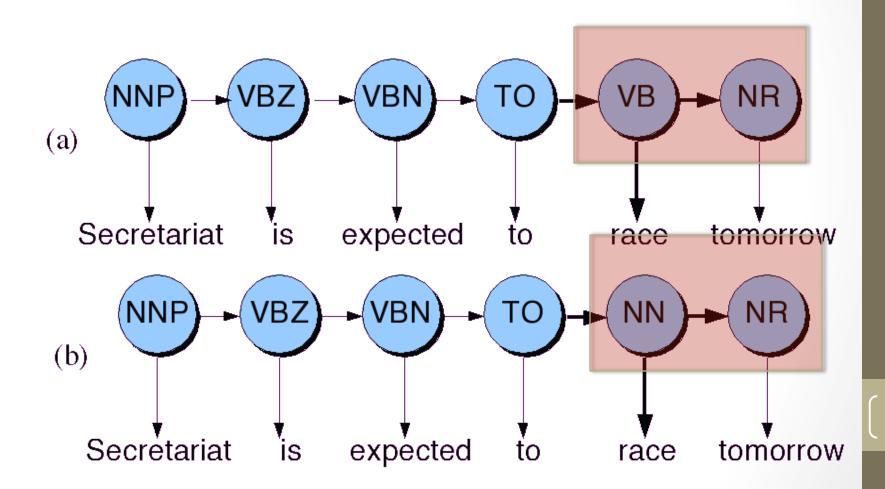
CS 4705 Hidden Markov Models







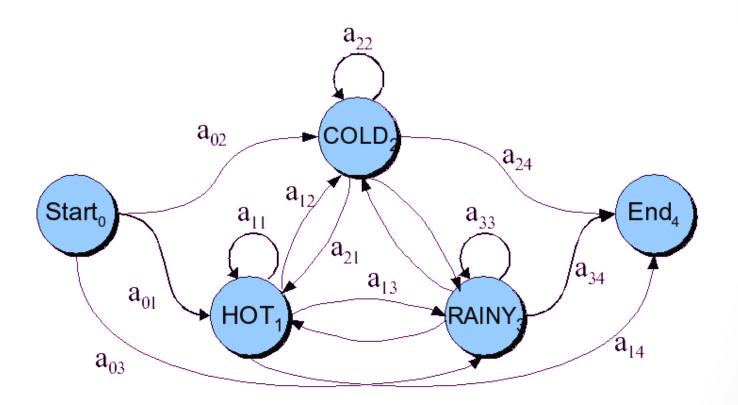


- P(NN|TO) = .00047
- P(VB|TO) = .83
- P(race | NN) = .00057
- P(race | VB) = .00012
- P(NR|VB) = .0027
- P(NR|NN) = .0012
- P(VB|TO)P(NR|VB)P(race|VB) = .00000027
- P(NN|TO)P(NR|NN)P(race|NN)=.00000000032
- So we (correctly) choose the verb reading,

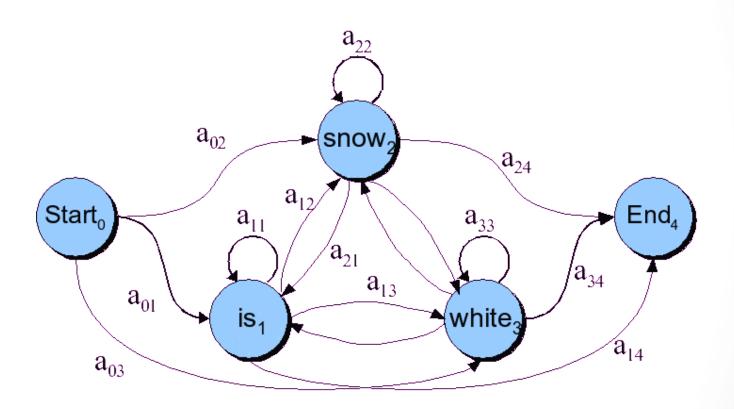
Definitions

- A weighted finite-state automaton adds probabilities to the arcs
 - The sum of the probabilities leaving any arc must sum to one
- A Markov chain is a special case of a WFST
 - the input sequence uniquely determines which states the automaton will go through
- Markov chains can't represent inherently ambiguous problems
 - Assigns probabilities to unambiguous sequences

Markov chain for weather



Markov chain for words



Markov chain = "First-order observable Markov Model"

