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Stochastic systems

» Stochastic system: Anything random that evolves in time
= Time can be discrete n=0,1,2..., or continuous t € [0, 00)
» More formally, random processes assign a function to a random event

» Compare with “random variable assigns a value to a random event”

» Can interpret a random process as a collection of random variables
= Generalizes concept of random vector to functions

= Or generalizes the concept of function to random settings
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Four thematic blocks

(I) Probability theory review (6 lectures)

» Probability spaces, random variables, independence, expectation

» Conditional probability: time n+ 1 given time n, future given past ...

» Limits in probability, almost sure limits: behavior as n — oo ...

» Common probability distributions (binomial, exponential, Poisson, Gaussian)

» Random processes are complicated entities

= Restrict attention to particular classes that are somewhat tractable

(1) Markov chains (6 lectures)
(111 Continuous-time Markov chains (7 lectures)

(IV) Stationary random processes (8 lectures)

» Midterm covers up to Markov chains
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Markov chains

» Countable set of states 1,2,.... At discrete time n, state is X,
» Memoryless (Markov) property
= Probability of next state X,.; depends on current state X,
= But not on past states X,,_1, Xp,_2, ...

» Can be happy (X, =0) or sad (X, =1) 0.8 0.3

» Tomorrow's mood only affected by O 0.2 O
today’s mood =

» Whether happy or sad today, likely to

be happy tomorrow 07
» But when sad, a little less likely so

» Of interest: classification of states, ergodicity, limiting distributions

» Applications: Google's PageRank, communication networks, queues,
reinforcement learning, ...
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Continuous-time Markov chains

> Countable set of states 1,2,.... Continuous-time index t, state X(t)
= Transition between states can happen at any time
= Markov: Future independent of the past given the present

0.2dt

" ™
» Probability of changing state in
an infinitesimal time dt

0.7dt

» Of interest: Poisson processes, exponential distributions, transition
probabilities, Kolmogorov equations, limit distributions

» Applications: Chemical reactions, queues, epidemic modeling, traffic
engineering, weather forecasting, ...
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Stationary random processes

» Continuous time t, continuous state X(t), not necessarily Markov
> Prob. distribution of X(t) constant or becomes constant as t grows

= System has a steady state in a random sense

» Of interest: Brownian motion, white noise, Gaussian processes,
autocorrelation, power spectral density

» Applications: Black Scholes model for option pricing, radar, face
recognition, noise in electric circuits, filtering and equalization, ...
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An interesting betting game

» There is a certain game in a certain casino in which ...
= Your chances of winning are p > 1/2
» You place $1 bets

(a) With probability p you gain $1; and
(b) With probability 1 — p you lose your $1 bet

» The catch is that you either

(a) Play until you go broke (lose all your money)
(b) Keep playing forever

» You start with an initial wealth of $w

v

Q: Shall you play this game?
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Modeling

v

Let t be a time index (number of bets placed)

v

Denote as X(t) the outcome of the bet at time t
= X(t) =1 if bet is won (w.p. p)
= X(t) =0 if bet is lost (w.p. 1 — p)
X(t) is called a Bernoulli random variable with parameter p

v Yy

Denote as W(t) the player's wealth at time t. Initialize W(0) = wg
At times t > 0 wealth W/(t) depends on past wins and losses
= When bet is won W(t+ 1) = W(t)+1
= When bet is lost W(t+ 1) = W(t)—1
» More compactly can write W(t+ 1) = W(t) + (2X(t) — 1)
= Only holds so long as W(t) > 0

v
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t =0; w(t) = wo; max, = 10%; // Initialize variables

while (w(t) > 0) & (t < max;) do
x(t) = random(‘bino’,1,p);
if x(t) ==1 then
| w(t+1)=w(t)+b;
else

| w(t+1)=w(t)—b;
end
t=t+1,;

end
» Initial wealth wy = 20, bet b = 1, win probability p = 0.55

» Q: Shall we play?
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One lucky player

