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Limiting distributions

I MCs have one-step memory. Eventually they forget initial state

I Q: What can we say about probabilities for large n?

⇡j := lim
n!1

P
�
Xn = j

��X0 = i
�
= lim

n!1
Pn
ij

) Assumed that limit is independent of initial state X0 = i

I We’ve seen that this problem is related to the matrix power Pn

P =

✓
0.8 0.2
0.3 0.7

◆
, P7

=

✓
0.6031 0.3969
0.5953 0.4047

◆

P2
=

✓
0.7 0.3
0.45 0.55

◆
, P30

=

✓
0.6000 0.4000
0.6000 0.4000

◆

I Matrix product converges ) probs. independent of time (large n)

I All rows are equal ) probs. independent of initial condition
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Periodicity

I Def: Period d of a state i is (gcd means greatest common divisor)

d = gcd {n : Pn
ii 6= 0}

I State i is periodic with period d if and only if

) Pn
ii 6= 0 only if n is a multiple of d

) d is the largest number with this property

I Positive probability of returning to i only every d time steps

) If period d = 1 state is aperiodic (most often the case)

) Periodicity is a class property

10 2

p 1� p

1 1

I State 1 has period 2. So do 0 and 2 (class property)

I Ex: One dimensional random walk also has period 2
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Periodicity example

Example

P =

✓
0 1
0.5 0.5

◆
, P2 =

✓
0.50 0.50
0.25 0.75

◆
, P3 =

✓
0.250 0.750
0.375 0.625

◆

I P11 = 0, but P2
11,P

3
11 6= 0 so gcd{2, 3, . . .} = 1. State 1 is aperiodic

I P22 6= 0. State 2 is aperiodic (had to be, since 1 $ 2)

Example

P =

✓
0 1
1 0

◆
, P2 =

✓
1 0
0 1

◆
, P3 =

✓
0 1
1 0

◆
, . . .

I P2n+1
11 = 0, but P2n

11 6= 0 so gcd{2, 4, . . .} = 2. State 1 has period 2

I The same is true for state 2 (since 1 $ 2)
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Positive recurrence and ergodicity

I Recall: state i is recurrent if the MC returns to i with probability 1

) Define the return time to state i as

Ti = min{n > 0 : Xn = i
��X0 = i}

I Def: State i is positive recurrent when expected value of Ti is finite

E
⇥
Ti

��X0 = i
⇤
=

1X

n=1

nP
�
Ti = n

��X0 = i
�
< 1

I Def: State i is null recurrent if recurrent but E
⇥
Ti

��X0 = i
⇤
= 1

) Positive and null recurrence are class properties

) Recurrent states in a finite-state MC are positive recurrent

I Def: Jointly positive recurrent and aperiodic states are ergodic

) Irreducible MC with ergodic states is said to be an ergodic MC
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Null recurrent Markov chain example

0 1 2 3

1 1/2

1/2

2/3

1/3

3/4

1/4

. . .

P
�
T0 = 2

��X0 = 0
�
=

1

2
P
�
T0 = 3

��X0 = 0
�
=

1

2
⇥

1

3

P
�
T0 = 4

��X0 = 0
�
=

1

2
⇥

2

3
⇥

1

4
=

1

3⇥ 4
. . . P

�
T0 = n

��X0 = 0
�
=

1

(n � 1)⇥ n

I State 0 is recurrent because probability of not returning is 0

P
�
T0 = 1

��X0 = 0
�
= lim

n!1
1

(n � 1)⇥ n
! 0

I Also null recurrent because expected return time is infinite

E
⇥
T0

��X0 = 0
⇤
=

1X

n=2

nP
�
T0 = n

��X0 = 0
�
=

1X

n=2

1

(n � 1)
= 1
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Limit distribution of ergodic Markov chains

Theorem
For an ergodic (i.e., irreducible, aperiodic and positive recurrent) MC,
limn!1 Pn

ij exists and is independent of the initial state i , i.e.,

⇡j = lim
n!1

Pn
ij

Furthermore, steady-state probabilities ⇡j � 0 are the unique nonnegative
solution of the system of linear equations

