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Limiting distributions

v

MCs have one-step memory. Eventually they forget initial state

v

Q: What can we say about probabilities for large n?
mji= fim P (Xo =j| Xo = i) = lim_Pj

= Assumed that limit is independent of initial state Xo =/

» We've seen that this problem is related to the matrix power P”

p_ (08 02 p7_ ( 06031 03969
- 03 0.7 )’ o 0.5953 0.4047
pz_ (07 03 pwo _ [ 0.6000 0.4000
- 0.45 055 )’ - 0.6000 0.4000
» Matrix product converges = probs. independent of time (large n)
» All rows are equal = probs. independent of initial condition



Periodicity

v

Def: Period d of a state / is (gcd means greatest common divisor)
d =gecd{n: Pj # 0}

v

State / is periodic with period d if and only if
= P! # 0 only if nis a multiple of d
= d is the largest number with this property

v

Positive probability of returning to i only every d time steps
= If period d = 1 state is aperiodic (most often the case)

= Periodicity is a class property
P 1-p

0__9o__ "o

1 1

v

State 1 has period 2. So do 0 and 2 (class property)

v

Ex: One dimensional random walk also has period 2



Periodicity example

Example

p_( 0 1 p2_ (050 0.50 ps_ ( 0.250 0.750
~\o5 05 ) ~\ 02 075 )" ~\ 0375 0625

» P11 =0, but P, P} #0so ged{2,3,...} = 1. State 1 is aperiodic
> Py # 0. State 2 is aperiodic (had to be, since 1 + 2)
Example

(01 » (1 s (01
p_<1 0), "—(o ) p_<1 0)

> P2 =0, but P # 0 so gcd{2,4,...} = 2. State 1 has period 2
» The same is true for state 2 (since 1 > 2)

= O



Positive recurrence and ergodicity

» Recall: state / is recurrent if the MC returns to i with probability 1
= Define the return time to state / as

Ti=min{n>0:X,=i|Xo =i}

» Def: State / is positive recurrent when expected value of T; is finite

oo

E[Ti|Xo=i]=> nP(Ti=n|X =1i)<oo
n=1

> Def: State i is null recurrent if recurrent but E [T; | Xo = i] = o0
= Positive and null recurrence are class properties

= Recurrent states in a finite-state MC are positive recurrent

» Def: Jointly positive recurrent and aperiodic states are ergodic

= Irreducible MC with ergodic states is said to be an ergodic MC



Null recurrent Markov chain example

1/2 1/3 1/4

1 1/2 2/3 3/4

) 11
P(Tozz}x0=0)=§ P(To=3]%=0) = 273

1 2 1 1 1
P(To=4[X%=0)=7x3x7=577 - P(T(’:nlxozo):(n—l)X"

» State 0 is recurrent because probability of not returning is 0
(To=c0[X ) PR (n—1)xn

» Also null recurrent because expected return time is infinite

oo

E[To|X =0] =) nP(To=n|Xo=0) = Z

— (n — 1)




Limit distribution of ergodic Markov chains

Theorem

For an ergodic (i.e., irreducible, aperiodic and positive recurrent) MC,
limy— oo P,-’J? exists and is independent of the initial state i, i.e.,

S H n
m = lim P-J-

1
n—oo

Furthermore, steady-state probabilities w; > 0 are the unique nonnegative
solution of the system of linear equations

TFJ': E 7T,'P,'j, E TI'J':].
i=0 j=0

» Limit probs. independent of initial condition exist for ergodic MC

= Simple algebraic equations can be solved to find 7;

» No periodic, transient, null recurrent states, or multiple classes



Algebraic relation to determine limit probabilities

» Difficult part of theorem is to prove that m; = lim P} exists
n—oo
» To see that algebraic relation is true use total probability
o0
1 ) .
Pt = P (Xos1 =Jj| Xo =i, X0 = k) P}
i=0
o0
=>_PiPi;
i=0
> If limits exists, P;(’J."'l ~ 7 and P}, = m; (sufficiently large n)
(o]
T = Z 7T,'P,'j
i=0
> The other equation is true because the 7; are probabilities



Vector/matrix notation: Matrix limit

» More compact and illuminating using vector/matrix notation
= Finite MC with J states