» She didn't go broke. After t = 1000 bets, her wealth is W(t) = 109
= Less likely to go broke now because wealth increased
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Two lucky players

> After t = 1000 bets, wealths are W;(t) = 109 and Wh(t) = 139
= Increasing wealth seems to be a pattern
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Ten lucky players

> Wealths W(t) after t = 1000 bets between 78 and 139

= Increasing wealth is definitely a pattern
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One unlucky player

» But this does not mean that all players will turn out as winners
= The twelfth player j = 12 goes broke
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One unlucky player

» But this does not mean that all players will turn out as winners

= The twelfth player j = 12 goes broke
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One hundred players
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Average tendency

> It is not difficult to find a line estimating the average of W(t)
= w(t)=wy+ (2p— 1)t ~ wp + 0.1t

180

160

wealth (in $)
5
8

L L L L L |
0 100 200 300 400 500 600 700 800 900 1000
bet index

Introduction to Random Processes Introduction



Where does the average tendency come from?

» Assuming we do not go broke, we can write
W(t+1) = W(t)+ <2X(t) - 1), t=0,1,2,...

» The assumption is incorrect as we saw, but suffices for simplicity

» Taking expectations on both sides and using linearity of expectation
E[W(t+1)] = E[W(t)] + (2B [X(5)] — 1)
» The expected value of Bernoulli X(t) is
EX(t)] = 1xP(X(t)=1)4+0xP(X(t)=0) = p

> Which yields = E[W(t +1)] = E[W(t)] + (2p — 1)
Applying recursively = E[W(t+1)] = wo + (2p — 1)(t + 1)

v
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Gambling as LTI system with stochastic input

w(t+1
2x(t)-1 (1)
1 —_
Accumulator
-1 _ —t Voot !

> View W(t+1) as output of LTI system with random input 2X(t) —1

t
> Recognize accumulator = W(t+1) = wp + Z (2X(7-) - 1)
7=0
» Useful, a lot we can say about sums of random variables

» Filtering random processes in signal processing, communications, ...
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Numerical analysis of simulation outcomes

» For a more accurate approximation analyze simulation outcomes

» Consider J experiments. Each yields a wealth history W;(t)

> Can estimate the average outcome via the sample average W,(t)
J
1
“iW

» Do not confuse W,(t) with E[W(t)]

> W,(t) is computed from experiments, it is a random quantity in itself
> E[W(t)] is a property of the random variable W/(t)
>
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Analysis of simulation outcomes: mean

> Expected value E[W/(t)] in black
» Sample average for J = 10 (blue), J = 20 (red), and J = 100 (magenta)
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Analysis of simulation outcomes: distribution

There is more information in the simulation’s output
Estimate the distribution function of W(t) =- Histogram
Consider a grid of points w(® ... w(M)

Indicator function of the event w(™ < W;(t) < w(m+1)

m m 1, if w(m < Wi(t) < wlm+l)
{0 < <wro} < {4 T

vvyyVvyy

» Histogram is then defined as
12
(m) (m+1)| _ — (m) (m+1)
H [t w(m } 5 Z { < Wi(t) < }
» Fraction of experiments with wealth W;(t) between w(™ and w(m+1)
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Histogram

» Distribution broadens and

0 50
wealth (i)

0 s 0 s
wealth (in) wealth (n$)
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What is this class about?

» Analysis and simulation of stochastic systems
= A system that evolves in time with some randomness
» They are usually quite complex =- Simulations

» We will learn how to model stochastic systems, e.g.,

> X(t) Bernoulli with parameter p

> W(t+1)= W(t)+1, when X(t) =1

> W(t+1) = W(t)—1, when X(t) =0
> .. how to analyze their properties, e.g., E[W(t)] = wp + (2p — 1)t
» ... and how to interpret simulations and experiments, e.g.,

P> Average tendency through sample average
» Estimate probability distributions via histograms
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Markov chains in discrete time

v

Consider discrete-time index n =10,1,2,...