⇡j =
1X

i=0

⇡iPij ,
1X

j=0

⇡j = 1

I Limit probs. independent of initial condition exist for ergodic MC

) Simple algebraic equations can be solved to find ⇡j

I No periodic, transient, null recurrent states, or multiple classes
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Algebraic relation to determine limit probabilities

I Di�cult part of theorem is to prove that ⇡j = lim
n!1

Pn
ij exists

I To see that algebraic relation is true use total probability

Pn+1
kj =

1X

i=0

P
�
Xn+1 = j

��Xn = i ,X0 = k
�
Pn
ki

=
1X

i=0

PijP
n
ki

I If limits exists, Pn+1
kj ⇡ ⇡j and Pn

ki ⇡ ⇡i (su�ciently large n)

⇡j =
1X

i=0

⇡iPij

I The other equation is true because the ⇡j are probabilities
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Vector/matrix notation: Matrix limit

I More compact and illuminating using vector/matrix notation

) Finite MC with J states

I First part of theorem says that lim
n!1

Pn exists and

lim
n!1

Pn =

0

BBB@

⇡1 ⇡2 . . . ⇡J

⇡1 ⇡2 . . . ⇡J
...

...
...

...
⇡1 ⇡2 . . . ⇡J

1

CCCA

I Same probabilities for all rows ) Independent of initial state

I Probability distribution for large n

lim
n!1

p(n) = lim
n!1

(PT )np(0) = [⇡1, . . . ,⇡J ]
T

) Independent of initial condition p(0)

Introduction to Random Processes Markov Chains 10



Vector/matrix notation: Eigenvector

I Def: Vector limit (steady-state) distribution is ⇡ := [⇡1, . . . ,⇡J ]T

I Limit distribution is unique solution of (1 := [1, 1, . . .]T )

⇡ = PT⇡, ⇡T1 = 1

I ⇡ eigenvector associated with eigenvalue 1 of PT

I Eigenvectors are defined up to a scaling factor

I Normalize to sum 1

I All other eigenvalues of PT have modulus smaller than 1
I If not, Pn

diverges, but we know Pn
contains n-step transition probs.

I ⇡ eigenvector associated with largest eigenvalue of PT

I Computing ⇡ as eigenvector is often computationally e�cient
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Vector/matrix notation: Rank

I Can also write as (I is identity matrix, 0 = [0, 0, . . .]T )

�
I� PT

�
⇡ = 0 ⇡T1 = 1

I ⇡ has J elements, but there are J + 1 equations ) Overdetermined

I If 1 is eigenvalue of PT , then 0 is eigenvalue of I� PT

I I� PT
is rank deficient, in fact rank(I� PT

) = J � 1

I Then, there are in fact only J linearly independent equations

I ⇡ is eigenvector associated with eigenvalue 0 of I� PT

I ⇡ spans null space of I� PT
(not much significance)
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Ergodic Markov chain example

I MC with transition probability matrix

P =

0

@
0 0.3 0.7

0.1 0.5 0.4
0.1 0.2 0.7

1

A

I Q: Does P correspond to an ergodic MC?
I Irreducible: all states communicate with state 2 X
I Positive recurrent: irreducible and finite X
I Aperiodic: period of state 2 is 1 X

I Then, there exist ⇡1, ⇡2 and ⇡3 such that ⇡j = limn!1 Pn
ij

) Limit is independent of i
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Ergodic Markov chain example (continued)

I Q: How do we determine the limit probabilities ⇡j?

I Solve system of linear equations ⇡j =
P3

i=1 ⇡iPij and
P3

j=1 ⇡j = 1

0

BB@

⇡1

⇡2

⇡3

1

1

CCA =

0

BB@

0 0.1 0.1
0.3 0.5 0.2
0.7 0.4 0.7
1 1 1

1

CCA

0

@
⇡1

⇡2

⇡3

1

A

) The blue block in the matrix above is PT

I There are three variables and four equations
I Some equations might be linearly dependent