- a set of states
 - $Q = q_1, q_2...q_{N_i}$ the state at time t is q_t
- Transition probabilities:
 - a set of probabilities $A = a_{01}a_{02}...a_{n1}...a_{nn}$.
 - Each a_{ii} represents the probability of transitioning from state i to state j
 - The set of these is the transition probability matrix A

$$a_{ij} = P(q_t = j \mid q_{t-1} = i) \quad 1 \le i, j \le N$$

$$\sum_{j=1}^{N} a_{ij} = 1; \quad 1 \le i \le N$$

Distinguished start and end states

Markov chain = "First-order observable Markov Model"

Current state only depends on previous state

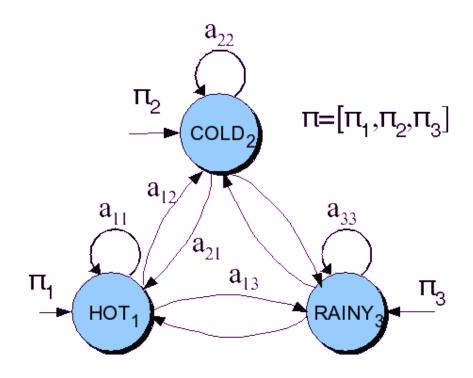
$$P(q_i | q_1...q_{i-1}) = P(q_i | q_{i-1})$$

Another representation for start state

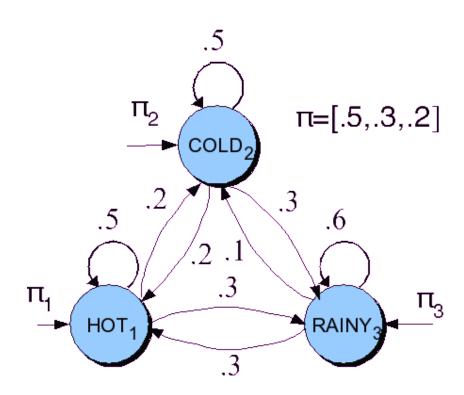
- Instead of start state
- Special initial probability vector π $\pi_i = P(q_1 = i) \quad 1 \le i \le N$
 - An initial distribution over probability of start states
- Constraints:

$$\sum_{j=1}^{N} \pi_{j} = 1$$

The weather figure using pi



The weather figure: specific example



Hidden Markov Models

- We don't observe POS tags
 - We infer them from the words we see
- Observed events
- Hidden events

HMM for Ice Cream

- You are a climatologist in the year 2799
- Studying global warming
- You can't find any records of the weather in New York, NY for summer of 2007
- But you find Kathy McKeown's diary
- Which lists how many ice-creams Kathy ate every date that summer
- Our job: figure out how hot it was

Hidden Markov Model

- For Markov chains, the output symbols are the same as the states.
 - See hot weather: we're in state hot
- But in part-of-speech tagging (and other things)
 - The output symbols are words
 - The hidden states are part-of-speech tags
- So we need an extension!
- A Hidden Markov Model is an extension of a Markov chain in which the input symbols are not the same as the states.
- This means we don't know which state we are in.

Hidden Markov Models

- States $Q = q_1, q_2...q_{N_1}$
- Observations $O = o_1, o_2...o_{N_1}$
 - Each observation is a symbol from a vocabulary V = {v₁,v₂,...v_V}
- Transition probabilities
 - Transition probability matrix $A = \{a_{ij}\}$

$$a_{ij} = P(q_t = j \mid q_{t-1} = i) \quad 1 \le i, j \le N$$

- Observation likelihoods
 - Output probability matrix $B=\{b_i(k)\}$

$$b_i(k) = P(X_t = o_k \mid q_t = i)$$

• Special initial probability vector π

$$\pi_i = P(q_1 = i) \quad 1 \le i \le N$$

Hidden Markov Models

Some constraints

$$\sum_{j=1}^{N} a_{ij} = 1; \quad 1 \le i \le N$$

$$\pi_i = P(q_1 = i) \quad 1 \le i \le N$$

$$\sum_{k=1}^{M} b_i(k) = 1$$

$$\sum_{j=1}^{N} \pi_j = 1$$

Assumptions

Markov assumption:

$$P(q_i | q_1...q_{i-1}) = P(q_i | q_{i-1})$$

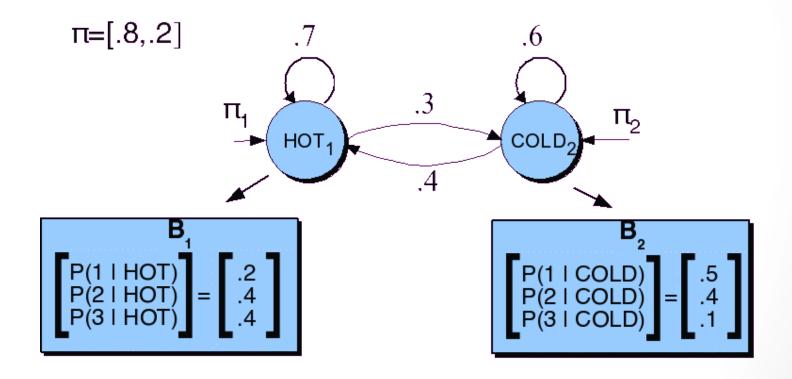
Output-independence assumption

$$P(o_t | O_1^{t-1}, q_1^t) = P(o_t | q_t)$$

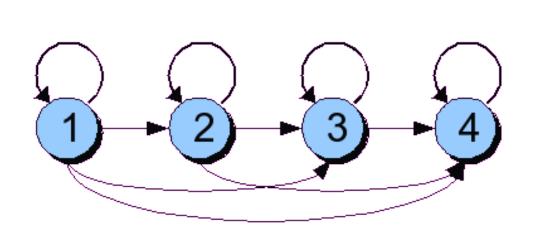
McKeown task

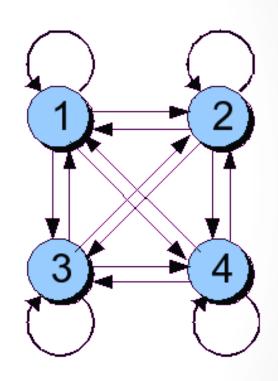
- Given
 - Ice Cream Observation Sequence: 2,1,3,2,2,2,3...
- Produce:
 - Weather Sequence: H,C,H,H,H,C...

