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Stochastic systems

I Stochastic system: Anything random that evolves in time

) Time can be discrete n = 0, 1, 2 . . ., or continuous t 2 [0,1)

I More formally, random processes assign a function to a random event

I Compare with “random variable assigns a value to a random event”

I Can interpret a random process as a collection of random variables

) Generalizes concept of random vector to functions

) Or generalizes the concept of function to random settings
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Four thematic blocks

(I) Probability theory review (6 lectures)
I Probability spaces, random variables, independence, expectation
I Conditional probability: time n + 1 given time n, future given past ...
I Limits in probability, almost sure limits: behavior as n ! 1 ...
I Common probability distributions (binomial, exponential, Poisson, Gaussian)

I Random processes are complicated entities

) Restrict attention to particular classes that are somewhat tractable

(II) Markov chains (6 lectures)

(III) Continuous-time Markov chains (7 lectures)

(IV) Stationary random processes (8 lectures)

I Midterm covers up to Markov chains
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Markov chains

I Countable set of states 1, 2, . . .. At discrete time n, state is Xn

I Memoryless (Markov) property

) Probability of next state Xn+1 depends on current state Xn

) But not on past states Xn�1, Xn�2, . . .

I Can be happy (Xn = 0) or sad (Xn = 1)

I Tomorrow’s mood only a↵ected by
today’s mood

I Whether happy or sad today, likely to
be happy tomorrow

I But when sad, a little less likely so

H S

0.8

0.2

0.3

0.7

I Of interest: classification of states, ergodicity, limiting distributions

I Applications: Google’s PageRank, communication networks, queues,
reinforcement learning, ...
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Continuous-time Markov chains

I Countable set of states 1, 2, . . .. Continuous-time index t, state X (t)

) Transition between states can happen at any time

) Markov: Future independent of the past given the present

I Probability of changing state in
an infinitesimal time dt

H S

0.2dt

0.7dt

I Of interest: Poisson processes, exponential distributions, transition
probabilities, Kolmogorov equations, limit distributions

I Applications: Chemical reactions, queues, epidemic modeling, tra�c
engineering, weather forecasting, ...
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Stationary random processes

I Continuous time t, continuous state X (t), not necessarily Markov

I Prob. distribution of X (t) constant or becomes constant as t grows

) System has a steady state in a random sense

I Of interest: Brownian motion, white noise, Gaussian processes,
autocorrelation, power spectral density

I Applications: Black Scholes model for option pricing, radar, face
recognition, noise in electric circuits, filtering and equalization, ...
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An interesting betting game

I There is a certain game in a certain casino in which ...

) Your chances of winning are p > 1/2
I You place $1 bets

(a) With probability p you gain $1; and
(b) With probability 1� p you lose your $1 bet

I The catch is that you either
(a) Play until you go broke (lose all your money)
(b) Keep playing forever

I You start with an initial wealth of $w0

I Q: Shall you play this game?
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Modeling

I Let t be a time index (number of bets placed)

I Denote as X (t) the outcome of the bet at time t

) X (t) = 1 if bet is won (w.p. p)

) X (t) = 0 if bet is lost (w.p. 1� p)

I X (t) is called a Bernoulli random variable with parameter p

I Denote as W (t) the player’s wealth at time t. Initialize W (0) = w0

I At times t > 0 wealth W (t) depends on past wins and losses

) When bet is won W (t + 1) = W (t)+1

) When bet is lost W (t + 1) = W (t)�1

I More compactly can write W (t + 1) = W (t) + (2X (t)� 1)

) Only holds so long as W (t) > 0
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Coding

t = 0; w(t) = w0; maxt = 103; // Initialize variables
% repeat while not broke up to time maxt

while (w(t) > 0) & (t < maxt) do
x(t) = random(‘bino’,1,p); % Draw Bernoulli random variable
if x(t) == 1 then

w(t + 1) = w(t) + b; % If x = 1 wealth increases by b

else
w(t + 1) = w(t)� b; % If x = 0 wealth decreases by b

end
t = t + 1;

end

I Initial wealth w0 = 20, bet b = 1, win probability p = 0.55

I Q: Shall we play?
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One lucky player