I Indeed, summing first three equations: ⇡1 + ⇡2 + ⇡3 = ⇡1 + ⇡2 + ⇡3

I Always true, because probabilities in rows of P sum up to 1

I A manifestation of the rank deficiency of I� PT

I Solution yields ⇡1 = 0.0909, ⇡2 = 0.2987 and ⇡3 = 0.6104

Introduction to Random Processes Markov Chains 14



Stationary distribution

I Limit distributions are sometimes called stationary distributions

) Select initial distribution to P (X0 = i) = ⇡i for all i

I Probabilities at time n = 1 follow from law of total probability

P (X1 = j) =
1X

i=1

P
�
X1 = j

��X0 = i
�
P (X0 = i)

I Definitions of Pij , and P (X0 = i) = ⇡i . Algebraic property of ⇡j

P (X1 = j) =
1X

i=1

Pij⇡i = ⇡j

) Probability distribution is unchanged

I Proceeding recursively, system initialized with P (X0 = i) = ⇡i

) Probability distribution invariant: P (Xn = i) = ⇡i for all n

I MC stationary in a probabilistic sense (states change, probs. do not)
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Ergodicity

I Def: Fraction of time T (n)
i spent in i-th state by time n is

T (n)
i :=

1

n

nX

m=1

I {Xm = i}

I Compute expected value of T (n)
i

E
h
T (n)
i

i
=

1

n

nX

m=1

E [I {Xm = i}] = 1

n

nX

m=1

P (Xm = i)

I As n ! 1, probabilities P (Xm = i) ! ⇡i (ergodic MC). Then

lim
n!1

E
h
T (n)
i

i
= lim

n!1

1

n

nX

m=1

P (Xm = i) = ⇡i

I For ergodic MCs same is true without expected value ) Ergodicity

lim
n!1

T (n)
i = lim

n!1

1

n

nX

m=1

I {Xm = i} = ⇡i , a.s.
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Ergodic Markov chain example

I Recall transition probability matrix

P :=

0

@
0 0.3 0.7

0.1 0.5 0.4
0.1 0.2 0.7

1

A

Visits to states, nT (n)
i Ergodic averages, T (n)

i
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State 3

I Ergodic averages slowly converge to ⇡ = [0.09, 0.29, 0.61]T
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Function’s ergodic average

Theorem
Consider an ergodic Markov chain with states Xn = 0, 1, 2, . . . and stationary
probabilities ⇡j . Let f (Xn) be a bounded function of the state Xn. Then,

lim
n!1

1

n

nX

m=1

f (Xm) =
1X

j=1

f (j)⇡j , a.s.

I Ergodic average ! Expectation under stationary distribution ⇡

I Use of ergodic averages is more general than T (n)
i

) T (n)
i is a particular case with f (Xm) = I {Xm = i}

I Think of f (Xm) as a reward (or cost) associated with state Xm

) (1/n)
Pn

m=1 f (Xm) is the time average of rewards (costs)
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Ensemble and ergodic averages

I Ensemble average: across di↵erent realizations of the MC

E [f (Xn)] =
1X

i=1

f (i)P (Xn = i) !
1X

i=1

f (i)⇡i

I Ergodic average: across time for a single realization of the MC

f̄n =
1

n

nX

m=1

f (Xm)

I These quantities are fundamentally di↵erent

) But E [f (Xn)] = f̄n almost surely, asymptotically in n

I One realization of the MC as informative as all realizations

) Practical value: observe/simulate only one path of the MC

Introduction to Random Processes Markov Chains 21



Ergodicity in periodic Markov chains

I Ergodic averages still converge if the MC is periodic

I For irreducible, positive recurrent MC (periodic or aperiodic) define

⇡j =
1X

i=0

⇡iPij ,
1X

j=0

⇡j = 1

I Claim 1: A unique solution exists (we say ⇡j are well defined)

I Claim 2: The fraction of time spent in state i converges to ⇡i

lim
n!1

T (n)
i = lim

n!1

1

n

nX

m=1

I {Xm = i} ! ⇡i

I If MC is periodic the probabilities Pn
ij oscillate

) But fraction of time spent in state i converges to ⇡i
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Reducible Markov chains

I If MC is not irreducible it can be decomposed in transient (Tk),
ergodic (Ek), periodic (Pk) and null recurrent (Nk) components