HMM for ice cream



Different types of HMM structure

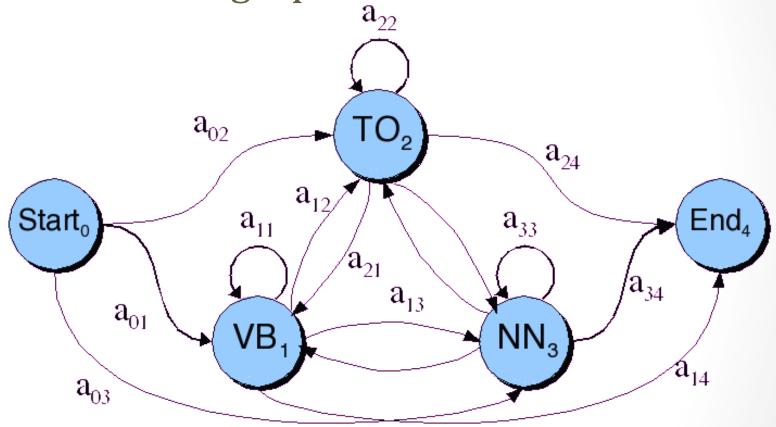




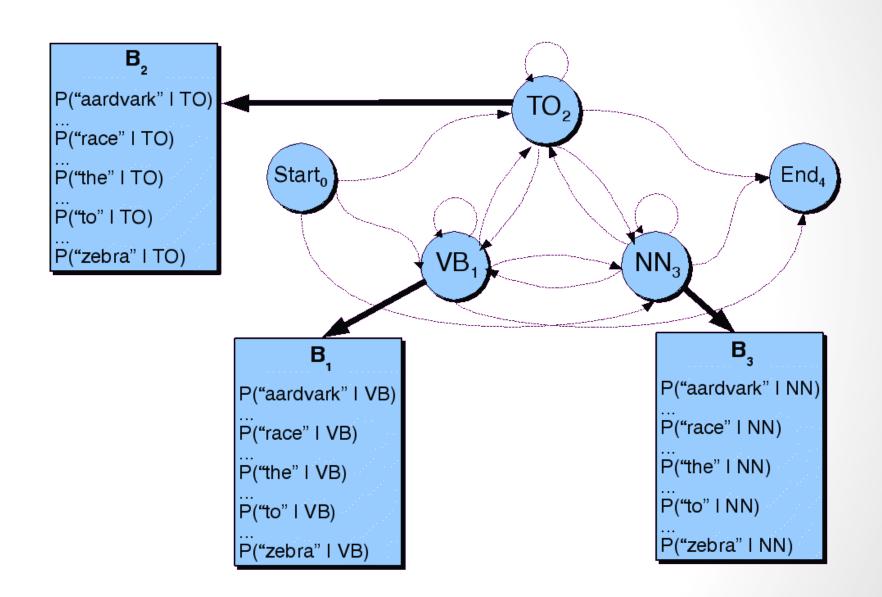
Bakis = left-to-right

Ergodic = fully-connected

Transitions between the hidden states of HMM, showing A probs



B observation likelihoods for POS HMM



Three fundamental Problems for HMMs

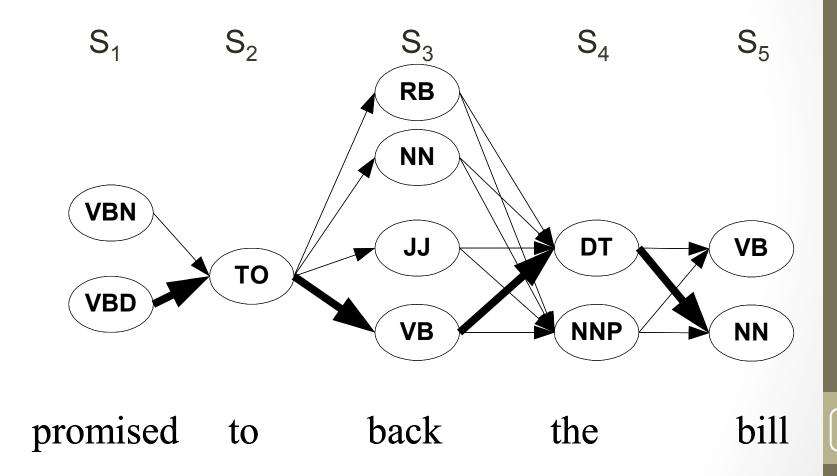
- **Likelihood**: Given an HMM λ = (A,B) and an observation sequence O, determine the likelihood P(O, λ).
- **Decoding**: Given an observation sequence O and an HMM λ = (A,B), discover the best hidden state sequence Q.
- **Learning**: Given an observation sequence O and the set of states in the HMM, learn the HMM parameters A and B.

What kind of data would we need to learn the HMM parameters?

Decoding

- The best hidden sequence
 - Weather sequence in the ice cream task
 - POS sequence given an input sentence
- We could use argmax over the probability of each possible hidden state sequence
 - Why not?
- Viterbi algorithm
 - Dynamic programming algorithm
 - Uses a dynamic programming trellis
 - Each trellis cell represents, $v_t(j)$, represents the probability that the HMM is in state j after seeing the first t observations and passing through the most likely state sequence

Viterbi intuition: we are looking for the best 'path'



Intuition

- The value in each cell is computed by taking the MAX over all paths that lead to this cell.
- An extension of a path from state i at time t-1 is computed by multiplying:

$$v_t(j) = \max_{1 \le i \le N-1} v_{t-1}(i) \ a_{ij} \ b_j(o_t)$$

 $v_{t-1}(i)$ the **previous Viterbi path probability** from the previous time step the **transition probability** from previous state q_i to current state q_j the **state observation likelihood** of the observation symbol o_t given the current state j

The Viterbi Algorithm

function VITERBI(observations of len T, state-graph) returns best-path

```
num-states \leftarrow NUM-OF-STATES(state-graph)

Create a path probability matrix viterbi[num-states+2,T+2]

viterbi[0,0] \leftarrow 1.0

for each time step t from 1 to T do

for each state s from 1 to num-states do

viterbi[s,t] \leftarrow \max_{1 \le s' \le num-states} viterbi[s',t-1] * a_{s',s} * b_s(o_t)

backpointer[s,t] \leftarrow \underset{1 \le s' \le num-states}{\operatorname{argmax}} viterbi[s',t-1] * a_{s',s}
```

Backtrace from highest probability state in final column of viterbi[] and return path

The A matrix for the POS HMM

	VB	ТО	NN	PPSS
<s></s>	.019	.0043	.041	.067
VB	.0038	.035	.047	.0070
TO	.83	0	.00047	0
NN	.0040	.016	.087	.0045
PPSS	.23	.00079	.0012	.00014

Figure 4.15 Tag transition probabilities (the *a* array, $p(t_i|t_{i-1})$ computed from the 87-tag Brown corpus without smoothing. The rows are labeled with the conditioning event; thus P(PPSS|VB) is .0070. The symbol <s> is the start-of-sentence symbol.