I She didn’t go broke. After t = 1000 bets, her wealth is W (t) = 109

) Less likely to go broke now because wealth increased
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Two lucky players

I After t = 1000 bets, wealths are W1(t) = 109 and W2(t) = 139

) Increasing wealth seems to be a pattern
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Ten lucky players

I Wealths Wj(t) after t = 1000 bets between 78 and 139

) Increasing wealth is definitely a pattern
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One unlucky player

I But this does not mean that all players will turn out as winners

) The twelfth player j = 12 goes broke
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One unlucky player

I But this does not mean that all players will turn out as winners

) The twelfth player j = 12 goes broke
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One hundred players

I All players (except for j = 12) end up with substantially more money
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Average tendency

I It is not di�cult to find a line estimating the average of W (t)

) w̄(t) ⇡ w0 + (2p � 1)t ⇡ w0 + 0.1t (recall p = 0.55)
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Where does the average tendency come from?

I Assuming we do not go broke, we can write

W (t + 1) = W (t) +
⇣
2X (t)� 1

⌘
, t = 0, 1, 2, . . .

I The assumption is incorrect as we saw, but su�ces for simplicity

I Taking expectations on both sides and using linearity of expectation

E [W (t + 1)] = E [W (t)] +
⇣
2E [X (t)]� 1

⌘

I The expected value of Bernoulli X (t) is

E [X (t)] = 1⇥ P (X (t) = 1) + 0⇥ P (X (t) = 0) = p

I Which yields ) E [W (t + 1)] = E [W (t)] + (2p � 1)

I Applying recursively ) E [W (t + 1)] = w0 + (2p � 1)(t + 1)
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Gambling as LTI system with stochastic input

I Recall the evolution of wealth W (t + 1) = W (t) +
⇣
2X (t)� 1

⌘

1 

t -1 

2x(t)-1 

+ 

Delay 

w(t+1) 2x(t)-1 

w(t) 

Accumulator 

t 

w(t+1) 

I View W (t+1) as output of LTI system with random input 2X (t)�1

I Recognize accumulator ) W (t + 1) = w0 +
tX

⌧=0

⇣
2X (⌧)� 1

⌘

I Useful, a lot we can say about sums of random variables

I Filtering random processes in signal processing, communications, . . .

Introduction to Random Processes Introduction 29



Numerical analysis of simulation outcomes

I For a more accurate approximation analyze simulation outcomes

I Consider J experiments. Each yields a wealth history Wj(t)

I Can estimate the average outcome via the sample average W̄J(t)

W̄J(t) :=
1

J

JX

j=1

Wj(t)

I Do not confuse W̄J(t) with E [W (t)]
I W̄J(t) is computed from experiments, it is a random quantity in itself
I E [W (t)] is a property of the random variable W (t)
I We will see later that for large J, W̄J(t) ! E [W (t)]
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Analysis of simulation outcomes: mean

I Expected value E [W (t)] in black

I Sample average for J = 10 (blue), J = 20 (red), and J = 100 (magenta)
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Analysis of simulation outcomes: distribution

I There is more information in the simulation’s output

I Estimate the distribution function of W (t) ) Histogram

I Consider a grid of points w (0), . . . ,w (M)

I Indicator function of the event w (m)  Wj(t) < w
(m+1)

I
n
w

(m)  Wj(t) < w
(m+1)

o
=

⇢
1, if w (m)  Wj(t) < w

(m+1)

0, otherwise

I Histogram is then defined as

H

h
t;w (m),w (m+1)

i
=

1

J

JX

j=1

I
n
w

(m)  Wj(t) < w
(m+1)

o

I Fraction of experiments with wealth Wj(t) between w
(m) and w

(m+1)
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Histogram

I Distribution broadens and shifts to the right (t = 10, 50, 100, 200)
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What is this class about?