) All these are (communication) class properties

I Limit probabilities for transient states are null

P (Xn = i) ! 0, for all i 2 Tk

I For arbitrary ergodic component Ek , define conditional limits

⇡j = lim
n!1

P
�
Xn = j

��X0 2 Ek
�
, for all j 2 Ek

I Results in pages 8 and 19 are true with this (re)defined ⇡j , where

⇡j =
X

i2Ek

⇡iPij ,
X

j2Ek

⇡j = 1, for all j 2 Ek
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Reducible Markov chains (continued)

I Likewise, for arbitrary periodic component Pk (re)define ⇡j as

⇡j =
X

i2Pk

⇡iPij ,
X

j2Pk

⇡j = 1, for all j 2 Pk

I Probabilities P
�
Xn = j

��X0 2 Pk

�
do not converge (they oscillate)

I A conditional version of the result in page 22 is true

lim
n!1

T (n)
i := lim

n!1

1

n

nX

m=1

I
�
Xm = i

��X0 2 Pk

 
! ⇡i

I Limit probabilities for null-recurrent states are null

P (Xn = i) ! 0, for all i 2 Nk
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Reducible Markov chain example

I Transition matrix and state diagram of a reducible MC

P :=

0

BBBB@

0 0.6 0.2 0 0.2
0.6 0 0 0.2 0.2
0 0 0.3 0.7 0

0 0 0.6 0.4 0

0 0 0 0 1

1

CCCCA

1

2

3

4

5 0.6

0.20.2

0.6

0.20.2

0.3

0.7

0.4

0.6

1

I States 1 and 2 are transient T = {1, 2}
I States 3 and 4 form an ergodic class E1 = {3, 4}
I State 5 (absorbing) is a separate ergodic class E2 = {5}
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Reducible MC example - Limiting behavior

I As n grows the MC hits an ergodic state almost surely

) Henceforth, MC stays within ergodic component

P
�
Xn+m 2 Ei

��Xn 2 Ei
�
= 1, for all m

I For large n su�ces to study ergodic components

) Behaves like a MC with transition probabilities PE1

) Or like one with transition probabilities PE2

I We can think of all MCs as ergodic

I Ergodic behavior cannot be inferred a priori (before observing)

I Becomes known a posteriori (after observing su�ciently large time)

Cultural aside: Something is known a priori if its knowledge is independent of experience (MCs

exhibit ergodic behavior). A posteriori knowledge depends on experience (values of the ergodic

limits). They are inherently di↵erent forms of knowledge (search for Immanuel Kant).

Introduction to Random Processes Markov Chains 31



Non-concurrent communication queue

I Communication system: Move packets from source to destination

I Between arrival and transmission hold packets in a memory bu↵er

I Example engineering problem, bu↵er design:
I Packets arrive at a rate of 0.45 packets per unit of time

I Packets depart at a rate of 0.55 packets per unit of time

I How big should the bu↵er be to have a drop rate smaller than 10
�6

?

(i.e., one packet dropped for every million packets handled)

I Model: Time slotted in intervals of duration �t. Each time slot n

) A packet arrives with prob. �, arrival rate is �/�t

) A packet is transmitted with prob. µ, departure rate is µ/�t

I No concurrence: No simultaneous arrival and departure (small �t)
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Queue evolution equations (reminder)

I Qn denotes number of packets in queue (backlog) in n-th time slot

I An = nr. of packet arrivals, Dn = nr. of departures (during n-th slot)

I If the queue is empty Qn = 0 then there are no departures

) Queue length at time n + 1 can be written as

Qn+1 = Qn + An, if Qn = 0

I If Qn > 0, departures and arrivals may happen

Qn+1 = Qn + An � Dn, if Qn > 0

I An 2 {0, 1}, Dn 2 {0, 1} and either An = 1 or Dn = 1 but not both

) Arrival and departure probabilities are

P (An = 1) = �, P (Dn = 1) = µ
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Queue evolution probabilities (reminder)

I Future queue lengths depend on current length only

I Probability of queue length increasing

P
�
Qn+1 = i + 1

��Qn = i
�
= P (An = 1) = �, for all i

I Queue length might decrease only if Qn > 0. Probability is

P
�
Qn+1 = i � 1

��Qn = i
�
= P (Dn = 1) = µ, for all i > 0

I Queue length stays the same if it neither increases nor decreases

P
�
Qn+1 = i

��Qn = i
�
= 1� �� µ, for all i > 0

P
�
Qn+1 = 0

��Qn = 0
�
= 1� �

) No departures when Qn = 0 explain second equation
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Queue as a Markov chain (reminder)