What is P(VB|TO)? What is P(NN|TO)? Why does this make sense?

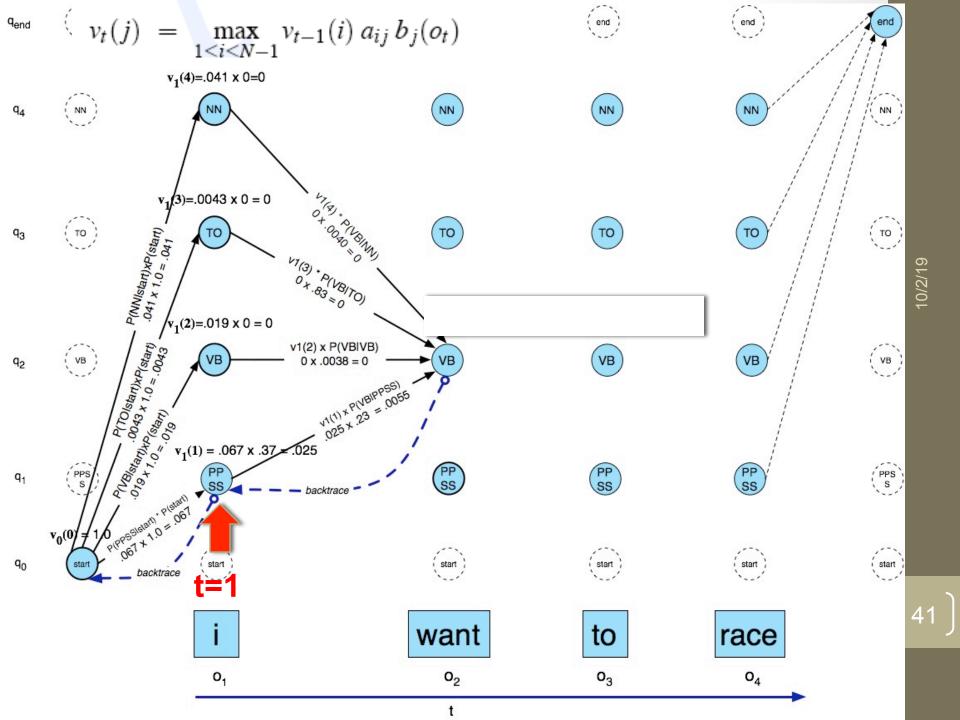
What is P(TO|VB)? What is P(TO|NN)? Why does this make sense?

