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Exponential distribution

I Exponential RVs often model times at which events occur

) Or time elapsed between occurrence of random events

I RV T ⇠ exp(�) is exponential with parameter � if its pdf is

fT (t) = �e��t , for all t � 0

I Cdf, integral of the pdf, is ) FT (t) = P (T  t) = 1� e��t

) Complementary (c)cdf is ) P(T � t) = 1� FT (t) = e��t

pdf (� = 1) cdf (� = 1)
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Expected value

I Expected value of time T ⇠ exp(�) is

E [T ] =

Z 1

0
t�e��tdt = �te��t

����
1

0

+

Z 1

0
e��tdt = 0 +

1

�

) Integrated by parts with u = t, dv = �e��tdt

I Mean time is inverse of parameter �

) � is rate/frequency of events happening at intervals T

) Interpret: Average of �t events by time t

I Bigger � ) smaller expected times, larger frequency of events
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S3

T3 ��
S4

T4 ��
S5

T5 ��
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T10

t
�����
t = 0

�����
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�����
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Second moment and variance

I For second moment also integrate by parts (u = t2, dv = �e��tdt)

E
⇥
T 2

⇤
=

Z 1

0
t2�e��tdt = �t2e��t

����
1

0

+

Z 1

0
2te��tdt

I First term is 0, second is (2/�)E [T ]

E
⇥
T 2

⇤
=

2

�

Z 1

0
t�e��t =

2

�2

I The variance is computed from the mean and second moment

var [T ] = E
⇥
T 2

⇤
� E2[T ] =

2

�2
� 1

�2
=

1

�2

) Parameter � controls mean and variance of exponential RV
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Memoryless random times

I Def: Consider random time T . We say time T is memoryless if

P
�
T > s + t

��T > t
�
= P (T > s)

I Probability of waiting s extra units of time (e.g., seconds) given that
we waited t seconds, is just the probability of waiting s seconds

) System does not remember it has already waited t seconds

) Same probability irrespectively of time already elapsed

Ex: Chemical reaction A+ B ! AB occurs when molecules A and B
“collide”. A, B move around randomly. Time T until reaction
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Exponential RVs are memoryless

I Write memoryless property in terms of joint pdf

P
�
T > s + t

��T > t
�
=

P (T > s + t,T > t)

P (T > t)
= P (T > s)

I Notice event {T > s + t,T > t} is equivalent to {T > s + t}
) Replace P (T > s + t,T > t) = P (T > s + t) and reorder

P (T > s + t) = P (T > t)P (T > s)

I If T ⇠ exp(�), ccdf is P (T > t) = e��t so that

P (T > s + t) = e��(s+t) = e��te��s = P (T > t) P (T > s)

I If random time T is exponential ) T is memoryless
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Continuous memoryless RVs are exponential

I Consider a function g(t) with the property g(t + s) = g(t)g(s)

I Q: Functional form of g(t)? Take logarithms

log g(t + s) = log g(t) + log g(s)

) Only holds for all t and s if log g(t) = ct for some constant c

) Which in turn, can only hold if g(t) = ect for some constant c

I Compare observation with statement of memoryless property

P (T > s + t) = P (T > t) P (T > s)

) It must be P (T > t) = ect for some constant c

I T continuous: only true for exponential T ⇠ exp(�c)

I T discrete: only geometric P (T > t) = (1� p)t with (1� p) = ec

I If continuous random time T is memoryless ) T is exponential
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Main memoryless property result

Theorem
A continuous random variable T is memoryless if and only if it is
exponentially distributed. That is

P
�
T > s + t

��T > t
�
= P (T > s)

if and only if fT (t) = �e��t for some � > 0

I Exponential RVs are memoryless. Do not remember elapsed time

) Only type of continuous memoryless RVs

I Discrete RV T is memoryless if and only of it is geometric

) Geometrics are discrete approximations of exponentials

) Exponentials are continuous limits of geometrics

I Exponential = time until success , Geometric = nr. trials until success
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Exponential times example

I First customer’s arrival to a store takes T ⇠ exp(1/10) minutes
) Suppose 5 minutes have passed without an arrival

I Q: How likely is it that the customer arrives within the next 3 mins.?

I Use memoryless property of exponential T

P
�
T  8

��T > 5
�
= 1� P

�
T > 8

��T > 5
�

= 1� P (T > 3) = 1� e�3� = 1� e�0.3

I Q: How likely is it that the customer arrives after time T = 9?

P
�
T > 9

��T > 5
�
= P (T > 4) = e�4� = e�0.4

I Q: What is the expected additional time until the first arrival?

I Additional time is T � 5, and P
�
T � 5 > t

��T > 5
�
= P (T > t)

E
⇥
T � 5

��T > 5
⇤
= E [T ] = 1/� = 10
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Time to first event

I Independent exponential RVs T1, T2 with parameters �1, �2

I Q: Prob. distribution of time to first event, i.e., T := min(T1,T2)?

) To have T > t we need both T1 > t and T2 > t

I Using independence of T1 and T2 we can write

P (T > t) = P (T1 > t,T2 > t) = P (T1 > t) P (T2 > t)

I Substituting expressions of exponential ccdfs

P (T > t) = e��1te��2t = e�(�1+�2)t

I T := min(T1,T2) is exponentially distributed with parameter �1+�2

I In general, for n independent RVs Ti ⇠ exp(�i ) define T := mini Ti

) T is exponentially distributed with parameter
Pn

i=1 �i
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First event to happen

I Q: Prob. P (T1 < T2) of T1 ⇠ exp(�1) happening before T2 ⇠ exp(�2)?

