

Introduction to Random Processes

Gonzalo Mateos Dept. of ECE and Goergen Institute for Data Science University of Rochester gmateosb@ece.rochester.edu http://www.hajim.rochester.edu/ece/sites/gmateos/

August 28, 2023

Limiting distributions

- ▶ MCs have one-step memory. Eventually they forget initial state
- Q: What can we say about probabilities for large n?

$$\pi_j := \lim_{n \to \infty} \mathsf{P}\left(X_n = j \mid X_0 = i\right) = \lim_{n \to \infty} P_{ij}^n$$

 \Rightarrow Assumed that limit is independent of initial state $X_0 = i$

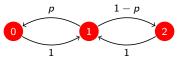
We've seen that this problem is related to the matrix power Pⁿ

$$\mathbf{P} = \begin{pmatrix} 0.8 & 0.2 \\ 0.3 & 0.7 \end{pmatrix}, \qquad \mathbf{P}^7 = \begin{pmatrix} 0.6031 & 0.3969 \\ 0.5953 & 0.4047 \end{pmatrix}$$
$$\mathbf{P}^2 = \begin{pmatrix} 0.7 & 0.3 \\ 0.45 & 0.55 \end{pmatrix}, \qquad \mathbf{P}^{30} = \begin{pmatrix} 0.6000 & 0.4000 \\ 0.6000 & 0.4000 \end{pmatrix}$$

- Matrix product converges \Rightarrow probs. independent of time (large *n*)
- ▶ All rows are equal \Rightarrow probs. independent of initial condition

Periodicity

- ▶ Def: Period d of a state i is (gcd means greatest common divisor) d = gcd {n : Pⁿ_{ii} ≠ 0}
- State *i* is periodic with period *d* if and only if
 ⇒ Pⁿ_{ii} ≠ 0 only if *n* is a multiple of *d* ⇒ *d* is the largest number with this property
- ► Positive probability of returning to *i* only every *d* time steps
 - \Rightarrow If period d = 1 state is aperiodic (most often the case)
 - \Rightarrow Periodicity is a class property



- State 1 has period 2. So do 0 and 2 (class property)
- ► Ex: One dimensional random walk also has period 2

Example

$$\mathbf{P} = \left(\begin{array}{cc} 0 & 1 \\ 0.5 & 0.5 \end{array}\right), \quad \mathbf{P}^2 = \left(\begin{array}{cc} 0.50 & 0.50 \\ 0.25 & 0.75 \end{array}\right), \quad \mathbf{P}^3 = \left(\begin{array}{cc} 0.250 & 0.750 \\ 0.375 & 0.625 \end{array}\right)$$

P₁₁ = 0, but P²₁₁, P³₁₁ ≠ 0 so gcd{2,3,...} = 1. State 1 is aperiodic
 P₂₂ ≠ 0. State 2 is aperiodic (had to be, since 1 ↔ 2)

Example

$$\mathbf{P} = \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right), \quad \mathbf{P}^2 = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right), \quad \mathbf{P}^3 = \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right), \dots$$

*P*²ⁿ⁺¹₁₁ = 0, but *P*²ⁿ₁₁ ≠ 0 so gcd{2,4,...} = 2. State 1 has period 2
 The same is true for state 2 (since 1 ↔ 2)

► Recall: state *i* is recurrent if the MC returns to *i* with probability 1
⇒ Define the return time to state *i* as

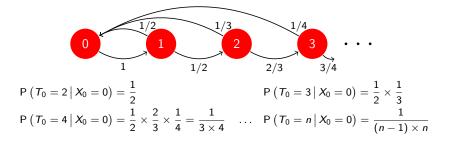
$$T_i = \min\{n > 0 : X_n = i \mid X_0 = i\}$$

Def: State *i* is positive recurrent when expected value of T_i is finite

$$\mathbb{E}\left[T_{i} \mid X_{0}=i\right] = \sum_{n=1}^{\infty} n \mathsf{P}\left(T_{i}=n \mid X_{0}=i\right) < \infty$$