» Time-dependent random state X, takes values on a countable set

> In general, states are i = 0,+1,£2,..., i.e., here the state space is Z
> If X, = i we say “the process is in state i at time n"

v

Random process is Xy, its history up to nis X, = [X,, Xp_1, ..., Xo] "
» Def: process Xy is a Markov chain (MC) if for all n > 1, i,j, x € Z"

P(Xpr1=J|Xo=1i,Xpo1=%x) =P (Xpp1 =j | Xo = i) = P}

v

Future depends only on current state X, (memoryless, Markov property)

= Future conditionally independent of the past, given the present



» Given X,, history X,_1 irrelevant for future evolution of the process

v

From the Markov property, can show that for arbitrary m > 0

P(Xotm=j| Xo=1i,Xn1=%X) =P (Xopm=Jj| Xo=1i)

v

Transition probabilities Pj; are constant (MC is time invariant)

P(Xpp1=J|Xa=1i)=P(Xi=j|Xo=1i) =Py

» Since Pj’s are probabilities they are non-negative and sum up to 1

Jj=0

P..

j >0

= Conditional probabilities satisfy the axioms



Matrix representation

» Group the Pj in a transition probability “matrix” P

o

= Not really a matrix if number of states is infinite

» Row-wise sums should be equal to one, i.e., Zf.io Pj =1 for all i



Graph representation

» A graph representation or state transition diagram is also used

PI 1 i—1 PI i Pl+1 i+1
1 2,i—1 I 1,i I ,i+1 I+1 i+2
l 1,i—2 l+1 i I+2 i+1

> Useful when number of states is infinite, skip arrows if P;j =0

» Again, sum of per-state outgoing arrow weights should be one



Example: Happy - Sad

» | can be happy (X, =0) or sad (X, =1)

= My mood tomorrow is only affected by my mood today

» Model as Markov chain with transition probabilities

0.8 0.7

Q 0.2 O
p_ (08 02 .
(o5 07) 0\3/9

0.

> Inertia = happy or sad today, likely to stay happy or sad tomorrow
» But when sad, a little less likely so (Pog > P11)



Example: Happy - Sad with memory

» Happiness tomorrow affected by today's and yesterday's mood
= Not a Markov chain with the previous state space

» Define double states HH (Happy-Happy), HS (Happy-Sad), SH, SS
» Only some transitions are possible

» HH and SH can only become HH or HS
» HS and SS can only become SH or SS

0.8
08 02 0 0
p_| 0 0 0307
08 02 0 0
0 0 03 07
\/

0.3

» Key: can capture longer time memory via state augmentation

o7



Random (drunkard’s) walk

> Step to the right w.p. p, to the left w.p. 1 —p
= Not that drunk to stay on the same place

> States are 0,+£1,+2,... (state space is Z), infinite number of states
» Transition probabilities are
Piit1=p, Piji-1=1-p

» Pj = 0 for all other transitions



position (in steps)

p =0.45

p = 0.50

Random walks behave differently if p < 1/2, p

=1/2o0rp>1/2

p = 0.55
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= With p > 1/2 diverges to the right (" almost surely)
= With p < 1/2 diverges to the left (N, almost surely)
= With p = 1/2 always come back to visit origin (almost surely)

» Because number of states is infinite we can have all states transient

> Transient states not revisited after some time (more later)



Two dimensional random walk

» Take a step in random direction E, W, S or N =

= E, W, S, N chosen with equal probability -

» States are pairs of coordinates (X, Y,)
» X, =0,+1,+2 ... and Y, =0,£1,+£2,... :

Lattude (North-South)

» Transiton probs. # 0 only for adjacent points

0 s

East: P (X1 = i4+1, Yor1 =j | Xa =i, Yo =J) =

NN i
et s

West: P (Xps1 = i—=1, Yoq1 =j| Xa =i, Yo =)
North: P (Xps1 =i, Yoy1 = j+1| Xa =i, Yo =j) =

South: P (Xpp1 =i, Yoy1 = j—1|Xa =i, Yo =j) =

i S R



More about random walks

» Some random facts of life for equiprobable random walks

> In one and two dimensions probability of returning to origin is 1
= Will almost surely return home

» In more than two dimensions, probability of returning to origin is < 1
= In three dimensions probability of returning to origin is 0.34
= Then 0.19, 0.14, 0.10, 0.08, ...