I MC with states 0, 1, 2, . . .. Identify states with queue lengths

I Transition probabilities for i 6= 0 are

Pi,i�1 = µ, Pi,i = 1� �� µ, Pi,i+1 = �

I For i = 0: P00 = 1� � and P01 = �

i i+1i�10

�

µ µ

��

1� �

�

µ µ

1� �� µ 1� �� µ1� �� µ

. . . . . .
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Numerical example: Limit probabilities

I Build matrix P truncating at maximum queue length L = 100

) Arrival rate � = 0.3. Departure rate µ = 0.33

I Find eigenvector of PT
associated with eigenvalue 1

) Yields limit probabilities ⇡ = limn!1 p(n) (ergodic MC)

linear scale logarithmic scale
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I Limit probabilities appear linear in logarithmic scale

) Seemingly implying an exponential expression ⇡i / ↵i
(0 < ↵ < 1)
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Limit distribution equations

i i+1i�10

�

µ µ

��

1� �

�

µ

1� �� µ 1� �� µ1� �� µ

. . . . . .

I Total probability yields

P (Xn+1 = i) =
i+1X

j=i�1

P
�
Xn+1 = i

��Xn = j
�
P (Xn = j)

I Limit distribution equations for state 0 (empty queue)

⇡0 = (1� �)⇡0 + µ⇡1

I For the remaining states i 6= 0

⇡i = �⇡i�1 + (1� �� µ)⇡i + µ⇡i+1
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Verification of candidate solution

I Substitute candidate solution ⇡i = c↵i in equation for ⇡0

c↵0 = (1� �)c↵0 + µc↵1 ) 1 = (1� �) + µ↵

) The above equation holds for ↵ = �/µ

I Q: Does ↵ = �/µ verify the remaining equations?

I From the equation for generic ⇡i (divide by c↵i�1)

c↵i = �c↵i�1 + (1� �� µ)c↵i + µc↵i+1

µ↵2 � (�+ µ)↵+ � = 0

) The above quadratic equation is satisfied by ↵ = �/µ

) And ↵ = 1, which is irrelevant
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Compute normalization constant

I Next, determine c so that probabilities sum to 1 (
P1

i=0 ⇡i = 1)

1X

i=0

⇡i =
1X

i=0

c(�/µ)i =
c

1� �/µ
= 1

) Used geometric sum, need �/µ < 1 (queue stability condition)

I Solving for c and substituting in ⇡i = c↵i yields

⇡i = (1� �/µ)

✓
�

µ

◆i

I The ratio µ/� is the queue’s stability margin

) Probability of having fewer queued packets grows with µ/�
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Queue balance equations

I Rearrange terms in equation for limit probabilities [cf. page 38]

�⇡0 = µ⇡1

(�+ µ)⇡i = �⇡i�1 + µ⇡i+1

I �⇡0 is average rate at which the queue leaves state 0

I Likewise (�+ µ)⇡i is the rate at which the queue leaves state i
I µ⇡1 is average rate at which the queue enters state 0

I �⇡i�1 + µ⇡i+1 is rate at which the queue enters state i

I Limit equations prove validity of queue balance equations

Rate at which leaves = Rate at which enters

i i+1i�10

�

µ µ

��

1� �

�

µ

1� �� µ 1� �� µ1� �� µ

. . . . . .
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Concurrent arrival and departures

I Packets may arrive and depart in same time slot (concurrence)

) Queue evolution equations remain the same [cf. page 34]

) But queue probabilities change [cf. page 35]

I Probability of queue length increasing (for all i)

P
�
Qn+1 = i + 1

��Qn = i
�
= P (An = 1)P (Dn = 0) = �(1� µ)

I Queue length might decrease only if Qn > 0 (for all i > 0)