- ▶ Def: State *i* is null recurrent if recurrent but E [*T_i* | *X*₀ = *i*] = ∞
 ⇒ Positive and null recurrence are class properties
 ⇒ Recurrent states in a finite-state MC are positive recurrent
- Def: Jointly positive recurrent and aperiodic states are ergodic
 ⇒ Irreducible MC with ergodic states is said to be an ergodic MC

Null recurrent Markov chain example



State 0 is recurrent because probability of not returning is 0

$$\mathsf{P}(T_0 = \infty \mid X_0 = 0) = \lim_{n \to \infty} \frac{1}{(n-1) \times n} \to 0$$

Also null recurrent because expected return time is infinite

$$\mathbb{E} \left[T_0 \mid X_0 = 0 \right] = \sum_{n=2}^{\infty} n \mathsf{P} \left(T_0 = n \mid X_0 = 0 \right) = \sum_{n=2}^{\infty} \frac{1}{(n-1)} = \infty$$

Theorem

For an ergodic (i.e., irreducible, aperiodic and positive recurrent) MC, $\lim_{n\to\infty} P_{ii}^n$ exists and is independent of the initial state *i*, *i.e.*,

 $\pi_j = \lim_{n \to \infty} P_{ij}^n$

Furthermore, steady-state probabilities $\pi_j \ge 0$ are the unique nonnegative solution of the system of linear equations

 $\pi_j = \sum_{i=0}^{\infty} \pi_i P_{ij}, \qquad \sum_{i=0}^{\infty} \pi_j = 1$

▶ No periodic, transient, null recurrent states, or multiple classes

Algebraic relation to determine limit probabilities

- Rochester
- ▶ Difficult part of theorem is to prove that $\pi_j = \lim_{n \to \infty} P_{ij}^n$ exists
- ▶ To see that algebraic relation is true use total probability

$$P_{kj}^{n+1} = \sum_{i=0}^{\infty} P(X_{n+1} = j | X_n = i, X_0 = k) P_{ki}^n$$
$$= \sum_{i=0}^{\infty} P_{ij} P_{ki}^n$$

▶ If limits exists, $P_{kj}^{n+1} \approx \pi_j$ and $P_{ki}^n \approx \pi_i$ (sufficiently large *n*)

$$\pi_j = \sum_{i=0}^{\infty} \pi_i P_{ij}$$

• The other equation is true because the π_j are probabilities

Vector/matrix notation: Matrix limit

- More compact and illuminating using vector/matrix notation
 ⇒ Finite MC with J states
- \blacktriangleright First part of theorem says that $\lim_{n \to \infty} \mathbf{P}^n$ exists and

$$\lim_{n \to \infty} \mathbf{P}^n = \begin{pmatrix} \pi_1 & \pi_2 & \dots & \pi_J \\ \pi_1 & \pi_2 & \dots & \pi_J \\ \vdots & \vdots & \vdots & \vdots \\ \pi_1 & \pi_2 & \dots & \pi_J \end{pmatrix}$$

• Same probabilities for all rows \Rightarrow Independent of initial state

Probability distribution for large n

$$\lim_{n\to\infty}\mathbf{p}(n)=\lim_{n\to\infty}(\mathbf{P}^{T})^{n}\mathbf{p}(0)=[\pi_{1},\ldots,\pi_{J}]^{T}$$

 \Rightarrow Independent of initial condition $\mathbf{p}(0)$

- **Def:** Vector limit (steady-state) distribution is $\boldsymbol{\pi} := [\pi_1, \dots, \pi_J]^T$
- Limit distribution is unique solution of $(\mathbf{1} := [1, 1, ...]^T)$

$$\boldsymbol{\pi} = \mathbf{P}^T \boldsymbol{\pi}, \qquad \boldsymbol{\pi}^T \mathbf{1} = 1$$

- π eigenvector associated with eigenvalue 1 of \mathbf{P}^{T}
 - Eigenvectors are defined up to a scaling factor
 - Normalize to sum 1
- All other eigenvalues of \mathbf{P}^T have modulus smaller than 1
 - If not, \mathbf{P}^n diverges, but we know \mathbf{P}^n contains *n*-step transition probs.
 - π eigenvector associated with largest eigenvalue of P^{T}
- Computing π as eigenvector is often computationally efficient

