Biostatistics 615/815 Lecture 10: Hidden Markov Models

Hyun Min Kang

October 4th, 2012

Hidden Markov Models (HMMs)

- A Markov model where actual state is unobserved
 - Transition between states are probabilistically modeled just like the Markov process
- Typically there are observable outputs associated with hidden states
 - The probability distribution of observable outputs given an hidden states can be obtained.

Recap HMM Forward-backward Viterbi Biased Coin Summary

An example of HMM

- Direct Observation : (SUNNY, CLOUDY, RAINY)
 - Hidden States : (HIGH, LOW)

Mathematical representation of the HMM example

States
$$S=\{S_1,S_2\}=$$
 (HIGH, LOW) Outcomes $O=\{O_1,O_2,O_3\}=$ (SUNNY, CLOUDY, RAINY) Initial States $\pi_i=\Pr(q_1=S_i),\,\pi=\{0.7,0.3\}$ Transition $A_{ij}=\Pr(q_{t+1}=S_j|q_t=S_i)$

$$A = \left(\begin{array}{cc} 0.8 & 0.2\\ 0.4 & 0.6 \end{array}\right)$$

Emission
$$B_{ij} = b_{q_t}(o_t) = b_{S_i}(O_j) = \Pr(o_t = O_j | q_t = S_i)$$

$$B = \left(\begin{array}{ccc} 0.88 & 0.10 & 0.02 \\ 0.10 & 0.60 & 0.30 \end{array}\right)$$

Unconditional marginal probabilities

What is the chance of rain in the day 4?

$$\mathbf{f}(\mathbf{q}_4) = \begin{pmatrix} \Pr(q_4 = S_1) \\ \Pr(q_4 = S_2) \end{pmatrix} = (A^T)^3 \pi = \begin{pmatrix} 0.669 \\ 0.331 \end{pmatrix}$$

$$\mathbf{g}(o_4) = \begin{pmatrix} \Pr(o_4 = O_1) \\ \Pr(o_4 = O_2) \\ \Pr(o_4 = O_3) \end{pmatrix} = B^T \mathbf{f}(\mathbf{q}_4) = \begin{pmatrix} 0.621 \\ 0.266 \\ 0.233 \end{pmatrix}$$

The chance of rain in day 4 is 23.3%

Marginal likelihood of data in HMM

- Let $\lambda = (A, B, \pi)$
- For a sequence of observation $\mathbf{o} = \{o_1, \dots, o_t\}$,

$$\begin{split} & \Pr(\mathbf{o}|\lambda) &= \sum_{\mathbf{q}} \Pr(\mathbf{o}|\mathbf{q},\lambda) \Pr(\mathbf{q}|\lambda) \\ & \Pr(\mathbf{o}|\mathbf{q},\lambda) &= \prod_{i=1}^t \Pr(o_i|q_i,\lambda) = \prod_{i=1}^t b_{q_i}(o_i) \\ & \Pr(\mathbf{q}|\lambda) &= \pi_{q_1} \prod_{i=2}^t a_{q_{i-1}q_i} \\ & \Pr(\mathbf{o}|\lambda) &= \sum_{\mathbf{q}} \pi_{q_1} b_{q_1}(o_1) \prod_{i=2}^t a_{q_{i-1}q_i} b_{q_i}(o_i) \end{split}$$

Naive computation of the likelihood

$$\Pr(\mathbf{o}|\lambda) = \sum_{\mathbf{q}} \pi_{q_1} b_{q_1}(o_1) \prod_{i=2}^t a_{q_{i-1}q_i} b_{q_i}(o_i)$$

- Number of possible $q=2^t$ are exponentially growing with the number of observations
- Computational would be infeasible for large number of observations
- Algorithmic solution required for efficient computation.