P
�
Qn+1 = i � 1

��Qn = i
�
= P (An = 0)P (Dn = 1) = (1� �)µ

I Queue length stays the same if it neither increases nor decreases

P
�
Qn+1 = i

��Qn = i
�
= �µ+ (1� �)(1� µ) = ⌫, for all i > 0

P
�
Qn+1 = 0

��Qn = 0
�
= (1� �) + �µ
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Limit distribution from queue balance equations

I Write limit distribution equations ) Queue balance equations

) Rate at which leaves = Rate at which enters

�(1� µ)⇡0 = µ(1� �)⇡1�
�(1� µ) + µ(1� �)

�
⇡i = �(1� µ)⇡i�1 + µ(1� �)⇡i+1

i i+1i�10

�(1� µ)

µ(1� �) µ(1� �)

�(1� µ)�(1� µ)

(1� �) + �µ

�(1� µ)

µ(1� �)

⌫ ⌫⌫

. . . . . .

I Again, try an exponential solution ⇡i = c↵i
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Solving for limit distribution

I Substitute candidate solution in equation for ⇡0

�(1� µ)c = µ(1� �)c↵ ) ↵ =
�(1� µ)

µ(1� �)

I Same substitution in equation for generic ⇡i

µ(1� �)c↵2 +
�
�(1� µ) + µ(1� �)

�
c↵+ �(1� µ)c = 0

) As before is solved for ↵ = �(1� µ)/µ(1� �)

I Find constant c to ensure
P1

i=0 c↵
i = 1 (geometric series). Yields

⇡i = (1� ↵)↵i =

✓
1� �(1� µ)

µ(1� �)

◆✓
�(1� µ)

µ(1� �)

◆i

Introduction to Random Processes Markov Chains 44



Limited queue size

I Packets dropped if queue backlog exceeds bu↵er size J

) Many packets ! large delays ! packets useless upon arrival

) Also preserve memory

i i+1i�10 J

�(1 � µ)

µ(1 � �) µ(1 � �)

�(1 � µ)�(1 � µ)

(1 � �) + �µ

µ(1 � �) µ(1 � �)

� + (1 � µ)(1 � �)

�(1 � µ)

⌫ ⌫⌫

. . . . . .

I Should modify equation for state J (Rate leaves = Rate enters)

µ(1� �)⇡J = �(1� µ)⇡J�1

I ⇡i = c↵i with ↵ = �(1�µ)/µ(1��) also solves this equation (Yes!)
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Compute limit distribution

I Limit probabilities are not the same because constant c is di↵erent

I To compute c , sum a finite geometric series

1 =
JX

i=0

c↵i = c
1� ↵J+1

1� ↵
) c =

1� ↵

1� ↵J+1

I Limit probabilities for the finite queue thus are

⇡i =
1� ↵

1� ↵J+1
↵i ⇡ (1� ↵)↵i

) Recall ↵ = �(1� µ)/µ(1� �), and ⇡ valid for large J

I Large J approximation yields same result as infinite length queue
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Simulations: Process realization

I Arrival rate � = 0.3. Departure rate µ = 0.33. Resulting ↵ ⇡ 0.87

I Maximum queue length J = 100. Initial state Q0 = 0 (queue empty)

Queue lenght as function of time
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Simulations: Average occupancy and limit distribution

I Can estimate average time spent at each queue state

) Should coincide with the limit (stationary) distribution ⇡
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I For i = 60 occupancy probability is ⇡i ⇡ 10�5

) Explains inaccurate prediction for large i (rarely visit state i)
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Bu↵er overflow

I Closing the loop, recall our bu↵er design problem
I Arrival rate � = 0.45 and departure rate µ = 0.55
I How big should the bu↵er be to have a drop rate smaller than 10

�6
?

(i.e., one packet dropped for every million packets handled)

I Q: What is the probability of bu↵er overflow (non-concurrent case)?

I A: Packet discarded if queue is in state J and a new packet arrives

P (overflow) = �⇡J =
1� ↵

1� ↵J+1
�↵J ⇡ (1� ↵)�↵J

) With � = 0.45 and µ = 0.55, ↵ ⇡ 0.82 ) J ⇡ 57

I A final caveat

) Still assuming only 1 packet arrives per time slot

) Lifting this assumption requires continuous-time MCs
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