• Can also write as (I is identity matrix, $\mathbf{0} = [0, 0, ...]^T$)

$$\left(\mathbf{I} - \mathbf{P}^T\right) \boldsymbol{\pi} = \mathbf{0} \qquad \boldsymbol{\pi}^T \mathbf{1} = 1$$

▶ π has J elements, but there are J + 1 equations \Rightarrow Overdetermined

- If 1 is eigenvalue of \mathbf{P}^{T} , then 0 is eigenvalue of $\mathbf{I} \mathbf{P}^{T}$
 - ► $\mathbf{I} \mathbf{P}^{T}$ is rank deficient, in fact rank $(\mathbf{I} \mathbf{P}^{T}) = J 1$
 - ► Then, there are in fact only *J* linearly independent equations
- π is eigenvector associated with eigenvalue 0 of $I P^T$
 - π spans null space of $\mathbf{I} \mathbf{P}^T$ (not much significance)

MC with transition probability matrix

$$\mathbf{P} = \left(\begin{array}{ccc} 0 & 0.3 & 0.7 \\ 0.1 & 0.5 & 0.4 \\ 0.1 & 0.2 & 0.7 \end{array} \right)$$

- ▶ Q: Does P correspond to an ergodic MC?
 - Irreducible: all states communicate with state 2 \checkmark
 - Positive recurrent: irreducible and finite \checkmark
 - Aperiodic: period of state 2 is 1 \checkmark
- ► Then, there exist π_1 , π_2 and π_3 such that $\pi_j = \lim_{n \to \infty} P_{ij}^n$ ⇒ Limit is independent of *i*

Ergodic Markov chain example (continued)

- Q: How do we determine the limit probabilities π_j ?
- Solve system of linear equations $\pi_j = \sum_{i=1}^3 \pi_i P_{ij}$ and $\sum_{j=1}^3 \pi_j = 1$

$$\begin{pmatrix} \pi_1 \\ \pi_2 \\ \pi_3 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 & 0.1 & 0.1 \\ 0.3 & 0.5 & 0.2 \\ 0.7 & 0.4 & 0.7 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} \pi_1 \\ \pi_2 \\ \pi_3 \end{pmatrix}$$

 \Rightarrow The blue block in the matrix above is **P**^T

- There are three variables and four equations
 - Some equations might be linearly dependent
 - ▶ Indeed, summing first three equations: $\pi_1 + \pi_2 + \pi_3 = \pi_1 + \pi_2 + \pi_3$
 - \blacktriangleright Always true, because probabilities in rows of ${\bf P}$ sum up to 1
 - A manifestation of the rank deficiency of $\mathbf{I} \mathbf{P}^T$
- Solution yields $\pi_1 = 0.0909$, $\pi_2 = 0.2987$ and $\pi_3 = 0.6104$

Stationary distribution

- ► Limit distributions are sometimes called stationary distributions \Rightarrow Select initial distribution to P ($X_0 = i$) = π_i for all i
- Probabilities at time n = 1 follow from law of total probability

$$P(X_1 = j) = \sum_{i=1}^{\infty} P(X_1 = j | X_0 = i) P(X_0 = i)$$

• Definitions of P_{ij} , and $P(X_0 = i) = \pi_i$. Algebraic property of π_j

$$\mathsf{P}(X_1=j)=\sum_{i=1}^{\infty}P_{ij}\pi_i=\pi_j$$

\Rightarrow Probability distribution is unchanged

- Proceeding recursively, system initialized with P (X₀ = i) = π_i
 ⇒ Probability distribution invariant: P (X_n = i) = π_i for all n
- ▶ MC stationary in a probabilistic sense (states change, probs. do not)

Ergodicity

Def: Fraction of time $T_i^{(n)}$ spent in *i*-th state by time *n* is

$$T_i^{(n)} := \frac{1}{n} \sum_{m=1}^n \mathbb{I}\left\{X_m = i\right\}$$

• Compute expected value of $T_i^{(n)}$

$$\mathbb{E}\left[T_i^{(n)}\right] = \frac{1}{n} \sum_{m=1}^n \mathbb{E}\left[\mathbb{I}\left\{X_m = i\right\}\right] = \frac{1}{n} \sum_{m=1}^n \mathsf{P}\left(X_m = i\right)$$