More Markov Chain Question

- If the observation was (SUNNY,SUNNY,CLOUDY,RAINY)RAINY) from day 1 through day 5, what is the distribution of hidden states for each day?
- Need to know $Pr(q_t|\mathbf{o},\lambda)$

Forward and backward probabilities

$$\mathbf{q}_{t}^{-} = (q_{1}, \cdots, q_{t-1}), \quad \mathbf{q}_{t}^{+} = (q_{t+1}, \cdots, q_{T})$$

$$\mathbf{o}_{t}^{-} = (o_{1}, \cdots, o_{t-1}), \quad \mathbf{o}_{t}^{+} = (o_{t+1}, \cdots, o_{T})$$

$$\Pr(q_{t} = i | \mathbf{o}, \lambda) = \frac{\Pr(q_{t} = i, \mathbf{o} | \lambda)}{\Pr(\mathbf{o} | \lambda)} = \frac{\Pr(q_{t} = i, \mathbf{o} | \lambda)}{\sum_{j=1}^{n} \Pr(q_{t} = j, \mathbf{o} | \lambda)}$$

$$\Pr(q_{t}, \mathbf{o} | \lambda) = \Pr(q_{t}, \mathbf{o}_{t}^{-}, o_{t}, \mathbf{o}_{t}^{+} | \lambda)$$

$$= \Pr(\mathbf{o}_{t}^{+} | q_{t}, \lambda) \Pr(\mathbf{o}_{t}^{-} | q_{t}, \lambda) \Pr(o_{t} | q_{t}, \lambda) \Pr(q_{t} | \lambda)$$

$$= \Pr(\mathbf{o}_{t}^{+} | q_{t}, \lambda) \Pr(\mathbf{o}_{t}^{-}, o_{t}, q_{t} | \lambda)$$

$$= \beta_{t}(q_{t}) \alpha_{t}(q_{t})$$

If $\alpha_t(q_t)$ and $\beta_t(q_t)$ is known, $\Pr(q_t|\mathbf{o},\lambda)$ can be computed in a linear time.

DP algorithm for calculating forward probability

- Key idea is to use $(q_t, o_t) \perp \mathbf{o}_t^- | \mathbf{q}_{t-1}$.
- Each of q_{t-1} , q_t , and q_{t+1} is a Markov blanket.

$$\alpha_{t}(i) = \Pr(o_{1}, \dots, o_{t}, q_{t} = i | \lambda)$$

$$= \sum_{j=1}^{n} \Pr(\mathbf{o}_{t}^{-}, o_{t}, q_{t-1} = j, q_{t} = i | \lambda)$$

$$= \sum_{j=1}^{n} \Pr(\mathbf{o}_{t}^{-}, q_{t-1} = j | \lambda) \Pr(q_{t} = i | q_{t-1} = j, \lambda) \Pr(o_{t} | q_{t} = i, \lambda)$$

$$= \sum_{j=1}^{n} \alpha_{t-1}(j) a_{ji} b_{i}(o_{t})$$

$$\alpha_{1}(i) = \pi_{i} b_{i}(o_{1})$$

- Forward : $(q_t, o_t) \perp \mathbf{o}_t^- | \mathbf{q}_{t-1}$.
- Backward : $o_{t+1} \perp \mathbf{o}_{t+1}^+ | \mathbf{q}_{t+1}$.

DP algorithm for calculating backward probability

• Key idea is to use $o_{t+1} \perp \mathbf{o}_{t+1}^+ | \mathbf{q}_{t+1}.$

$$\beta_{t}(i) = \Pr(o_{t+1}, \dots, o_{T} | q_{t} = i, \lambda)$$

$$= \sum_{j=1}^{n} \Pr(o_{t+1}, \mathbf{o}_{t+1}^{+}, q_{t+1} = j | q_{t} = i, \lambda)$$

$$= \sum_{j=1}^{n} \Pr(o_{t+1} | q_{t+1}, \lambda) \Pr(\mathbf{o}_{t+1}^{+} | q_{t+1} = j, \lambda) \Pr(q_{t+1} = j | q_{t} = i, \lambda)$$

