
RANSAC
16-385 Computer Vision (Kris Kitani)

Carnegie Mellon University

Up to now, we’ve assumed correct correspondences

What if there are mismatches?

outlier

How would you find just the inliers?

RANSAC
RANdom SAmple Consensus

[Fischler & Bolles in ’81]

Algorithm:
1. Sample (randomly) the number of points required to fit the model
2. Solve for model parameters using samples
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Fitting lines
(with outliers)

Algorithm:
1. Sample (randomly) the number of points required to fit the model
2. Solve for model parameters using samples
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Fitting lines
(with outliers)

Algorithm:
1. Sample (randomly) the number of points required to fit the model
2. Solve for model parameters using samples
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Fitting lines
(with outliers)

δ
6=IN

Algorithm:
1. Sample (randomly) the number of points required to fit the model
2. Solve for model parameters using samples
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Fitting lines
(with outliers)

δ
14=IN

Algorithm:
1. Sample (randomly) the number of points required to fit the model
2. Solve for model parameters using samples
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Fitting lines
(with outliers)

How to choose parameters?
• Number of samples N
– Choose N so that, with probability p, at least one random sample is free

from outliers (e.g. p=0.99) (outlier ratio: e)

• Number of sampled points s
–Minimum number needed to fit the model

• Distance threshold δ
– Choose δ so that a good point with noise is likely (e.g., prob=0.95) within threshold
– Zero-mean Gaussian noise with std. dev. σ: t2=3.84σ2

proportion of outliers e
s 5% 10% 20% 25% 30% 40% 50%
2 2 3 5 6 7 11 17
3 3 4 7 9 11 19 35
4 3 5 9 13 17 34 72
5 4 6 12 17 26 57 146
6 4 7 16 24 37 97 293
7 4 8 20 33 54 163 588
8 5 9 26 44 78 272 1177

N =

log(1� p)

log

✓
1� (1� e)s

◆

Good
• Robust to outliers
• Applicable for larger number of parameters than Hough transform
• Parameters are easier to choose than Hough transform

Bad
• Computational time grows quickly with fraction of outliers and

number of parameters
• Not good for getting multiple fits

Common applications
• Computing a homography (e.g., image stitching)
• Estimating fundamental matrix (relating two views)

Given two images…

find matching features (e.g., SIFT)

Matched points will usually contain bad correspondences

good correspondence

bad correspondence

how should we estimate the transform?

LLS or DLT will find the ‘average’ transform

‘average’
transform

solution is corrupted by bad correspondences

Use RANSAC

How many correspondences to compute translation transform?

Need only one correspondence, to find translation model

Pick one correspondence, count inliers

one
correspondence

Pick one correspondence, count inliers

2 inliers

Pick one correspondence, count inliers

one
correspondence

Pick one correspondence, count inliers

5 inliers

Pick one correspondence, count inliers

5 inliers

Pick the model with the highest number of inliers!

Estimating homography
using RANSAC

• RANSAC loop

1. Get four point correspondences (randomly)

2. Compute H (DLT)

3. Count inliers

4. Keep if largest number of inliers

• Recompute H using all inliers

Estimating homography
using RANSAC

• RANSAC loop

1. Get four point correspondences (randomly)

2. Compute H using DLT

3. Count inliers

4. Keep if largest number of inliers

• Recompute H using all inliers

Estimating homography
using RANSAC

• RANSAC loop

1. Get four point correspondences (randomly)

2. Compute H using DLT

3. Count inliers

4. Keep if largest number of inliers

• Recompute H using all inliers

Estimating homography
using RANSAC

• RANSAC loop

1. Get four point correspondences (randomly)

2. Compute H using DLT

3. Count inliers

4. Keep H if largest number of inliers

• Recompute H using all inliers

Estimating homography
using RANSAC

• RANSAC loop

1. Get four point correspondences (randomly)

2. Compute H using DLT

3. Count inliers

4. Keep H if largest number of inliers

• Recompute H using all inliers

Useful for…