► As
$$n \to \infty$$
, probabilities $P(X_m = i) \to \pi_i$ (ergodic MC). Then

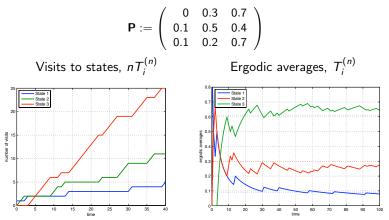
$$\lim_{n \to \infty} \mathbb{E}\left[T_i^{(n)}\right] = \lim_{n \to \infty} \frac{1}{n} \sum_{m=1}^n P(X_m = i) = \pi_i$$

• For ergodic MCs same is true without expected value \Rightarrow Ergodicity

$$\lim_{n \to \infty} T_i^{(n)} = \lim_{n \to \infty} \frac{1}{n} \sum_{m=1}^n \mathbb{I} \{X_m = i\} = \pi_i, \quad \text{a.s}$$

Ergodic Markov chain example

Recall transition probability matrix



• Ergodic averages slowly converge to $\pi = [0.09, 0.29, 0.61]^T$

Theorem

Consider an ergodic Markov chain with states $X_n = 0, 1, 2, ...$ and stationary probabilities π_i . Let $f(X_n)$ be a bounded function of the state X_n . Then,

$$\lim_{n\to\infty}\frac{1}{n}\sum_{m=1}^n f(X_m) = \sum_{j=1}^\infty f(j)\pi_j, \quad a.s.$$

- \blacktriangleright Ergodic average ightarrow Expectation under stationary distribution π
- ► Use of ergodic averages is more general than $T_i^{(n)}$ $\Rightarrow T_i^{(n)}$ is a particular case with $f(X_m) = \mathbb{I} \{X_m = i\}$
- ▶ Think of $f(X_m)$ as a reward (or cost) associated with state X_m ⇒ $(1/n) \sum_{m=1}^n f(X_m)$ is the time average of rewards (costs)

Ensemble average: across different realizations of the MC

$$\mathbb{E}\left[f(X_n)\right] = \sum_{i=1}^{\infty} f(i) \mathsf{P}\left(X_n = i\right) \to \sum_{i=1}^{\infty} f(i) \pi_i$$

► Ergodic average: across time for a single realization of the MC

$$\bar{f}_n = \frac{1}{n} \sum_{m=1}^n f(X_m)$$

► These quantities are fundamentally different ⇒ But $\mathbb{E}[f(X_n)] = \overline{f_n}$ almost surely, asymptotically in *n*

One realization of the MC as informative as all realizations
 Practical value: observe/simulate only one path of the MC

- Ergodic averages still converge if the MC is periodic
- ► For irreducible, positive recurrent MC (periodic or aperiodic) define

$$\pi_j = \sum_{i=0}^\infty \pi_i P_{ij}, \qquad \sum_{j=0}^\infty \pi_j = 1$$

- **Claim 1:** A unique solution exists (we say π_j are well defined)
- **Claim 2:** The fraction of time spent in state *i* converges to π_i

$$\lim_{n\to\infty} T_i^{(n)} = \lim_{n\to\infty} \frac{1}{n} \sum_{m=1}^n \mathbb{I}\left\{X_m = i\right\} \to \pi_i$$

If MC is periodic the probabilities Pⁿ_{ij} oscillate
 ⇒ But fraction of time spent in state i converges to π_i

- If MC is not irreducible it can be decomposed in transient (*T_k*), ergodic (*E_k*), periodic (*P_k*) and null recurrent (*N_k*) components
 ⇒ All these are (communication) class properties
- Limit probabilities for transient states are null

$$\mathsf{P}(X_n = i) \to 0$$
, for all $i \in \mathcal{T}_k$

▶ For arbitrary ergodic component \mathcal{E}_k , define conditional limits

$$\pi_j = \lim_{n \to \infty} \mathsf{P}\left(X_n = j \, \big| \, X_0 \in \mathcal{E}_k\right), \quad \text{for all } j \in \mathcal{E}_k$$