$$= \sum_{j=1}^{n} \beta_{t+1}(j) a_{ij} b_{j}(o_{t+1})$$

$$\beta_{T}(i) = 1$$

Putting forward and backward probabilities together

Conditional probability of states given data

$$\Pr(q_t = i | \mathbf{o}, \lambda) = \frac{\Pr(\mathbf{o}, q_t = S_i | \lambda)}{\sum_{j=1}^n \Pr(\mathbf{o}, q_t = S_j | \lambda)}$$
$$= \frac{\alpha_t(i)\beta_t(i)}{\sum_{j=1}^n \alpha_t(j)\beta_t(j)}$$

• Time complexity is $\Theta(n^2 T)$.

Finding the most likely trajectory of hidden states

Given a series of observations, we want to compute

$$\arg\max_{\mathbf{q}}\Pr(\mathbf{q}|\mathbf{o},\lambda)$$

Define $\delta_t(i)$ as

$$\delta_t(i) = \max_{\mathbf{q}} \Pr(\mathbf{q}, \mathbf{o} | \lambda)$$

Use dynamic programming algorithm to find the 'most likely' path

The Viterbi algorithm

Initialization $\delta_1(i) = \pi b_i(o_1)$ for $1 \le i \le n$.

Maintenance $\delta_t(i) = \max_i \delta_{t-1}(j) a_{ii} b_i(o_t)$ $\phi_t(i) = \arg\max_i \delta_{t-1}(i) a_{ii}$

Termination Max likelihood is $\max_i \delta_T(i)$

Optimal path can be backtracked using $\phi_t(i)$

ecap HMM Forward-backward **Viterbi** Biased Coin Summary

00 000000 000000 **00●0** 00000000000 0

An HMM example

An example Viterbi path

- When observations were (walk, shop, clean)
- Similar to Manhattan tourist problem.

Statistical analysis with HMM

HMM for a deterministic problem

- Given
 - Given parameters $\lambda = \{\pi, A, B\}$
 - and data $\mathbf{o} = (o_1, \cdots, o_T)$
- Forward-backward algorithm
 - Compute $Pr(q_t|\mathbf{o},\lambda)$
- Viterbi algorithm
 - Compute $\arg \max_{\mathbf{q}} \Pr(\mathbf{q}|\mathbf{o},\lambda)$

HMM for a stochastic process / algorithm

• Generate random samples of **o** given λ

Deterministic Inference using HMM

- If we know the exact set of parameters, the inference is deterministic given data
 - No stochastic process involved in the inference procedure
 - Inference is deterministic just as estimation of sample mean is deterministic
- The computational complexity of the inference procedure is exponential using naive algorithms
- Using dynamic programming, the complexity can be reduced to $O(n^2\,T)$.

CTMP

Using Stochastic Process for HMM Inference

Using random process for the inference

Baum-Welch

00000000

- Randomly sampling **o** from $Pr(\mathbf{o}|\lambda)$.
- Estimating $\arg \max_{\lambda} \Pr(\mathbf{o}|\lambda)$.
 - No deterministic algorithm available
 - Simplex, E-M algorithm, or Simulated Annealing is possible apply
- Estimating the distribution $Pr(\lambda | \mathbf{o})$.
 - Gibbs Sampling

Recap: The E-M Algorithm

Expectation step (E-step)

- Given the current estimates of parameters $\theta^{(t)}$, calculate the conditional distribution of latent variable z.
- Then the expected log-likelihood of data given the conditional distribution of z can be obtained

$$Q(\theta|\theta^{(t)}) = \mathbf{E}_{\mathbf{z}|\mathbf{x},\theta^{(t)}} \left[\log p(\mathbf{x}, \mathbf{z}|\theta) \right]$$

Maximization step (M-step)