Another representation of a random walk

v

Consider an i.i.d. sequence of RVs Yy = Y1, Y2,..., Y, ...
Y, takes the value +1, P(Y,=1)=p, P(Y,=-1)=1-p

v

v

Define Xy = 0 and the cumulative sum

Xn = i Yk
k=1

= The process Xy is a random walk (same we saw earlier)

= Yy are i.i.d. steps (increments) because X, = X,_1 + Y,

v

Q: Can we formally establish the random walk is a Markov chain?
A: Since X, = X,_1 4+ Y,, n>1, and Y, independent of X,,_;

v

P(Xn :j|Xn_1Ii,Xn_2IX) IP(X,,_1+Y,, :j|X,,_1Ii,X,,_2IX)
—P(Yi=j—i):=P;



General result to identify Markov chains

Theorem
Suppose Yy = Y1, Yo,..., Y, ... are i.id. and independent of Xj.
Consider the random process Xy = X1, Xa, ..., X, ... of the form

Xn = f(Xn—la Yn)a n Z 1
Then Xy is a Markov chain with transition probabilities
Py =P (f(i, Y1) =)
» Useful result to identify Markov chains
= Often simpler than checking the Markov property

» Proof similar to the random walk special case, i.e., f(x,y) =x+y



Random walk with boundaries (gambling)

» As a random walk, but stop moving when X, =0 or X, = J

> Models a gambler that stops playing when ruined, X, =0
> Or when reaches target gains X, = J

1
P P
® o0 O
\_/
1—p 1—-p

States are 0,1, ..., J, finite number of states

v

» Transition probabilities are
Piiti=p, Piici1=1-p, Po=1 Py=1
» P; = 0 for all other transitions

» States 0 and J are called absorbing. Once there stay there forever
= The rest are transient states. Visits stop almost surely



Multiple-step transition probabilities

v

Q: What can be said about multiple transitions?
» Ex: Transition probabilities between two time slots
P =P (Xms2 =J| Xm=1i)

)

= Caution: P? is just notation, Pg # Pj x Py

» Ex: Probabilities of X1, given X, = n-step transition probabilities
Pg:P(Xm+n:j|Xm:i)
» Relation between n-, m-, and (m + n)-step transition probabilities

= Write Pé-"J“” in terms of P:T and Pg

v

All questions answered by Chapman-Kolmogorov's equations



2-step transition probabilities

v

Start considering transition probabilities between two time slots

P; =P (Xpr2=j| Xo=1)

v

Using the law of total probability

oo
P5=> P (Xora=j|Xos1 =k Xo=1i)P(Xni1 = k| Xy =1)
k=0

> In the first probability, conditioning on X, = i is unnecessary. Thus
Pi = P (Xot2 =j| Xps1 = k) P (Xop1 = k| Xy = i)
k=0
» Which by definition of transition probabilities yields

=3 PP
k=0



Relating n-, m-, and (m + n)-step probabilities

» Same argument works (condition on Xy w.l.0.g., time invariance)

PIHn = P (Xopm = | Xo = i)

» Use law of total probability, drop unnecessary conditioning and use
definitions of n-step and m-step transition probabilities

