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Hidden Markov Models (HMMs)

= A Markov model where actual state is unobserved
= Transition between states are probabilistically modeled just like the
Markov process
= Typically there are observable outputs associated with hidden states

= The probability distribution of observable outputs given an hidden
states can be obtained.
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An example of HMM

0.2
0.8 0.6
HIGH LOW
0.4
0.88 0.10
>  Sunny [¢
0.10 0.60
> Cloudy [¢
0.02 i 0.30
> Rainy [¢

= Direct Observation : (SUNNY, CLOUDY, RAINY)
= Hidden States : (HIGH, LOW)
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Mathematical representation of the HMM example

States S= {51, 52} = (HIGH, LOW)
Outcomes O = {0y, Os, O3} = (SUNNY, CLOUDY, RAINY)
Initial States m; = Pr(q; = S;), m = {0.7,0.3}
Transition Ay = Pr(gq,1 = Sjlg = )

0.8 0.2
A= < 0.4 0.6 >
Emission By = by, (0s) = bg,(0;) = Pr(o; = Ojlq, = S;)

s (088 0.10 0.02
~\ 010 0.60 0.30
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Unconditional marginal probabilities

What is the chance of rain in the day 47

0= (riu =5 ) == ()

Pr(os = Oy) 0.621
g(os) = [ Pr(os= 0:) | = B™f(qy) = | 0.266
Pr(os = 03) 0.233

The chance of rain in day 4 is 23.3%
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Marginal likelihood of data in HMM

= Let A= (A4, B,n)

= For a sequence of observation o = {01, -+ , 04},

Pr(o[A) = ) Pr(o|a,\)Pr(al))

q
t t

Pr(olg,\) = []Pr(oiq,)) =[] bs(0)
=1 =1

t
Pr(q|>‘) = 7TQ1Haqi—1qi
=2

t

Z Tgy b‘h (01) H Gq;_14; b%(oi)
q

=2

Pr(o|\)
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Naive computation of the likelihood

0’)\ § :ﬂ-(h q1 01 Ha'qz 19 ql 01

= Number of possible ¢ = 2! are exponentially growing with the number
of observations
= Computational would be infeasible for large number of observations

= Algorithmic solution required for efficient computation.
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More Markov Chain Question

= If the observation was (SUNNY,SUNNY,CLOUDY,RAINY,RAINY)
from day 1 through day 5, what is the distribution of hidden states for

each day?
= Need to know Pr(¢o, \)
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Forward and backward probabilities

9 = (¢ @) q4f = (G147
o, = (o1,7--,01-1),  0f = (0441, " ,07)
; Pr(Qt - Z,O‘)\) Pr(Qt - ia 0’)‘)
Pr(¢, =io,\) = = =5 -
(6 = ilo, ) Pr(o|\) SF . Pr(g, = j.o|))
Pr(g¢,o|\) = Pr(g,o0;, ot,oﬂ)\)

Pr(oﬂqt, A) Pr(o; gy A) Pr(oglq;, A) Pr(glA)
Pr(oﬂqt, A) Pr(o; , o4, q;|\)
= /Bt(Qt)at(Qt)

If ¢(q;) and Byi(gq;) is known, Pr(g,]o, A) can be computed in a linear time.
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DP algorithm for calculating forward probability

= Key idea is to use (¢, 0;) L 0} |q;_;.
= Each of ¢, 4, ¢;, and ¢, is a Markov blanket.

Oét(l) = PI'(Ol, 04 Gy = Z|)\)
n
= Z PI‘(Ot_, 0ty qr—1 = j7 qr = Z|)\)
j=1
n
= > Pr(oy a1 = 1N Prla, = gy = 3.0 Pr(odg, = )
=1

— Z a—1(j) ajibi(or)
=1

051(’[) = Wibi(Ol)
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Conditional dependency in forward-backward algorithms

= Forward : (g, 01) L 0o, |q;_.
= Backward : 0441 L o) 4]q. ;.

see t-1 t t+1 cee
cee ot'l ot 0t+1 see
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DP algorithm for calculating backward probability

= Key idea is to use 0441 L °;1|qt+1-

ﬁt(z) = Pr(0t+17 ) 0T|qt =1, )‘)

n
= ZPT(OH-lv 0t++17 i1 = ]| gy = i, )‘)
=1

n
= ZPT(0t+1|Qt+1a A) Pr(°;-1|‘]t+1 =4 A)Pr(g1 =jlas =142
j=1

= Z Brr1(j) aijbi(oe41)

J=1

Br(i) = 1
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Putting forward and backward probabilities together

= Conditional probability of states given data

Pr(o, ¢, = Si|\)
Z?=1 Pr(o, ¢, = SjA)
ay(1) Be(4)
21 () Bi()