Find the parameter that maximize the expected log-likelihood

$$\theta^{(t+1)} = \arg\max_{\theta} Q(\theta|\theta^t)$$

Baum-Welch for estimating $\arg \max_{\lambda} \Pr(\mathbf{o}|\lambda)$

Assumptions

- Transition matrix is identical between states
 - $a_{ij} = \Pr(\mathbf{q}_{t+1} = i | \mathbf{q}_t = j) = \Pr(\mathbf{q}_t = i | \mathbf{q}_{t-1} = j)$
- Emission matrix is identical between states
 - $b_i(j) = \Pr(\mathbf{o}_t = j | \mathbf{q}_t = i) = \Pr(\mathbf{o}_{t=1} = j | \mathbf{q}_{t-1} = i)$
- This is NOT the only possible assumption.
 - For example, a_{ij} can be parameterized as a function of t.
 - Multiple sets of o independently drawn from the same distribution can be provided.
 - Other assumptions will result in different formulation of E-M algorithm

E-step of the Baum-Welch Algorithm

1 Run the forward-backward algorithm given $\lambda^{(\tau)}$

$$\alpha_{t}(i) = \Pr(o_{1}, \dots, o_{t}, q_{t} = i | \lambda^{(\tau)})$$

$$\beta_{t}(i) = \Pr(o_{t+1}, \dots, o_{T} | q_{t} = i, \lambda^{(\tau)})$$

$$\gamma_{t}(i) = \Pr(q_{t} = i | \mathbf{o}, \lambda^{(\tau)}) = \frac{\alpha_{t}(i)\beta_{t}(i)}{\sum_{k} \alpha_{t}(k)\beta_{t}(k)}$$

2 Compute $\xi_t(i,j)$ using $\alpha_t(i)$ and $\beta_t(i)$

$$\xi_{t}(i,j) = \Pr(q_{t} = i, q_{t+1} = j | \mathbf{o}, \lambda^{(\tau)})$$

$$= \frac{\alpha_{t}(i) a_{ji} b_{j}(o_{t+1}) \beta_{t+1}(j)}{\Pr(\mathbf{o} | \lambda^{(\tau)})}$$

$$= \frac{\alpha_{t}(i) a_{ji} b_{j}(o_{t+1}) \beta_{t+1}(j)}{\sum_{(k,l)} \alpha_{t}(k) a_{lk} b_{l}(o_{t+1}) \beta_{t+1}(l)}$$

M-step of the Baum-Welch Algorithm

$$\begin{split} \text{Let } \lambda^{(\tau+1)} &= (\pi^{(\tau+1)}, A^{(\tau+1)}, B^{(\tau+1)}) \\ \pi^{(\tau+1)}(i) &= \frac{\sum_{t=1}^{T} \Pr(q_t = i | \mathbf{o}, \lambda^{(\tau)})}{T} = \frac{\sum_{t=1}^{T} \gamma_t(i)}{T} \\ a^{(\tau+1)}_{ij} &= \frac{\sum_{t=1}^{T-1} \Pr(q_t = j, q_{t+1} = i | \mathbf{o}, \lambda^{(\tau)})}{\sum_{t=1}^{T-1} \Pr(q_t = j | \mathbf{o}, \lambda^{(\tau)})} = \frac{\sum_{t=1}^{T-1} \xi_t(j, i)}{\sum_{t=1}^{T-1} \gamma_t(j)} \\ b_i(k)^{(\tau+1)} &= \frac{\sum_{t=1}^{T} \Pr(q_t = i, o_t = k | \mathbf{o}, \lambda^{(\tau)})}{\sum_{t=1}^{T} \Pr(q_t = i | \mathbf{o}, \lambda^{(\tau)})} = \frac{\sum_{t=1}^{T} \gamma_t(i) I(o_t = k)}{\sum_{t=1}^{T} \gamma_t(i)} \end{split}$$

A detailed derivation can be found at

 Welch, "Hidden Markov Models and The Baum Welch Algorithm", IEEE Information Theory Society News Letter, Dec 2003