• Results in pages 8 and 19 are true with this (re)defined π_j , where

$$\pi_j = \sum_{i \in \mathcal{E}_k} \pi_i P_{ij}, \quad \sum_{j \in \mathcal{E}_k} \pi_j = 1, \quad \text{for all } j \in \mathcal{E}_k$$

• Likewise, for arbitrary periodic component \mathcal{P}_k (re)define π_j as

$$\pi_j = \sum_{i \in \mathcal{P}_k} \pi_i P_{ij}, \quad \sum_{j \in \mathcal{P}_k} \pi_j = 1, \quad \text{for all } j \in \mathcal{P}_k$$

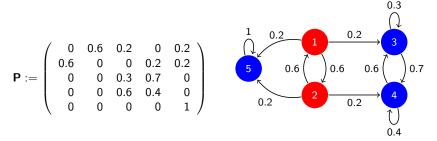
- ▶ Probabilities $P(X_n = j \mid X_0 \in P_k)$ do not converge (they oscillate)
- A conditional version of the result in page 22 is true

$$\lim_{n\to\infty} T_i^{(n)} := \lim_{n\to\infty} \frac{1}{n} \sum_{m=1}^n \mathbb{I}\left\{X_m = i \mid X_0 \in \mathcal{P}_k\right\} \to \pi_i$$

Limit probabilities for null-recurrent states are null

$$\mathsf{P}(X_n = i) \to 0$$
, for all $i \in \mathcal{N}_k$

Transition matrix and state diagram of a reducible MC



- States 1 and 2 are transient $\mathcal{T} = \{1, 2\}$
- States 3 and 4 form an ergodic class $\mathcal{E}_1 = \{3, 4\}$
- State 5 (absorbing) is a separate ergodic class $\mathcal{E}_2 = \{5\}$

- As n grows the MC hits an ergodic state almost surely
 - \Rightarrow Henceforth, MC stays within ergodic component

$$\mathsf{P}\left(X_{n+m}\in\mathcal{E}_i\,\big|\,X_n\in\mathcal{E}_i
ight)=1,\quad ext{ for all }m$$

► For large *n* suffices to study ergodic components

 \Rightarrow Behaves like a MC with transition probabilities $P_{\mathcal{E}_1}$

 \Rightarrow Or like one with transition probabilities $\textbf{P}_{\mathcal{E}_2}$

- We can think of all MCs as ergodic
- Ergodic behavior cannot be inferred a priori (before observing)
- Becomes known a posteriori (after observing sufficiently large time)

Cultural aside: Something is known a priori if its knowledge is independent of experience (MCs exhibit ergodic behavior). A posteriori knowledge depends on experience (values of the ergodic limits). They are inherently different forms of knowledge (search for Immanuel Kant).

- ► Communication system: Move packets from source to destination
- Between arrival and transmission hold packets in a memory buffer
- Example engineering problem, buffer design:
 - Packets arrive at a rate of 0.45 packets per unit of time
 - Packets depart at a rate of 0.55 packets per unit of time
 - ► How big should the buffer be to have a drop rate smaller than 10⁻⁶? (i.e., one packet dropped for every million packets handled)
- Model: Time slotted in intervals of duration Δt . Each time slot n

 \Rightarrow A packet arrives with prob. λ , arrival rate is $\lambda/\Delta t$

- \Rightarrow A packet is transmitted with prob. μ , departure rate is $\mu/\Delta t$
- No concurrence: No simultaneous arrival and departure (small Δt)

Queue evolution equations (reminder)