Pg’+":ZP(xm+n=j|xm=k,xozi)P(szkyxozi)
k=0

Pt =2 P (Xoin =J | X = K) P (X = k| Xo =)
k=0

o0
P;]’*” = Z PPy forall i,j and n,m >0
k=0

= These are the Chapman-Kolmogorov equations



Interpretation

v

Chapman-Kolmogorov equations are intuitive. Recall
oo
m+n __ mpn
Pyt =Y PiPi
k=0

» Between times 0 and m + n, time m occurred

v

At time m, the Markov chain is in some state X,, = k
= P{ is the probability of going from Xy =i to X, = k
= Py, is the probability of going from Xy, = k to Xinin =
= Product PP}, is then the probability of going from
Xo = i to Xpm4n = J passing through X, = k at time m

v

Since any k might have occurred, just sum over all k



Chapman-Kolmogorov equations in matrix form

v

Define the following three matrices:
= P(™ with elements P

= P() with elements P

= P(m+n) with elements ptn

v

Matrix product P(MP(") has (i,j)-th element Z(;O:O P:'Tpllzj

v

Chapman Kolmogorov in matrix form

p(m+n) — p(m)p(n)

v

Matrix of (m + n)-step transitions is product of m-step and n-step



Computing n-step transition probabilities

» For m = n =1 (2-step transition probabilities) matrix form is

P? = pp = P2

» Proceed recursively backwards from n

P = pir—Up — pr=2)pp —  — pn

» Have proved the following

Theorem
The matrix of n-step transition probabilities P(") is given by the n-th
power of the transition probability matrix P, i.e.,

p( — pn

Henceforth we write P"



Example: Happy-Sad

» Mood transitions in one day

0.8 0.7
0.2
0.8 0.2 T~
P= ( 03 07 ) ~_
0.3
» Transition probabilities between today and the day after tomorrow?
0.70 0.55

0.30
P2 _ ( 0.70 0.30 ) s
~\ 045 055
v
0.45



Example: Happy-Sad (continued)

> ... After a week and after a month

p7 _ 0.6031 0.3969 p30 _ 0.6000 0.4000
~\ 0.5953  0.4047 ~ \0.6000 0.4000

v

Matrices P and P3° almost identical = lim,_o P" exists
= Note that this is a regular limit

v

After a month transition from H to H and from S to H w.p. 0.6
= State becomes independent of initial condition (H w.p. 0.6)

v

Rationale: 1-step memory =- Initial condition eventually forgotten

>



Unconditional probabilities

v

All probabilities so far are conditional, i.e., Pjl =P (Xn = { Xo =)

= May want unconditional probabilities p;j(n) = P (X, = J)

v

Requires specification of initial conditions p;(0) = P (X = i)

v

Using law of total probability and definitions of P and p;(n)
pi(n) =P (X =j) =D P (Xo=j|Xo=1i)P(Xo=1)
i=0

= Pppi(0)
i—0

v

In matrix form (define vector p(n) = [p1(n), p2(n),...]7)

p(n) = (P")" p(0)



Example: Happy-Sad

» Transition probability matrix = P = ( 08 02 )

— T — T
1 1
—— P(Happy) —— P(Happy)
09 —— P(sad) 09 —— Pisad)
08 08
07| 07|
g 06 406
Sos Sos
e e
< 04 < 04
03 03
02 02
o1 o1
o 5 10 15 25 30 () 5 10 15 25 30
Time (days) Time (days)

» For large n probabilities p(n) are independent of initial state p(0)



Queues in communication systems

» General communication systems goal

=- Move packets from generating sources to intended destinations

» Between arrival and departure we hold packets in a memory buffer
= Want to design buffers appropriately



Non-concurrent queue

v

Time slotted in intervals of duration At
= n-th slot between times nAt and (n + 1)At

» Average arrival rate is \ packets per unit time
= Probability of packet arrival in At is A = AAt

v

Packets are transmitted (depart) at a rate of [i packets per unit time
= Probability of packet departure in At is = iAt

v

Assume no simultaneous arrival and departure (no concurrence)