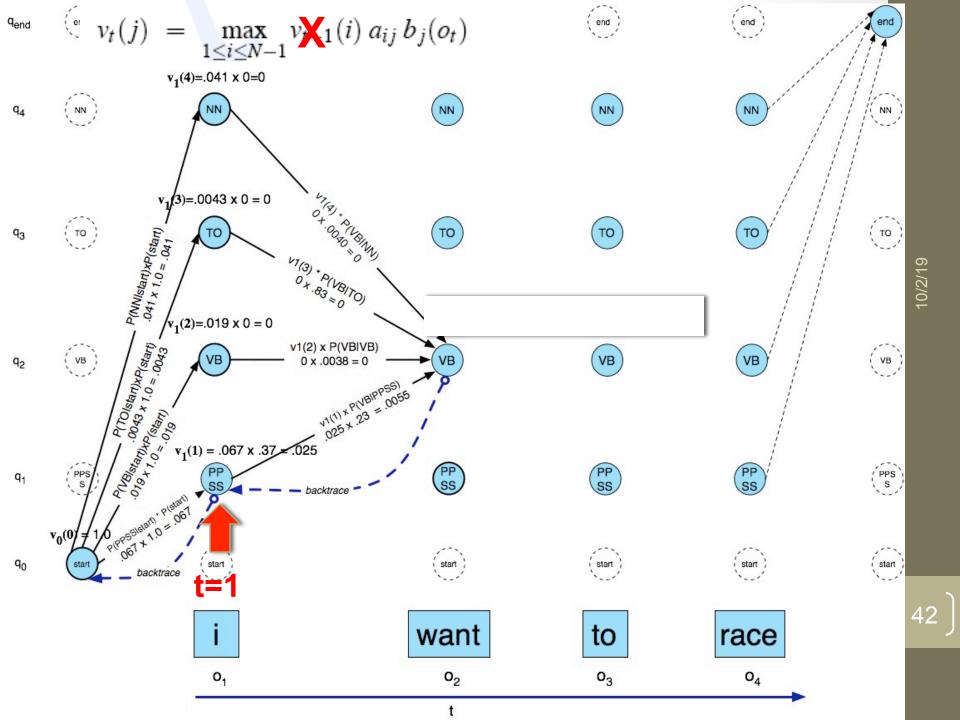
The B matrix for the POS HMM

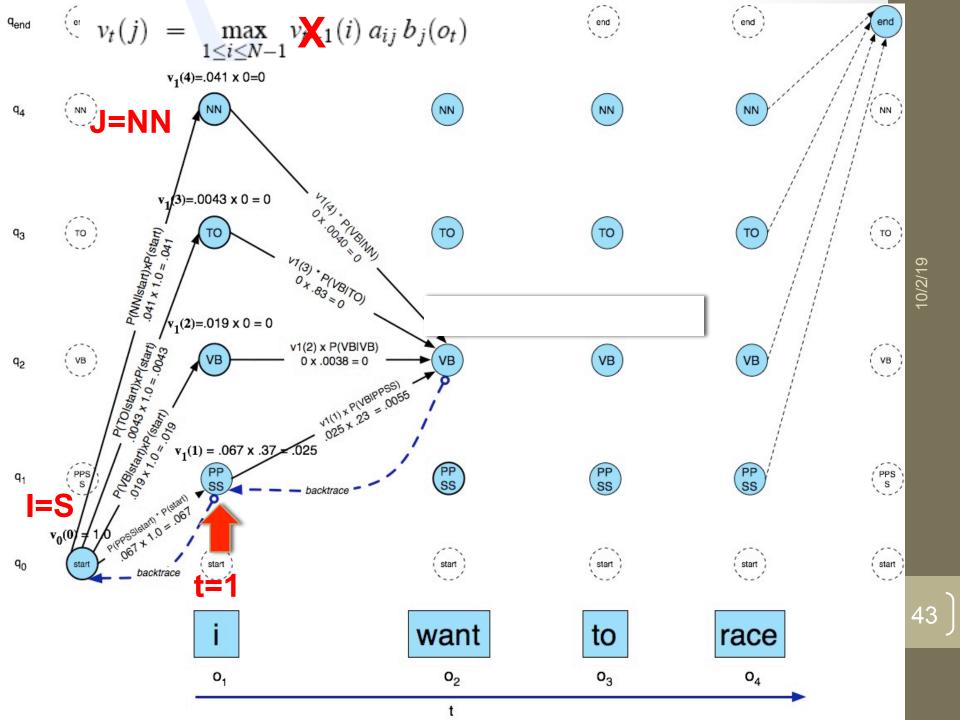
	I	want	to	race
VB	0	.0093	0	.00012
TO	0	0	.99	0
NN	0	.000054	0	.00057
PPSS	.37	0	0	0

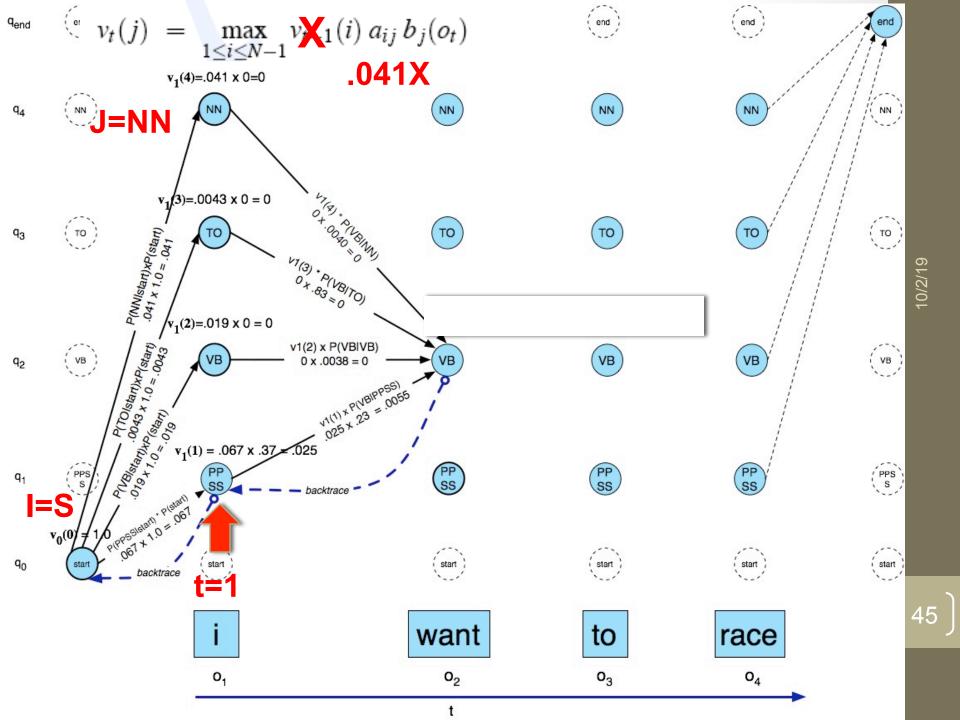
Figure 4.16 Observation likelihoods (the *b* array) computed from the 87-tag Brown corpus without smoothing.