Pr(qt - i‘07 )‘)

= Time complexity is ©(n?T).
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Finding the most likely trajectory of hidden states

= Given a series of observations, we want to compute

arg max Pr(qlo, \)
q

= Define 6,(7) as
04(7) = max Pr(q,o|\)
q

= Use dynamic programming algorithm to find the 'most likely’ path

Hyun Min Kang Biostatistics 615/815 - Lecture 10 October 4th, 2012 17 / 33



Viterbi
[e] Tele]

The Viterbi algorithm

Initialization 01(7) = wbi(o01) for 1 < i< n.
Maintenance §4(7) = max;d¢—1(5)ajibi( o)
¢¢(0) = argmax; 0,—1(7) aji
Termination Max likelihood is max; § (%)
Optimal path can be backtracked using ¢(%)
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An HMM example

Walk \ 7>/Cl-ean|
\__/ - \__/
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An example Viterbi path

= When observations were (walk, shop, clean)

= Similar to Manhattan tourist problem.

Rainy
"\ 0.01344

Sunny
0.00259

Day 1 Day 2 Day 3
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Statistical analysis with HMM

HMM for a deterministic problem

e Given
o Given parameters A = {m, A, B}
e and data o = (01, -, 07)

e Forward-backward algorithm
e Compute Pr(g¢,lo, \)

e Viterbi algorithm
e Compute arg maxq Pr(qglo, A)

HMM for a stochastic process / algorithm

e Generate random samples of o given A
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Deterministic Inference using HMM

o If we know the exact set of parameters, the inference is deterministic
given data

¢ No stochastic process involved in the inference procedure
e Inference is deterministic just as estimation of sample mean is
deterministic

e The computational complexity of the inference procedure is
exponential using naive algorithms

e Using dynamic programming, the complexity can be reduced to

O(n*T).
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Using Stochastic Process for HMM Inference

Using random process for the inference
¢ Randomly sampling o from Pr(o|\).
¢ Estimating argmax) Pr(o|\).

e No deterministic algorithm available
e Simplex, E-M algorithm, or Simulated Annealing is possible apply

e Estimating the distribution Pr(\|o).
e Gibbs Sampling
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Recap : The E-M Algorithm

Expectation step (E-step)

o Given the current estimates of parameters 69, calculate the
conditional distribution of latent variable z.

e Then the expected log-likelihood of data given the conditional
distribution of z can be obtained

Q(9|0(t)) = Ez‘xﬂ(t) [lng(X,Z|0)]

Summar

Maximization step (M-step)
e Find the parameter that maximize the expected log-likelihood

o) = arg max Q016"

v

Hyun Min Kang Biostatistics 615/815 - Lecture 22 April 12th, 2011

12 /35



Baum-Welch
00000800

Baum-Welch for estimating arg max, Pr(o|))

Assumptions
e Transition matrix is identical between states

e a; = Pr(q,, =iq, =j) = Pr(q, = dlq,_; =)
e Emission matrix is identical between states

* bi(j) = Pr(o; = jla, = i) = Pr(ow=1 = jla,_, = i)
e This is NOT the only possible assumption.

e For example, a;; can be parameterized as a function of t.
e Multiple sets of o independently drawn from the same distribution can

be provided.
e Other assumptions will result in different formulation of E-M algorithm
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E-step of the Baum-Welch Algorithm

©® Run the forward-backward algorithm given A(7)

ai(i) = Pr(os,--- 05 q = iAD)
(

Bi(i) = Pr(op1, - ,or|g =i\
A = Prle — do APy = _2DB(D)
'Yt( ) p (Qt ’07 A ) Zk Oét(k)ﬁt(k‘)

@® Compute &;(4,7) using a(i) and B4(4)

&(i,j) = Pr(g =1 ¢4y =40, A")
a(9) ajibj(041) Bet1())
Pr(o|A(M)
(1) ajibi(041) Bet1 ()
> (k) (k) aibi(orr1) B (1)
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M-step of the Baum-Welch Algorithm

Let )\(7—+1) — (7.‘.(7+1)7A(T+1)7 B(T+1))

ﬂ_(‘r+1)(i) _ th;l Pr(qt - 7:|07 A(T)) _ th;l ’Yt(Z)

T T
A = S Prla =i aur = 40 X7) _ Ty &)
=1 Pr(g; = jlo,\™) =1 V()
bty = S Pra=ho=HoXD) | Fpy v(lo =)
> to1 Pr(g; = io, A7) 21 7:(9)

A detailed derivation can be found at

e Welch, "Hidden Markov Models and The Baum Welch Algorithm”,
IEEE Information Theory Society News Letter, Dec 2003
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