= Reasonable for small At (1 and A likely to be small)



Queue evolution equations

v

@, denotes number of packets in queue (backlog) in n-th time slot

v

A, = nr. of packet arrivals, D, = nr. of departures (during n-th slot)

v

If the queue is empty @, = 0 then there are no departures
= Queue length at time n+ 1 can be written as

Qn+1 - Qn + An, if Qn =0

v

If Q, > 0, departures and arrivals may happen

Qn+1:Qn+An_Dm if Qn>0

v

A, €{0,1}, D, € {0,1} and either A, =1 or D, = 1 but not both
= Arrival and departure probabilities are



Queue evolution probabilities

v

Future queue lengths depend on current length only

v

Probability of queue length increasing

P(Qui1=i+1|Qn=1i)=P(A,=1)=), for all i

v

Queue length might decrease only if @, > 0. Probability is

P(Qui=i—1|Qu=i)=P[D,=1)=p, foralli>0

v

Queue length stays the same if it neither increases nor decreases

P(Qn+1:i|Qn:i):17A7u, foralli >0
P(Q1=0|Q,=0)=1-2

= No departures when @,, = 0 explain second equation



Queue as a Markov chain

» MC with states 0,1,2,.... Identify states with queue lengths

» Transition probabilities for / # 0 are

Piji-1 = p, Pii=1-X—p, Piiv1=A

» Fori=0: Po=1—Xand Pp; = A

1-2A 1-A—p 1-A—p 1—A—p



Numerical example: Probability propagation

» Build matrix P truncating at maximum queue length L =100
= Arrival rate A = 0.3. Departure rate ;x = 0.33
= Initial distribution p(0) = [1,0,0,...]” (queue empty)

v

Propagate probabilities (P")p(0)

Probabilities obtained are
P(Qn=1]Q =0)=pi(n)

A few i's (0, 10, 20) shown
Probability of empty queue = 0.1

T ; r

: queue length 0
queue length 10
queue length 20

v

Probabilities
vV vvY

Occupancy decreases with |

0 100 200 300 400 500 600 700 800 900 1000



Transient and recurrent states

States of a MC can be recurrent or transient

v

v

Transient states might be visited early on but visits eventually stop

v

Almost surely, X, # i for n sufficiently large (qualifications needed)

v

Visits to recurrent states keep happening forever. Fix arbitrary m

v

Almost surely, X, = i for some n > m (qualifications needed)

2 0.2

|03

1 0
e 0.6 0.6 0.6 0.7
@ Qo




Definitions

> Let f; be the probability that starting at i/, MC ever reenters state |

f,-::P(Gxnzi\XO:/):P( G Xo=1i]X :i)

n=1 n=m+1

» State / is recurrent if f; =1

= Process reenters i again and again (a.s.). Infinitely often

» State 7 is transient if f; <1
= Positive probability 1 — f; > 0 of never coming back to /



Recurrent states example

> State Rj is recurrent because it is absorbing P (X1 =R3 | Xo = R3) =1

1 0.2 0.2
) — 0.3
» State R is recurrent because Q) %D

@ o6( Jos o.e(\ 0.7
P (Xl =R ‘ Xo = Rl) =03 0.2 T@DOA

P (X2 = Ri, X1 # Ri| Xo = R1) = (0.7)(0.6)
P(Xs = Ri, X2 # Ri. X1 # Ri | Xo = Ri) = (0.7)(0.4)(0.6)

P (Xo=Ri,Xo—1 # R1,..., X1 # Ri | Xo = R1) = (0.7)(0.4)"2(0.6)

> Sum up: f,-:ZP(X,,:Rl,Xn_l#Rl,...,XHéRl]Xo:Rl)

n=1

=03+0.7 (Z 0.4"‘2) 0.6 =0.3+0.7 (1 _10 4) 06=1

n=2



Transient state example

» States T; and T, are transient

» Probability of returning to Ty is fr, = (0.6)> = 0.36
= Might come back to Ty only if it goes to T, (w.p. 0.6)
= Will come back only if it moves back from T, to Ty (w.p. 0.6)