I Analysis and simulation of stochastic systems

) A system that evolves in time with some randomness

I They are usually quite complex ) Simulations

I We will learn how to model stochastic systems, e.g.,
I X (t) Bernoulli with parameter p
I W (t + 1) = W (t) + 1, when X (t) = 1
I W (t + 1) = W (t)� 1, when X (t) = 0

I ... how to analyze their properties, e.g., E [W (t)] = w0 + (2p � 1)t

I ... and how to interpret simulations and experiments, e.g.,
I Average tendency through sample average
I Estimate probability distributions via histograms
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Markov chains in discrete time

I Consider discrete-time index n = 0, 1, 2, . . .

I Time-dependent random state Xn takes values on a countable set
I In general, states are i = 0,±1,±2, . . ., i.e., here the state space is Z
I If Xn = i we say “the process is in state i at time n”

I Random process is XN, its history up to n is Xn = [Xn,Xn�1, . . . ,X0]T

I Def: process XN is a Markov chain (MC) if for all n � 1, i , j , x 2 Zn

P
�
Xn+1 = j

��Xn = i ,Xn�1 = x
�
= P

�
Xn+1 = j

��Xn = i
�
= Pij

I Future depends only on current state Xn (memoryless, Markov property)

) Future conditionally independent of the past, given the present
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Observations

I Given Xn, history Xn�1 irrelevant for future evolution of the process

I From the Markov property, can show that for arbitrary m > 0

P
�
Xn+m = j

��Xn = i ,Xn�1 = x
�
= P

�
Xn+m = j

��Xn = i
�

I Transition probabilities Pij are constant (MC is time invariant)

P
�
Xn+1 = j

��Xn = i
�
= P

�
X1 = j

��X0 = i
�
= Pij

I Since Pij ’s are probabilities they are non-negative and sum up to 1

Pij � 0,
1X

j=0

Pij = 1

) Conditional probabilities satisfy the axioms
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Matrix representation

I Group the Pij in a transition probability “matrix” P

P =

0

BBBBBB@

P00 P01 P02 . . . P0j . . .
P10 P11 P12 . . . P1j . . .
...

...
...

...
...

...
Pi0 Pi1 Pi2 . . . Pij . . .
...

...
...

...
...

. . .

1

CCCCCCA

) Not really a matrix if number of states is infinite

I Row-wise sums should be equal to one, i.e.,
P1

j=0 Pij = 1 for all i
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Graph representation

I A graph representation or state transition diagram is also used

i i+1i�1 . . .. . .

Pi,i

Pi,i+1

Pi,i�1

Pi+1,i+1

Pi+1,i

Pi+1,i+2

Pi�1,i�1

Pi�1,i

Pi�1,i�2 Pi+2,i+1

Pi�2,i�1

I Useful when number of states is infinite, skip arrows if Pij = 0

I Again, sum of per-state outgoing arrow weights should be one
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Example: Happy - Sad

I I can be happy (Xn = 0) or sad (Xn = 1)

) My mood tomorrow is only a↵ected by my mood today

I Model as Markov chain with transition probabilities

P =

✓
0.8 0.2
0.3 0.7

◆

H S

0.8

0.2

0.7

0.3

I Inertia ) happy or sad today, likely to stay happy or sad tomorrow

I But when sad, a little less likely so (P00 > P11)
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Example: Happy - Sad with memory

I Happiness tomorrow a↵ected by today’s and yesterday’s mood

) Not a Markov chain with the previous state space

I Define double states HH (Happy-Happy), HS (Happy-Sad), SH, SS
I Only some transitions are possible

I HH and SH can only become HH or HS
I HS and SS can only become SH or SS

P =

0

BB@

0.8 0.2 0 0
0 0 0.3 0.7
0.8 0.2 0 0
0 0 0.3 0.7

1

CCA

HH HS

SH SS

0.8

0.2

0.2

0.8

0.7

0.3

0.3

0.7

I Key: can capture longer time memory via state augmentation
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Random (drunkard’s) walk