» First part of theorem says that lim P” exists and
n—oo

T T ce. Ty
T T el Ty
lim P" =
n—o0
T T . Ty

» Same probabilities for all rows =- Independent of initial state

» Probability distribution for large n

lim p(n) = lim (P7)"p(0) = [m1,....m)]"

n— o0

= Independent of initial condition p(0)



Vector/matrix notation: Eigenvector

» Def: Vector limit (steady-state) distribution is 7 := [my,..., 7]

v

Limit distribution is unique solution of (1 :=[1,1,...])
m=PTm, n’l1=1

» T eigenvector associated with eigenvalue 1 of P7

» Eigenvectors are defined up to a scaling factor
> Normalize to sum 1

All other eigenvalues of PT have modulus smaller than 1

v

» If not, P" diverges, but we know P" contains n-step transition probs.
» T eigenvector associated with largest eigenvalue of P7

v

Computing 7 as eigenvector is often computationally efficient



Vector/matrix notation: Rank

» Can also write as (I is identity matrix, 0 = [0,0,...]T)

(IfPT)ﬂ'zﬂ a’l=1

v

7 has J elements, but there are J + 1 equations = Overdetermined

v

If 1 is eigenvalue of PT, then 0 is eigenvalue of | — PT
> |- PT is rank deficient, in fact rank(l - P") = J — 1
> Then, there are in fact only J linearly independent equations

» 7 is eigenvector associated with eigenvalue 0 of | — PT
» 7 spans null space of | — PT (not much significance)



Ergodic Markov chain example

» MC with transition probability matrix

0 03 07
P= 0.1 05 04
0.1 0.2 0.7

» Q: Does P correspond to an ergodic MC?

» Irreducible: all states communicate with state 2 v

» Positive recurrent: irreducible and finite v

> Aperiodic: period of state 2 is 1 v/
> Then, there exist 71, m> and 73 such that 7; = lim,_, P,-j
= Limit is independent of |



Ergodic Markov chain example (continued)

v

Q: How do we determine the limit probabilities 7;?

v

1 1 — 3 . I 3 P —
Solve system of linear equations m; = 37, miPj and > m; =1

m 0 01 01
m 03 05 0.2
3 o 0.7 04 0.7

1 1 1 1

= The blue block in the matrix above is PT

v

There are three variables and four equations
» Some equations might be linearly dependent
Indeed, summing first three equations: 1 + 72 + 73 = 71 + ™2 + 73
Always true, because probabilities in rows of P sum up to 1
A manifestation of the rank deficiency of | — P

vvyy

v

Solution yields 73 = 0.0909, 7 = 0.2987 and w3 = 0.6104



Stationary distribution

» Limit distributions are sometimes called stationary distributions
= Select initial distribution to P (Xy = i) = m; for all i

v

Probabilities at time n = 1 follow from law of total probability

P(Xi=j)=> P(Xi=j|Xo=i)P(X =i

i=1

» Definitions of Pj;, and P (Xp = i) = ;. Algebraic property of ;

P(Xi1=j)= ZP,JTr,—TrJ

= Probability distribution is unchanged

» Proceeding recursively, system initialized with P (Xo = i) = 7;
= Probability distribution invariant: P (X, = i) = 7; for all n
» MC stationary in a probabilistic sense (states change, probs. do not)



Ergodicity

» Def: Fraction of time T\") spent in i-th state by time n is

1 n
T =23 Xy =i
; ”m; {Xn =i}

» Compute expected value of Ti(")

1< 1<
]E[T.(")}:f E[l{Xp=]=-5 PXn=i
] = G L EE X = = 23 PO =)
» As n — oo, probabilities P (X, =) = m; ( ). Then
. m] _ .1 . N
nlme[T,. } = lim 23 P(Xn=i)=m
m=1
» For ergodic MCs same is true without expected value =- Ergodicity

1 n
lim 7" = lim =Y I{Xp =i} =m, as.
m=1

n—oo n—oo N



Ergodic Markov chain example

> Recall transition probability matrix

0 03 0.7
P:= 0.1 05 04
0.1 0.2 0.7
.. n . n
Visits to states, nT,-( ) Ergodic averages, Ti( )
25
—
s 07— Saes
20
fo B
I o o 20 % @ s e 70 8 s 10