> Likewise, fr, = (0.6)% = 0.36



Expected number of visits to states

v

Define N; as the number of visits to state / given that Xy =/

Ni=Y T{X,=i|X =i}
n=1

v

If X, =i, this is the last visit to / w.p. 1 —f;
» Prob. revisiting state / exactly n times is (n visits X no more visits)
P(N; = n) = (1 — f)

= Number of visits N; + 1 is geometric with parameter 1 — f;

v

Expected number of visits is

1 fi

= For recurrent states N; = oo a.s. and E[N;] = o0 (f; = 1)




Alternative transience/recurrence characterization

» Another way of writing E [N/]

]E[N;]ZiE[H{Xn:HXO:i}} :ipl!;

n=1

» Recall that: for transient states E[N;] = f/(1 — f;) < o0
for recurrent states E[N;] = oo

Theorem

» State i is transient if and only if Z;’il Pl < o0

oo

» State i is recurrent if and only if Y~ | Pfl = oo

» Number of future visits to transient states is finite

= If number of states is finite some states have to be recurrent



Accessibility

» Def: State j is accessible from state i if P} > 0 for some n >0

= It is possible to enter j if MC initialized at Xo =/

> Since PY =P (Xo = i|Xo = i) =1, state i is accessible from itself

» All states accessible from T; and T,
» Only Ry and R; accessible from Ry or R;
» None other than R3; accessible from itself



Communication

v

Def: States / and j are said to communicate (i < j) if
= j is accessible from i, i.e., P,;? > 0 for some n; and

= i is accessible from j, i.e., P;7 > 0 for some m

v

Communication is an equivalence relation

v

Reflexivity: i <> i

» Holds because P =1
Symmetry: If i <> j then j <> |

> If i <+ j then P; > 0 and P; > 0 from where j <+ i
Transitivity: If i <> j and j <> k, then i < k

> Just notice that P;"™ > PP > 0

v

v

v

Partitions set of states into disjoint classes (as all equivalences do)

= What are these classes?



Recurrence and communication

Theorem
If state i is recurrent and i < j, then j is recurrent

Proof.
> If i <+ j then there are /, m such that Pj; >0 and P’ > 0

> Then, for any n we have

I+n+m | pnpm
Py = PyiPii P

» Sum for all n. Note that since i is recurrent >~ P! = 0o

(oo} oo [ee]
Seyn= S myerey - (S0 oy
n=1 n=1 n=1

= Which implies j is recurrent



Recurrence and transience are class properties

Corollary
If state i is transient and i <> j, then j is transient

Proof.
> If j were recurrent, then i would be recurrent from previous theorem

O

» Recurrence is shared by elements of a communication class

= We say that recurrence is a class property
» Likewise, transience is also a class property

» MC states are separated in classes of transient and recurrent states



Irreducible Markov chains

» A MC is called irreducible if it has only one class

> All states communicate with each other
> If MC also has finite number of states the single class is recurrent
> If MC infinite, class might be transient

v

When it has multiple classes (not irreducible)

» Classes of transient states 71,7z, . ..
» Classes of recurrent states Ri1, Ro, ...

v

If MC initialized in a recurrent class Ry, stays within the class

v

If MC starts in transient class 7Tk, then it might
(a) Stay on Ty

(b) End up in another transient class 7,

(c) End up in a recurrent class R/

v

For large time index n, MC restricted to one class

= Can be separated into irreducible components



Communication classes example

(%l/—e—) > 0.3

@ 0.6 ) 0.6 0.7
0. 0.2 o 04

» Three classes
= T :={T1, T2}, class with transient states
= Ry :={Ry, R2}, class with recurrent states
= Ry := {R3}, class with recurrent state

» For large n suffices to study the irreducible components R; and R»
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