I Step to the right w.p. p, to the left w.p. 1� p

) Not that drunk to stay on the same place

i i+1i�1 . . .. . .

p

1� p 1� p

pp

1� p 1� p

p

I States are 0,±1,±2, . . . (state space is Z), infinite number of states

I Transition probabilities are

Pi,i+1 = p, Pi,i�1 = 1� p

I Pij = 0 for all other transitions
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Random (drunkard’s) walk (continued)

I Random walks behave di↵erently if p < 1/2, p = 1/2 or p > 1/2

p = 0.45 p = 0.50 p = 0.55

0 100 200 300 400 500 600 700 800 900 1000
−100

−80

−60

−40

−20

0

20

40

60

80

100

time

p
o
s
it
io

n
 (

in
 s

te
p
s
)

0 100 200 300 400 500 600 700 800 900 1000
−100

−80

−60

−40

−20

0

20

40

60

80

100

time

p
o
s
it
io

n
 (

in
 s

te
p
s
)

0 100 200 300 400 500 600 700 800 900 1000
−100

−80

−60

−40

−20

0

20

40

60

80

100

time

p
o
s
it
io

n
 (

in
 s

te
p
s
)

) With p > 1/2 diverges to the right (% almost surely)

) With p < 1/2 diverges to the left (& almost surely)

) With p = 1/2 always come back to visit origin (almost surely)

I Because number of states is infinite we can have all states transient
I Transient states not revisited after some time (more later)
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Two dimensional random walk

I Take a step in random direction E, W, S or N

) E, W, S, N chosen with equal probability

I States are pairs of coordinates (Xn,Yn)
I Xn = 0,±1,±2, . . . and Yn = 0,±1,±2, . . .

I Transiton probs. 6= 0 only for adjacent points

East: P
�
Xn+1 = i+1,Yn+1 = j

��Xn = i ,Yn = j
�
=

1

4

West: P
�
Xn+1 = i�1,Yn+1 = j

��Xn = i ,Yn = j
�
=

1

4

North: P
�
Xn+1 = i ,Yn+1 = j+1

��Xn = i ,Yn = j
�
=

1

4

South: P
�
Xn+1 = i ,Yn+1 = j�1

��Xn = i ,Yn = j
�
=

1

4
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More about random walks

I Some random facts of life for equiprobable random walks

I In one and two dimensions probability of returning to origin is 1

) Will almost surely return home

I In more than two dimensions, probability of returning to origin is < 1

) In three dimensions probability of returning to origin is 0.34

) Then 0.19, 0.14, 0.10, 0.08, . . .
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Another representation of a random walk

I Consider an i.i.d. sequence of RVs YN = Y1,Y2, . . . ,Yn, . . .

I Yn takes the value ±1, P (Yn = 1) = p, P (Yn = �1) = 1� p

I Define X0 = 0 and the cumulative sum

Xn =
nX

k=1

Yk

) The process XN is a random walk (same we saw earlier)

) YN are i.i.d. steps (increments) because Xn = Xn�1 + Yn

I Q: Can we formally establish the random walk is a Markov chain?

I A: Since Xn = Xn�1 + Yn, n � 1, and Yn independent of Xn�1

P
�
Xn = j

��Xn�1 = i ,Xn�2 = x
�
= P

�
Xn�1 + Yn = j

��Xn�1 = i ,Xn�2 = x
�

= P (Y1 = j � i) := Pij
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General result to identify Markov chains

Theorem
Suppose YN = Y1,Y2, . . . ,Yn, . . . are i.i.d. and independent of X0.