- Q_n denotes number of packets in queue (backlog) in *n*-th time slot
- $\mathbb{A}_n = \operatorname{nr.}$ of packet arrivals, $\mathbb{D}_n = \operatorname{nr.}$ of departures (during *n*-th slot)
- ► If the queue is empty Q_n = 0 then there are no departures
 ⇒ Queue length at time n + 1 can be written as

$$Q_{n+1} = Q_n + \mathbb{A}_n, \quad \text{if } Q_n = 0$$

• If $Q_n > 0$, departures and arrivals may happen

$$Q_{n+1} = Q_n + \mathbb{A}_n - \mathbb{D}_n$$
, if $Q_n > 0$

▶ $\mathbb{A}_n \in \{0,1\}$, $\mathbb{D}_n \in \{0,1\}$ and either $\mathbb{A}_n = 1$ or $\mathbb{D}_n = 1$ but not both ⇒ Arrival and departure probabilities are

$$\mathsf{P}(\mathbb{A}_n = 1) = \lambda, \qquad \mathsf{P}(\mathbb{D}_n = 1) = \mu$$

Queue evolution probabilities (reminder)

- ► Future queue lengths depend on current length only
- Probability of queue length increasing

$$\mathsf{P}\left(Q_{n+1}=i+1 \mid Q_n=i\right)=\mathsf{P}\left(\mathbb{A}_n=1\right)=\lambda, \qquad \text{for all } i$$

• Queue length might decrease only if $Q_n > 0$. Probability is

$$\mathsf{P}\left(\mathcal{Q}_{n+1}=i-1 \ \middle| \ \mathcal{Q}_n=i \right) = \mathsf{P}\left(\mathbb{D}_n=1 \right) = \mu, \qquad \text{for all } i>0$$

Queue length stays the same if it neither increases nor decreases

$$\begin{split} & \mathsf{P}\left(Q_{n+1}=i \mid Q_n=i\right) = 1-\lambda-\mu, \qquad \text{for all } i > 0 \\ & \mathsf{P}\left(Q_{n+1}=0 \mid Q_n=0\right) = 1-\lambda \end{split}$$

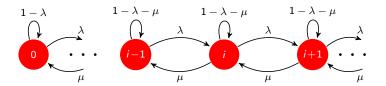
 \Rightarrow No departures when $Q_n = 0$ explain second equation

Queue as a Markov chain (reminder)

- MC with states $0, 1, 2, \ldots$ Identify states with queue lengths
- Transition probabilities for $i \neq 0$ are

$$P_{i,i-1} = \mu, \qquad P_{i,i} = 1 - \lambda - \mu, \qquad P_{i,i+1} = \lambda$$

• For
$$i = 0$$
: $P_{00} = 1 - \lambda$ and $P_{01} = \lambda$



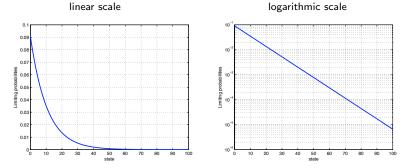
Numerical example: Limit probabilities

• Build matrix **P** truncating at maximum queue length L = 100

 \Rightarrow Arrival rate $\lambda = 0.3$. Departure rate $\mu = 0.33$

Find eigenvector of P^T associated with eigenvalue 1

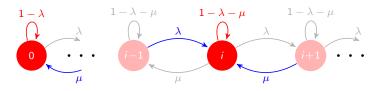
 \Rightarrow Yields limit probabilities $\pi = \lim_{n \to \infty} \mathbf{p}(n)$ (ergodic MC)



Limit probabilities appear linear in logarithmic scale

 \Rightarrow Seemingly implying an exponential expression $\pi_i \propto \alpha^i$ (0 < α < 1)

Limit distribution equations



Total probability yields

$$P(X_{n+1} = i) = \sum_{j=i-1}^{i+1} P(X_{n+1} = i | X_n = j) P(X_n = j)$$

Limit distribution equations for state 0 (empty queue)

$$\pi_0 = (1-\lambda)\pi_0 + \mu\pi_1$$

• For the remaining states $i \neq 0$

$$\pi_i = \lambda \pi_{i-1} + (1 - \lambda - \mu)\pi_i + \mu \pi_{i+1}$$

• Substitute candidate solution $\pi_i = c \alpha^i$ in equation for π_0

$$c\alpha^{0} = (1 - \lambda)c\alpha^{0} + \mu c\alpha^{1} \quad \Rightarrow \quad 1 = (1 - \lambda) + \mu \alpha$$