» Ergodic

time time

averages slowly converge to 7 = [0.09,0.29,0.61] "



Function's ergodic average

Theorem
Consider an ergodic Markov chain with states X, = 0,1,2,... and stationary
probabilities w;. Let f(X,) be a bounded function of the state X,. Then,

1 S
nll)n;ogmzﬂf(Xm) = Zf(/)wj, a.s.

» Ergodic average — Expectation under stationary distribution 7

> Use of ergodic averages is more general than T,.(")

= T,-(") is a particular case with f(X,,) = I{X,, =i}

» Think of f(X,,) as a reward (or cost) associated with state X,

= (1/n)>°0 _, f(Xmn) is the time average of rewards (costs)



Ensemble and ergodic averages

v

Ensemble average: across different realizations of the MC

o0

E[f(X, Z P(X,,_/)—>Zf

=1

v

Ergodic average: across time for a single realization of the MC

f, :%Zf(xm)

v

These quantities are fundamentally different
= But E[f(X,)] = f, almost surely, asymptotically in n

One realization of the MC as informative as all realizations

v

= Practical value: observe/simulate only one path of the MC



Ergodicity in periodic Markov chains

v

Ergodic averages still converge if the MC is periodic

v

For irreducible, positive recurrent MC (periodic or aperiodic) define

o0 oo
7Tj: E 7T,'P,j, E 7Tj:].
i=0 Jj=0

v

Claim 1: A unique solution exists (we say 7; are well defined)

v

Claim 2: The fraction of time spent in state / converges to m;

n—oo

n
: (m_ o1 . _
lim T; —nll[’r;onZl]I{X =i} —m

v

If MC is periodic the probabilities P;} oscillate

= But fraction of time spent in state / converges to m;



Reducible Markov chains

» If MC is not irreducible it can be decomposed in transient (7x),
ergodic (&), periodic (Px) and null recurrent (Ny) components

= All these are (communication) class properties

» Limit probabilities for transient states are null
P(X,=1)—0, forall i € T
» For arbitrary ergodic component &, define conditional limits
Wj:nli)n;oP(Xn:j}Xoegk), for all j € &
> Results in pages 8 and 19 are true with this (re)defined 7;, where

= ZW"P"J" Zﬂj: 1, forallje &

€& JEEK



Reducible Markov chains (continued)

v

Likewise, for arbitrary periodic component Py (re)define 7; as

= ZW"PU’ ijzl, for all j € Py

i€Px JEPK

v

Probabilities P (X, = j ] Xo € Px) do not converge (they oscillate)
A conditional version of the result in page 22 is true

v

n

1
Jim T = Jim 51X = i| X% € P} =

v

Limit probabilities for null-recurrent states are null

P(X,=1i)—0, forall i € N



Reducible Markov chain example

» Transition matrix and state diagram of a reducible MC

0.3
1 02 0.2
0 06 02 0 02 /— ’
06 0 0 02 02 0.6 06 06 0.7
P .= 0 0 03 07 0

0 0 06 04 0 \_ .

o 0 o0 0 1 0-2 0-2 U
0.4

> States 1 and 2 are transient 7 = {1,2}
> States 3 and 4 form an ergodic class & = {3,4}
» State 5 (absorbing) is a separate ergodic class & = {5}



Reducible MC example - Limiting behavior

» As n grows the MC hits an ergodic state almost surely

= Henceforth, MC stays within ergodic component

P(Xoym€&i|Xa€&) =1, forallm

v

For large n suffices to study ergodic components
= Behaves like a MC with transition probabilities Pg,

= Or like one with transition probabilities P,

v

We can think of all MCs as ergodic
Ergodic behavior cannot be inferred a priori (before observing)

v

v

Becomes known a posteriori (after observing sufficiently large time)