Consider the random process XN = X1,X2, . . . ,Xn, . . . of the form

Xn = f (Xn�1,Yn), n � 1

Then XN is a Markov chain with transition probabilities

Pij = P (f (i ,Y1) = j)

I Useful result to identify Markov chains

) Often simpler than checking the Markov property

I Proof similar to the random walk special case, i.e., f (x , y) = x + y
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Random walk with boundaries (gambling)

I As a random walk, but stop moving when Xn = 0 or Xn = J

I Models a gambler that stops playing when ruined, Xn = 0
I Or when reaches target gains Xn = J

i i+1i�1 J0

p

1� p 1� p

p

11

. . . . . .

I States are 0, 1, . . . , J, finite number of states

I Transition probabilities are

Pi,i+1 = p, Pi,i�1 = 1� p, P00 = 1, PJJ = 1

I Pij = 0 for all other transitions

I States 0 and J are called absorbing. Once there stay there forever

) The rest are transient states. Visits stop almost surely
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Multiple-step transition probabilities

I Q: What can be said about multiple transitions?

I Ex: Transition probabilities between two time slots

P
2
ij = P

�
Xm+2 = j

��Xm = i
�

) Caution: P2
ij is just notation, P

2
ij 6= Pij ⇥ Pij

I Ex: Probabilities of Xm+n given Xm ) n-step transition probabilities

P
n
ij = P

�
Xm+n = j

��Xm = i
�

I Relation between n-, m-, and (m + n)-step transition probabilities

) Write P
m+n
ij in terms of Pm

ij and P
n
ij

I All questions answered by Chapman-Kolmogorov’s equations
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2-step transition probabilities

I Start considering transition probabilities between two time slots

P
2
ij = P

�
Xn+2 = j

��Xn = i
�

I Using the law of total probability

P
2
ij =

1X

k=0

P
�
Xn+2 = j

��Xn+1 = k ,Xn = i
�
P
�
Xn+1 = k

��Xn = i
�

I In the first probability, conditioning on Xn = i is unnecessary. Thus

P
2
ij =

1X

k=0

P
�
Xn+2 = j

��Xn+1 = k
�
P
�
Xn+1 = k

��Xn = i
�

I Which by definition of transition probabilities yields

P
2
ij =

1X

k=0

PkjPik
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Relating n-, m-, and (m + n)-step probabilities

I Same argument works (condition on X0 w.l.o.g., time invariance)

P
m+n
ij = P

�
Xn+m = j

��X0 = i
�

I Use law of total probability, drop unnecessary conditioning and use
definitions of n-step and m-step transition probabilities

P
m+n
ij =

1X

k=0

P
�
Xm+n = j

��Xm = k ,X0 = i
�
P
�
Xm = k

��X0 = i
�

P
m+n
ij =

1X

k=0

P
�
Xm+n = j

��Xm = k
�
P
�
Xm = k

��X0 = i
�

P
m+n
ij =

1X

k=0

P
n
kjP

m
ik for all i , j and n,m � 0

) These are the Chapman-Kolmogorov equations

Introduction to Random Processes Markov Chains 19



Interpretation

I Chapman-Kolmogorov equations are intuitive. Recall

P
m+n
ij =

1X

k=0

P
m
ik P

n
kj

I Between times 0 and m + n, time m occurred

I At time m, the Markov chain is in some state Xm = k

) P
m
ik is the probability of going from X0 = i to Xm = k

) P
n
kj is the probability of going from Xm = k to Xm+n = j

) Product Pm
ik P

n
kj is then the probability of going from

X0 = i to Xm+n = j passing through Xm = k at time m

I Since any k might have occurred, just sum over all k
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Chapman-Kolmogorov equations in matrix form

I Define the following three matrices:

) P(m) with elements Pm
ij

) P(n) with elements Pn
ij

) P(m+n) with elements Pm+n
ij

I Matrix product P(m)P(n) has (i , j)-th element
P1

k=0 P
m
ik P

n
kj

I Chapman Kolmogorov in matrix form

P(m+n) = P(m)P(n)

I Matrix of (m + n)-step transitions is product of m-step and n-step
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Computing n-step transition probabilities

I For m = n = 1 (2-step transition probabilities) matrix form is

P(2) = PP = P2

I Proceed recursively backwards from n

P(n) = P(n�1)P = P(n�2)PP = . . . = Pn

I Have proved the following

Theorem
The matrix of n-step transition probabilities P(n)

is given by the n-th

power of the transition probability matrix P, i.e.,

P(n) = Pn

Henceforth we write Pn
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Example: Happy-Sad

I Mood transitions in one day

P =

✓
0.8 0.2
0.3 0.7

◆
H S

0.8
0.2

0.7

0.3

I Transition probabilities between today and the day after tomorrow?