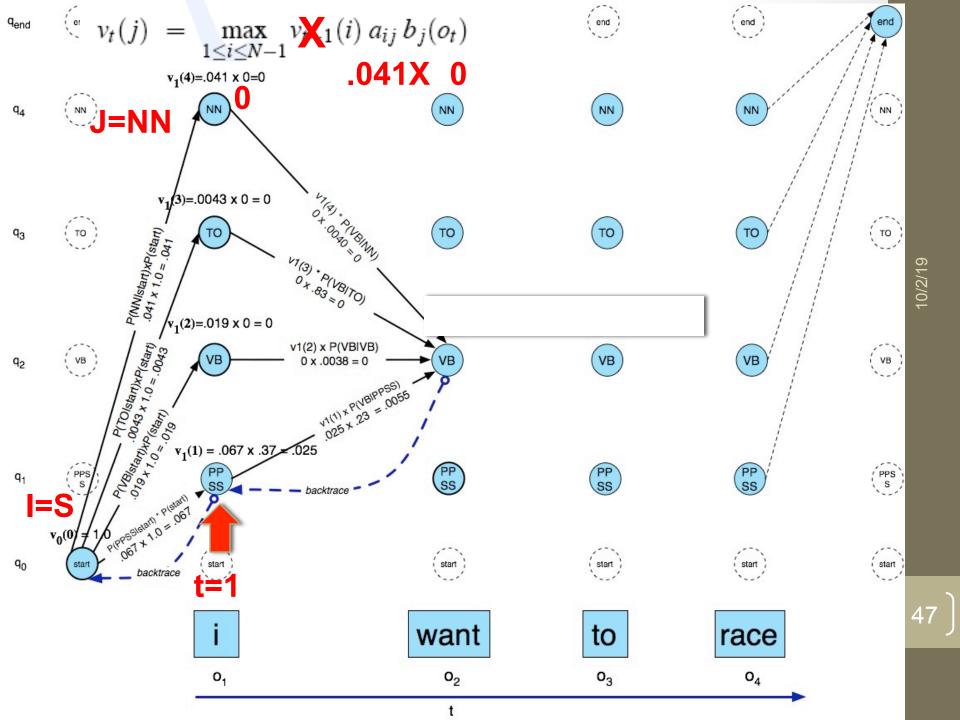
Look at P(want|VB) and P(want|NN). Give an explanation for the difference in the probabilities.