Non-concurrent communication queue

v

Communication system: Move packets from source to destination

v

Between arrival and transmission hold packets in a memory buffer

v

Example engineering problem, buffer design:
> Packets arrive at a rate of 0.45 packets per unit of time
» Packets depart at a rate of 0.55 packets per unit of time
> How big should the buffer be to have a drop rate smaller than 107%7?
(i.e., one packet dropped for every million packets handled)

v

Model: Time slotted in intervals of duration At. Each time slot n
= A packet arrives with prob. X, arrival rate is A/At
= A packet is transmitted with prob. p, departure rate is p/At

» No concurrence: No simultaneous arrival and departure (small At)



Queue evolution equations (reminder)

v

@, denotes number of packets in queue (backlog) in n-th time slot

v

A, = nr. of packet arrivals, D, = nr. of departures (during n-th slot)

v

If the queue is empty @, = 0 then there are no departures
= Queue length at time n+ 1 can be written as

Qn+1 - Qn + An, if Qn =0

v

If Q, > 0, departures and arrivals may happen

Qn+1:Qn+An_Dm if Qn>0

v

A, €{0,1}, D, € {0,1} and either A, =1 or D, = 1 but not both
= Arrival and departure probabilities are



Queue evolution probabilities (reminder)

v

Future queue lengths depend on current length only

v

Probability of queue length increasing

P(Qui1=i+1|Qn=1i)=P(A,=1)=), for all i

v

Queue length might decrease only if @, > 0. Probability is

P(Qui=i—1|Qu=i)=P[D,=1)=p, foralli>0

v

Queue length stays the same if it neither increases nor decreases

P(Qn+1:i|Qn:i):17A7u, foralli >0
P(Q1=0|Q,=0)=1-2

= No departures when @,, = 0 explain second equation



Queue as a Markov chain (reminder)

» MC with states 0,1,2,.... Identify states with queue lengths

» Transition probabilities for / # 0 are

Piji-1 = p, Pii=1-X—p, Piiv1=A

» Fori=0: Po=1—Xand Pp; = A

1-2A 1-A—p 1-A—p 1—A—p



Numerical example: Limit probabilities

» Build matrix P truncating at maximum queue length L = 100
= Arrival rate A = 0.3. Departure rate y = 0.33
> Find eigenvector of P” associated with eigenvalue 1

= Yields limit probabilities 7w = lim,—c p(n)

linear scale logarithmic scale

e =2 9
2 8 8 2

°
3

°
2

Limiting probabilies
°
&

Limiting probabiliies

°
8

0.02

0O 10 20 30 40 5 60 70 8 90 100 0O 10 20 30 40 5 60 70 8 9 100
state state

» Limit probabilities appear linear in logarithmic scale

= Seemingly implying an exponential expression m; ox o (0 < ar < 1)



Limit distribution equations

0 0

© _
b \_/

JZ H

» Total probability yields
i+1
P(Xni1=1)= D P(Xor1=1]X =j)P(Xs =))
j=i—1
» Limit distribution equations for state 0 (empty queue)
mo = (1 — N)mo + pmy
» For the remaining states i # 0

T = A\Tj_1 +(1 — /\—,u)Tl',‘+,U7T,'+1



Verification of candidate solution

» Substitute candidate solution 7; = ca’ in equation for g
ca®=(1-Nca® +pucal = 1=(1-))+pa
= The above equation holds for o = A/
> Q: Does av = A/ verify the remaining equations?
» From the equation for generic ; (divide by ca/~1)
ca/ =Xca’ 4 (1 =\ — p)ca’ + pca’tt
pe® — A+ p)a+A=0

= The above quadratic equation is satisfied by a« = A/
=



Compute normalization constant

» Next, determine ¢ so that probabilities sum to 1 (> m = 1)

oo o0

i_ ¢ _
;W,’Z;C()\/M) = m—l

= Used geometric sum, need A\/p < 1 (queue stability condition)

» Solving for ¢ and substituting in 7; = ca' yields

mi = (1- \/n) (2)

» The ratio /) is the queue’s stability margin
= Probability of having fewer queued packets grows with 11/\



Queue balance equations

> Rearrange terms in equation for limit probabilities [cf. page 38]

Ao = pumy
(A 4 p)mi = A1 + pmiga

Ao is average rate at which the queue leaves state 0

Likewise (A + p)m; is the rate at which the queue leaves state /
pm is average rate at which the queue enters state 0