P2 =

✓
0.70 0.30
0.45 0.55

◆
H S

0.70

0.30

0.55

0.45
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Example: Happy-Sad (continued)

I ... After a week and after a month

P7 =

✓
0.6031 0.3969
0.5953 0.4047

◆
P30 =

✓
0.6000 0.4000
0.6000 0.4000

◆

I Matrices P7 and P30 almost identical ) limn!1 Pn exists

) Note that this is a regular limit

I After a month transition from H to H and from S to H w.p. 0.6

) State becomes independent of initial condition (H w.p. 0.6)

I Rationale: 1-step memory ) Initial condition eventually forgotten
I More about this soon
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Unconditional probabilities

I All probabilities so far are conditional, i.e., Pn
ij = P

�
Xn = j

��X0 = i
�

) May want unconditional probabilities pj(n) = P (Xn = j)

I Requires specification of initial conditions pi (0) = P (X0 = i)

I Using law of total probability and definitions of Pn
ij and pj(n)

pj(n) = P (Xn = j) =
1X

i=0

P
�
Xn = j

��X0 = i
�
P (X0 = i)

=
1X

i=0

P
n
ijpi (0)

I In matrix form (define vector p(n) = [p1(n), p2(n), . . .]T )

p(n) = (Pn)T p(0)
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Example: Happy-Sad

I Transition probability matrix ) P =

✓
0.8 0.2
0.3 0.7

◆

p(0) = [1, 0]T p(0) = [0, 1]T

0 5 10 15 20 25 30
0

0.1
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Time (days)
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b
a
b
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P(Happy)

P(Sad)
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Time (days)
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e
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P(Happy)

P(Sad)

I For large n probabilities p(n) are independent of initial state p(0)
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Queues in communication systems

I General communication systems goal

) Move packets from generating sources to intended destinations

I Between arrival and departure we hold packets in a memory bu↵er

) Want to design bu↵ers appropriately
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Non-concurrent queue

I Time slotted in intervals of duration �t

) n-th slot between times n�t and (n + 1)�t

I Average arrival rate is �̄ packets per unit time

) Probability of packet arrival in �t is � = �̄�t

I Packets are transmitted (depart) at a rate of µ̄ packets per unit time

) Probability of packet departure in �t is µ = µ̄�t

I Assume no simultaneous arrival and departure (no concurrence)

) Reasonable for small �t (µ and � likely to be small)
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Queue evolution equations

I Qn denotes number of packets in queue (backlog) in n-th time slot

I An = nr. of packet arrivals, Dn = nr. of departures (during n-th slot)

I If the queue is empty Qn = 0 then there are no departures

) Queue length at time n + 1 can be written as

Qn+1 = Qn + An, if Qn = 0

I If Qn > 0, departures and arrivals may happen

Qn+1 = Qn + An � Dn, if Qn > 0

I An 2 {0, 1}, Dn 2 {0, 1} and either An = 1 or Dn = 1 but not both

) Arrival and departure probabilities are

P (An = 1) = �, P (Dn = 1) = µ
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Queue evolution probabilities

I Future queue lengths depend on current length only

I Probability of queue length increasing

P
�
Qn+1 = i + 1

��Qn = i
�
= P (An = 1) = �, for all i

I Queue length might decrease only if Qn > 0. Probability is

P
�
Qn+1 = i � 1

��Qn = i
�
= P (Dn = 1) = µ, for all i > 0

I Queue length stays the same if it neither increases nor decreases

P
�
Qn+1 = i

��Qn = i
�
= 1� �� µ, for all i > 0

P
�
Qn+1 = 0

��Qn = 0
�
= 1� �

) No departures when Qn = 0 explain second equation
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Queue as a Markov chain