 \Rightarrow The above equation holds for $\alpha = \lambda/\mu$

- Q: Does $\alpha = \lambda/\mu$ verify the remaining equations?
- From the equation for generic π_i (divide by $c\alpha^{i-1}$)

$$c\alpha^{i} = \lambda c\alpha^{i-1} + (1 - \lambda - \mu)c\alpha^{i} + \mu c\alpha^{i+1}$$
$$\mu\alpha^{2} - (\lambda + \mu)\alpha + \lambda = 0$$

⇒ The above quadratic equation is satisfied by $\alpha = \lambda/\mu$ ⇒ And $\alpha = 1$, which is irrelevant

• Next, determine c so that probabilities sum to 1 $(\sum_{i=0}^{\infty} \pi_i = 1)$

$$\sum_{i=0}^\infty \pi_i = \sum_{i=0}^\infty c (\lambda/\mu)^i = rac{c}{1-\lambda/\mu} = 1$$

 \Rightarrow Used geometric sum, need $\lambda/\mu < 1$ (queue stability condition)

• Solving for c and substituting in $\pi_i = c\alpha^i$ yields

$$\pi_i = (1 - \lambda/\mu) \left(\frac{\lambda}{\mu}\right)^i$$

• The ratio μ/λ is the queue's stability margin

 \Rightarrow Probability of having fewer queued packets grows with μ/λ

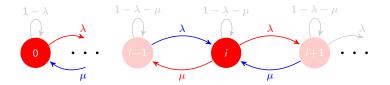
Queue balance equations

▶ Rearrange terms in equation for limit probabilities [cf. page 38]

 $\lambda \pi_0 = \mu \pi_1$ $(\lambda + \mu)\pi_i = \lambda \pi_{i-1} + \mu \pi_{i+1}$

- $\lambda \pi_0$ is average rate at which the queue leaves state 0
- Likewise $(\lambda + \mu)\pi_i$ is the rate at which the queue leaves state *i*
- $\mu\pi_1$ is average rate at which the queue enters state 0
- $\lambda \pi_{i-1} + \mu \pi_{i+1}$ is rate at which the queue enters state *i*
- Limit equations prove validity of queue balance equations

Rate at which leaves = Rate at which enters



- ▶ Packets may arrive and depart in same time slot (concurrence)
 ⇒ Queue evolution equations remain the same [cf. page 34]
 ⇒ But queue probabilities change [cf. page 35]
- Probability of queue length increasing (for all i)

$$P(Q_{n+1} = i + 1 | Q_n = i) = P(A_n = 1) P(D_n = 0) = \lambda(1 - \mu)$$

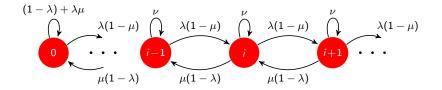
• Queue length might decrease only if $Q_n > 0$ (for all i > 0)

$$\mathsf{P}\left(\mathcal{Q}_{n+1}=i-1 \mid \mathcal{Q}_n=i\right) = \mathsf{P}\left(\mathbb{A}_n=0\right)\mathsf{P}\left(\mathbb{D}_n=1\right) = (1-\lambda)\mu$$

• Queue length stays the same if it neither increases nor decreases P $(Q_{n+1} = i | Q_n = i) = \lambda \mu + (1 - \lambda)(1 - \mu) = \nu$, for all i > 0P $(Q_{n+1} = 0 | Q_n = 0) = (1 - \lambda) + \lambda \mu$

► Write limit distribution equations ⇒ Queue balance equations ⇒ Rate at which leaves = Rate at which enters

$$egin{aligned} \lambda(1-\mu)\pi_0&=\mu(1-\lambda)\pi_1\ &ig(\lambda(1-\mu)+\mu(1-\lambda)ig)\pi_i&=\lambda(1-\mu)\pi_{i-1}+\mu(1-\lambda)\pi_{i+1} \end{aligned}$$



• Again, try an exponential solution $\pi_i = c\alpha^i$

 \blacktriangleright Substitute candidate solution in equation for π_0

$$\lambda(1-\mu)c = \mu(1-\lambda)clpha \quad \Rightarrow \quad lpha = rac{\lambda(1-\mu)}{\mu(1-\lambda)}$$