ATi—1 + pmit1 is rate at which the queue enters state f

vvy vy

» Limit equations prove validity of queue balance equations

Rate at which leaves = Rate at which enters

A A A



Concurrent arrival and departures

> Packets may arrive and depart in same time slot (concurrence)
= Queue evolution equations remain the same [cf. page 34]

= But queue probabilities change [cf. page 35]
> Probability of queue length increasing (for all i)
P(Qui=i+1|Q=1i)=P(A,=1)P(D,=0)=A(1-p)
» Queue length might decrease only if Q, > 0 (for all i > 0)

P(Qui=i—-1|Q,=i)=P(A,=0)P(D,=1)=(1- AN
» Queue length stays the same if it neither increases nor decreases

P(Qur1=i|Q@n=i)=Au+1-N1-p)=v, foralli>0
P(Qu1=0|Qn=0)=(1-X\)+Au



Limit distribution from queue balance equations

» Write limit distribution equations = Queue balance equations
= Rate at which leaves = Rate at which enters

ML = p)mo = p(1 — A\)my
(A =) + p(1 = N)m = M1 — p)miy + p(l = N)mia

(T=X) 4+ v v

() AL = ) h AL—p) () M- () AL = )

w(l—2A) w1 —2A) (1 —2A)

» Again, try an exponential solution m; = ca/



Solving for limit distribution

» Substitute candidate solution in equation for 7

AMl=p)e=p(l=Neca = QZM

» Same substitution in equation for generic ;
(1 = A)ca? + (M1 — p) + (1 = X)) ca+ A1 — p)c =0
= As before is solved for o = A\(1 — p)/u(1 — X)

» Find constant c to ensure Y ;o; ca’ = 1 (geometric series). Yields

= o= (1 20 (MY




Limited queue size

» Packets dropped if queue backlog exceeds buffer size J
= Many packets — large delays — packets useless upon arrival

= Also preserve memory

(1— )+ Au v AE(L- )N

17;1) H! AL —p) Hl AL —p)

(1 - w1 —=A)

» Should modify equation for state J (Rate leaves = Rate enters)
w(l =Ny =M1 — p)my—q

» 7 = ca’ with a = M\(1—p)/pu(1— N) also solves this equation (Yes!)



Compute limit distribution

» Limit probabilities are not the same because constant c is different

» To compute ¢, sum a finite geometric series

J
. 1—o/t! 1—a
— I p—
1—§ ca—cil_a = C_il—oﬂ“
i=0

» Limit probabilities for the finite queue thus are

= Recall @ = A(1 — u)/p(1 — A), and = valid for large J

> Large J approximation yields same result as infinite length queue



Simulations: Process realization

> Arrival rate A = 0.3. Departure rate p = 0.33. Resulting o ~ 0.87
» Maximum queue length J = 100. Initial state Qo = 0 (queue empty)

Queue lenght as function of time

25

L. H 4
M M‘H /\ﬁ | \“” i dﬂ

o
T

queue length
——

o
T

i i i i i i i
0 100 200 300 400 500 600 700 800
time(s)
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Simulations: Average occupancy and limit distribution

» Can estimate average time spent at each queue state
= Should coincide with the limit (stationary) distribution 7

60 states 20 states

—— limit probs —— limit probs
ergodic average ergodic average

3,
3,

Limit probabs/ergodic average

Limit probabs/ergodic average
3

5

» For i = 60 occupancy probability is m; ~ 107>
= Explains inaccurate prediction for large i (rarely visit state i)



Buffer overflow

» Closing the loop, recall our buffer design problem

> Arrival rate A = 0.45 and departure rate p = 0.55
» How big should the buffer be to have a drop rate smaller than 10767
(i.e., one packet dropped for every million packets handled)

» Q: What is the probability of buffer overflow (non-concurrent case)?
» A: Packet discarded if queue is in state J and a new packet arrives

l1—«o

m)\&‘j ~ (1 — O[))\O[J

P (overflow) = Amr; =

= With A =0.45 and ;t = 0.55, a = 0.82 = J~57

> A final caveat
= Still assuming only 1 packet arrives per time slot

= Lifting this assumption requires continuous-time MCs
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