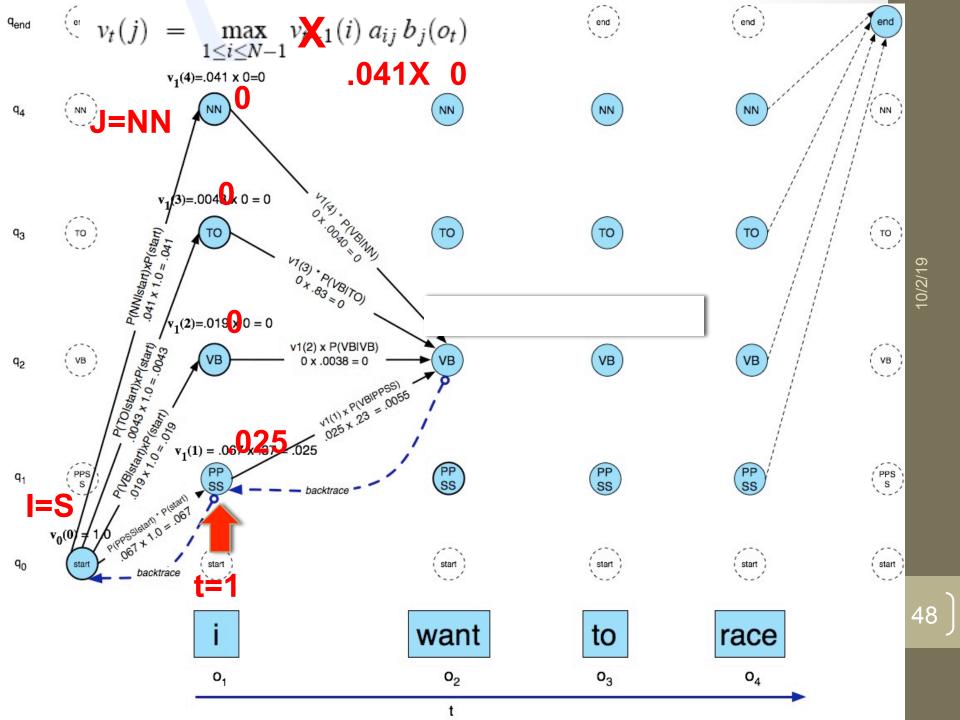


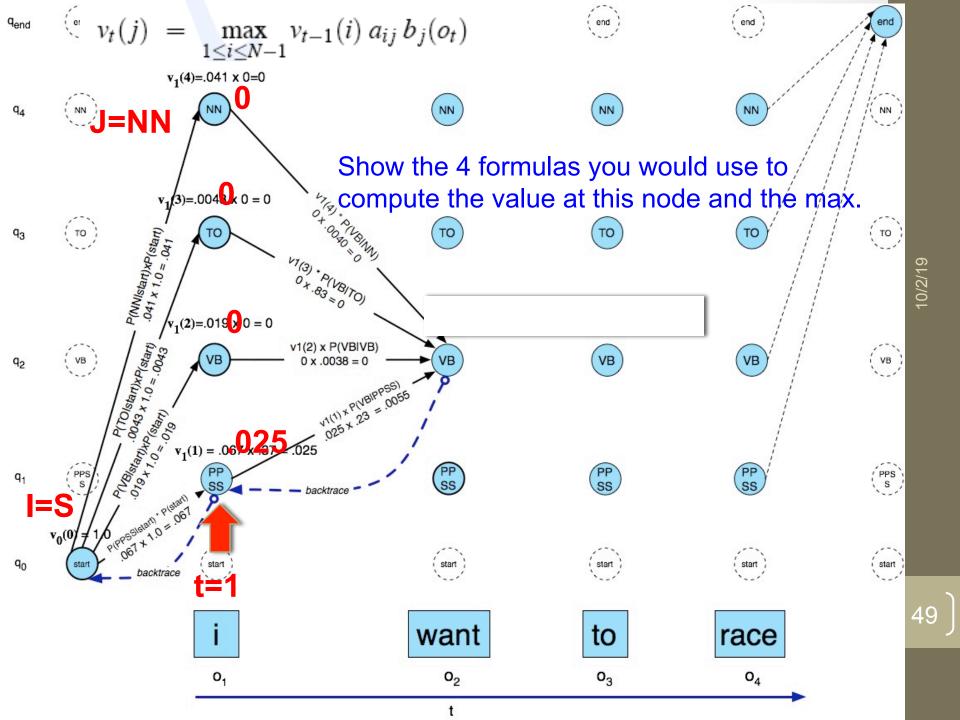












Computing the Likelihood of an observation

- Forward algorithm
- Exactly like the viterbi algorithm, except
 - To compute the probability of a state, sum the probabilities from each path

Error Analysis: ESSENTIAL!!!

Look at a confusion matrix

	IN	JJ	NN	NNP	RB	VBD	VBN
IN	-	.2			.7		
JJ	.2	-	3.3	2.1	1.7	.2	2.7
NN		8.7	-				.2
NNP	.2	3.3	4.1	-	.2		
RB	2.2	2.0	.5		-		
VBD		.3	.5			-	4.4
VBN		2.8				2.6	-

- See what errors are causing problems
 - Noun (NN) vs ProperNoun (NN) vs Adj (JJ)
 - Adverb (RB) vs Prep (IN) vs Noun (NN)
 - Preterite (VBD) vs Participle (VBN) vs Adjective (JJ)