I MC with states 0, 1, 2, . . .. Identify states with queue lengths

I Transition probabilities for i 6= 0 are

Pi,i�1 = µ, Pi,i = 1� �� µ, Pi,i+1 = �

I For i = 0: P00 = 1� � and P01 = �

i i+1i�10

�

µ µ

��

1� �

�

µ µ

1� �� µ 1� �� µ1� �� µ

. . . . . .
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Numerical example: Probability propagation

I Build matrix P truncating at maximum queue length L = 100

) Arrival rate � = 0.3. Departure rate µ = 0.33

) Initial distribution p(0) = [1, 0, 0, . . .]T (queue empty)

0 100 200 300 400 500 600 700 800 900 1000
10
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0

Time
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s

 

 

queue length 0

queue length 10

queue length 20

I Propagate probabilities (Pn)Tp(0)

I Probabilities obtained are

P
�
Qn = i

��Q0 = 0
�
= pi (n)

I A few i ’s (0, 10, 20) shown

I Probability of empty queue ⇡ 0.1

I Occupancy decreases with i
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Transient and recurrent states

I States of a MC can be recurrent or transient

I Transient states might be visited early on but visits eventually stop

I Almost surely, Xn 6= i for n su�ciently large (qualifications needed)

I Visits to recurrent states keep happening forever. Fix arbitrary m

I Almost surely, Xn = i for some n � m (qualifications needed)

T1

T2

R1

R2

R3 0.6

0.20.2

0.6

0.20.2

0.3

0.7

0.4

0.6

1
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Definitions

I Let fi be the probability that starting at i , MC ever reenters state i

fi := P

 1[

n=1

Xn = i
��X0 = i

!
= P

 1[

n=m+1

Xn = i
��Xm = i

!

I State i is recurrent if fi = 1

) Process reenters i again and again (a.s.). Infinitely often

I State i is transient if fi < 1

) Positive probability 1� fi > 0 of never coming back to i
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Recurrent states example

I State R3 is recurrent because it is absorbing P
�
X1 = R3

��X0 = R3

�
= 1

I State R1 is recurrent because

P
�
X1 = R1

��X0 = R1

�
= 0.3

P
�
X2 = R1,X1 6= R1

��X0 = R1

�
= (0.7)(0.6)

P
�
X3 = R1,X2 6= R1,X1 6= R1

��X0 = R1

�
= (0.7)(0.4)(0.6)

...

P
�
Xn = R1,Xn�1 6= R1, . . . ,X1 6= R1

��X0 = R1

�
= (0.7)(0.4)n�2(0.6)

I Sum up: fi =
1X

n=1

P
�
Xn = R1,Xn�1 6= R1, . . . ,X1 6= R1

��X0 = R1

�

= 0.3 + 0.7

 1X

n=2

0.4n�2

!
0.6 = 0.3 + 0.7

✓
1

1� 0.4

◆
0.6 = 1

T1

T2

R1

R2

R3 0.6
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Transient state example

I States T1 and T2 are transient

I Probability of returning to T1 is fT1 = (0.6)2 = 0.36

) Might come back to T1 only if it goes to T2 (w.p. 0.6)

) Will come back only if it moves back from T2 to T1 (w.p. 0.6)

T1

T2

R1

R2

R3 0.6

0.20.2

0.6

0.20.2

0.3

0.7

0.4

0.6

1

I Likewise, fT2 = (0.6)2 = 0.36
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Expected number of visits to states

I Define Ni as the number of visits to state i given that X0 = i

Ni :=
1X

n=1

I
�
Xn = i

��X0 = i
 

I If Xn = i , this is the last visit to i w.p. 1� fi

I Prob. revisiting state i exactly n times is (n visits ⇥ no more visits)