• Same substitution in equation for generic π_i

$$\mu(1-\lambda)c\alpha^{2} + (\lambda(1-\mu) + \mu(1-\lambda))c\alpha + \lambda(1-\mu)c = 0$$

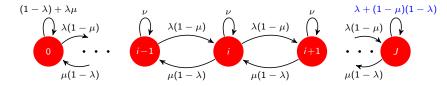
 \Rightarrow As before is solved for $\alpha = \lambda(1-\mu)/\mu(1-\lambda)$

• Find constant c to ensure $\sum_{i=0}^{\infty} c \alpha^i = 1$ (geometric series). Yields

$$\pi_i = (1-lpha) lpha^i = \left(1 - rac{\lambda(1-\mu)}{\mu(1-\lambda)}
ight) \left(rac{\lambda(1-\mu)}{\mu(1-\lambda)}
ight)$$

Limited queue size

- Packets dropped if queue backlog exceeds buffer size J
 - \Rightarrow Many packets \rightarrow large delays \rightarrow packets useless upon arrival
 - \Rightarrow Also preserve memory



Should modify equation for state J (Rate leaves = Rate enters)

$$\mu(1-\lambda)\pi_J = \lambda(1-\mu)\pi_{J-1}$$

• $\pi_i = c \alpha^i$ with $\alpha = \lambda (1 - \mu) / \mu (1 - \lambda)$ also solves this equation (Yes!)

- Limit probabilities are not the same because constant c is different
- ► To compute *c*, sum a finite geometric series

$$1 = \sum_{i=0}^{J} c \alpha^{i} = c \frac{1 - \alpha^{J+1}}{1 - \alpha} \quad \Rightarrow \quad c = \frac{1 - \alpha}{1 - \alpha^{J+1}}$$

Limit probabilities for the finite queue thus are

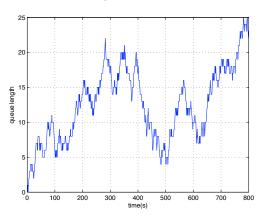
$$\pi_i = \frac{1-\alpha}{1-\alpha^{J+1}} \alpha^i \approx (1-\alpha) \alpha^i$$

 \Rightarrow Recall $lpha=\lambda(1-\mu)/\mu(1-\lambda)$, and pprox valid for large J

► Large J approximation yields same result as infinite length queue

Simulations: Process realization

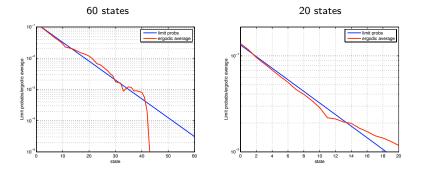
- Arrival rate $\lambda = 0.3$. Departure rate $\mu = 0.33$. Resulting $\alpha \approx 0.87$
- Maximum queue length J = 100. Initial state $Q_0 = 0$ (queue empty)



Queue lenght as function of time

Simulations: Average occupancy and limit distribution

- Can estimate average time spent at each queue state
 - \Rightarrow Should coincide with the limit (stationary) distribution π



• For i = 60 occupancy probability is $\pi_i \approx 10^{-5}$

 \Rightarrow Explains inaccurate prediction for large *i* (rarely visit state *i*)

Buffer overflow

- Closing the loop, recall our buffer design problem
 - Arrival rate $\lambda = 0.45$ and departure rate $\mu = 0.55$
 - How big should the buffer be to have a drop rate smaller than 10⁻⁶? (i.e., one packet dropped for every million packets handled)
- Q: What is the probability of buffer overflow (non-concurrent case)?
- ► A: Packet discarded if queue is in state J and a new packet arrives

P (overflow) =
$$\lambda \pi_J = \frac{1-\alpha}{1-\alpha^{J+1}} \lambda \alpha^J \approx (1-\alpha) \lambda \alpha^J$$

 \Rightarrow With $\lambda = 0.45$ and $\mu = 0.55$, $\alpha \approx 0.82 \ \Rightarrow J \approx 57$

A final caveat

- \Rightarrow Still assuming only 1 packet arrives per time slot
- \Rightarrow Lifting this assumption requires continuous-time MCs