P (Ni = n) = f
n
i (1� fi )

) Number of visits Ni + 1 is geometric with parameter 1� fi

I Expected number of visits is

E [Ni ] + 1 =
1

1� fi
) E [Ni ] =

fi

1� fi

) For recurrent states Ni = 1 a.s. and E [Ni ] = 1 (fi = 1)
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Alternative transience/recurrence characterization

I Another way of writing E [Ni ]

E [Ni ] =
1X

n=1

E
h
I
�
Xn = i

��X0 = i
 i

=
1X

n=1

P
n
ii

I Recall that: for transient states E [Ni ] = fi/(1� fi ) < 1
for recurrent states E [Ni ] = 1

Theorem

I State i is transient if and only if
P1

n=1 P
n
ii < 1

I State i is recurrent if and only if
P1

n=1 P
n
ii = 1

I Number of future visits to transient states is finite

) If number of states is finite some states have to be recurrent
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Accessibility

I Def: State j is accessible from state i if Pn
ij > 0 for some n � 0

) It is possible to enter j if MC initialized at X0 = i

I Since P
0
ii = P

�
X0 = i

��X0 = i
�
= 1, state i is accessible from itself
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I All states accessible from T1 and T2

I Only R1 and R2 accessible from R1 or R2

I None other than R3 accessible from itself
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Communication

I Def: States i and j are said to communicate (i $ j) if

) j is accessible from i , i.e., Pn
ij > 0 for some n; and

) i is accessible from j , i.e., Pm
ji > 0 for some m

I Communication is an equivalence relation

I Reflexivity: i $ i

I Holds because P
0
ii = 1

I Symmetry: If i $ j then j $ i

I If i $ j then P
n
ij > 0 and P

m
ji > 0 from where j $ i

I Transitivity: If i $ j and j $ k , then i $ k

I Just notice that Pn+m
ik � P

n
ijP

m
jk > 0

I Partitions set of states into disjoint classes (as all equivalences do)

) What are these classes?
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Recurrence and communication

Theorem
If state i is recurrent and i $ j , then j is recurrent

Proof.

I If i $ j then there are l ,m such that P l
ji > 0 and P

m
ij > 0

I Then, for any n we have

P
l+n+m
jj � P

l
jiP

n
iiP

m
ij

I Sum for all n. Note that since i is recurrent
P1

n=1 P
n
ii = 1

1X

n=1

P
l+n+m
jj �

1X

n=1

P
l
jiP

n
iiP

m
ij = P

l
ji

 1X

n=1

P
n
ii

!
P

m
ij = 1

) Which implies j is recurrent
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Recurrence and transience are class properties

Corollary

If state i is transient and i $ j , then j is transient

Proof.

I If j were recurrent, then i would be recurrent from previous theorem

I Recurrence is shared by elements of a communication class

) We say that recurrence is a class property

I Likewise, transience is also a class property

I MC states are separated in classes of transient and recurrent states
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Irreducible Markov chains

I A MC is called irreducible if it has only one class
I All states communicate with each other
I If MC also has finite number of states the single class is recurrent
I If MC infinite, class might be transient

I When it has multiple classes (not irreducible)
I Classes of transient states T1, T2, . . .
I Classes of recurrent states R1,R2, . . .

I If MC initialized in a recurrent class Rk , stays within the class
I If MC starts in transient class Tk , then it might

(a) Stay on Tk (only if |Tk | = 1)
(b) End up in another transient class Tr (only if |Tr | = 1)
(c) End up in a recurrent class Rl

I For large time index n, MC restricted to one class

) Can be separated into irreducible components
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Communication classes example

T1

T2

R1

R2

R3 0.6

0.20.2

0.6

0.20.2
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0.4

0.6

1

I Three classes

) T := {T1,T2}, class with transient states

) R1 := {R1,R2}, class with recurrent states

) R2 := {R3}, class with recurrent state

I For large n su�ces to study the irreducible components R1 and R2
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