I Condition on T2 = t, integrate over the pdf of T2, independence

P (T1 < T2) =

Z 1

0
P
�
T1 < t

��T2 = t
�
fT2(t) dt =

Z 1

0
FT1(t)fT2(t) dt

I Substitute expressions for exponential pdf and cdf

P (T1 < T2) =

Z 1

0
(1� e��1t)�2e

��2t dt =
�1

�1 + �2

I Either T1 comes before T2 or vice versa, hence

P (T2 < T1) = 1� P (T1 < T2) =
�2

�1 + �2

) Probabilities are relative values of rates (parameters)

I Larger rate ) smaller average ) higher prob. happening first
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Additional properties of exponential RVs

I Consider n independent RVs Ti ⇠ exp(�i ). Ti time to i-th event

I Probability of j-th event happening first

P
⇣
Tj = min

i
Ti

⌘
=

�jPn
i=1 �i

, j = 1, . . . , n

I Time to first event and rank ordering of events are independent

P
⇣
min
i

Ti � t,T i1 < . . . < Tin

⌘
= P

⇣
min
i

Ti � t
⌘
P (Ti1 < . . . < Tin)

I Suppose T ⇠ exp(�), independent of non-negative RV X

I Strong memoryless property asserts

P
�
T > X + t

��T > X
�
= P (T > t)

) Also forgets random but independent elapsed times
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Strong memoryless property example

I Independent customer arrival times Ti ⇠ exp(�i ), i = 1, . . . , 3

) Suppose customer 3 arrives first, i.e., min(T1,T2) > T3

I Q: Probability that time between first and second arrival exceeds t?

I We want to compute

P
�
min(T1,T2)� T3 > t

�� min(T1,T2) > T3

�

I Denote Ti2 := min(T1,T2) the time to second arrival

) Recall Ti2 ⇠ exp(�1 + �2), Ti2 independent of Ti1 = T3

I Apply the strong memoryless property

P
�
Ti2 � T3 > t

��Ti2 > T3

�
= P (Ti2 > t) = e�(�1+�2)t
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Probability of event in infinitesimal time

I Q: Probability of an event happening in infinitesimal time h?

I Want P (T < h) for small h

P (T < h) =

Z h

0
�e��t dt ⇡ �h

) Equivalent to
@P (T < t)

@t

����
t=0

= �

I Sometimes also write P (T < h) = �h + o(h)

) o(h) implies lim
h!0

o(h)

h
= 0

) Read as “negligible with respect to h”

I Q: Two independent events in infinitesimal time h?

P (T1  h,T2  h) ⇡ (�1h)(�2h) = �1�2h
2 = o(h)
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Counting processes

I Random process N(t) in continuous time t 2 R+

I Def: Counting process N(t) counts number of events by time t

I Nonnegative integer valued: N(0) = 0, N(t) 2 {0, 1, 2, . . .}
I Nondecreasing: N(s)  N(t) for s < t
I Event counter: N(t)� N(s) = number of events in interval (s, t]

I N(t) continuous from the right
I N(S4)� N(S2) = 2, while N(S4)� N(S2 � ✏) = 3 for small ✏ > 0

Ex.1: # text messages (SMS) typed
since beginning of class

Ex.2: # economic crises since 1900

Ex.3: # customers at Wegmans since
8 am this morning t

N(t)

1
2
3
4
5
6

S1 S2 S3 S4 S5 S6
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Independent increments

I Consider times s1 < t1 < s2 < t2 and intervals (s1, t1] and (s2, t2]

) N(t1)� N(s1) events occur in (s1, t1]

) N(t2)� N(s2) events occur in (s2, t2]

I Def: Independent increments implies latter two are independent

P (N(t1)� N(s1) = k ,N(t2)� N(s2) = l)

= P (N(t1)� N(s1) = k) P (N(t2)� N(s2) = l)

I Number of events in disjoint time intervals are independent

Ex.1: Likely true for SMS, except for “have to send” messages

Ex.2: Most likely not true for economic crises (business cycle)

Ex.3: Likely true for Wegmans, except for unforeseen events (storms)

I Does not mean N(t) independent of N(s), say for t > s

) These events are clearly dependent, since N(t) is at least N(s)
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Stationary increments

I Consider time intervals (0, t] and (s, s + t]

) N(t) events occur in (0, t]

) N(s + t)� N(s) events in (s, s + t]

I Def: Stationary increments implies latter two have same prob. dist.

P (N(s + t)� N(s) = k) = P (N(t) = k)

I Prob. dist. of number of events depends on length of interval only

Ex.1: Likely true if lecture is good and you keep interest in the class

Ex.2: Maybe true if you do not believe we become better at preventing crises

Ex.3: Most likely not true because of, e.g., rush hours and slow days
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Poisson process

I Def: A counting process N(t) is a Poisson process if
(a) The process has stationary and independent increments
(b) The number of events in (0, t] has Poisson distribution with mean �t

P (N(t) = n) = e��t (�t)
n

n!

I An equivalent definition is the following
(i) The process has stationary and independent increments
(ii) Single event in infinitesimal time ) P (N(h) = 1) = �h + o(h)
(iii) Multiple events in infinitesimal time ) P (N(h) > 1) = o(h)

) A more intuitive definition (even hard to grasp now)

I Conditions (i) and (a) are the same
I That (b) implies (ii) and (iii) is obvious

I Substitute small h in Poisson pmf’s expression for P (N(t) = n)

I To see that (ii) and (iii) imply (b) requires some work
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What is a Poisson process?

I Fundamental defining properties of a Poisson process
I Events happen in small interval h with probability �h proportional to h
I Whether event happens in an interval has no e↵ect on other intervals

I Modeling questions
Q1: Expect probability of event proportional to length of interval?
Q2: Expect subsequent intervals to behave independently?

) If positive, then a Poisson process model is appropriate

I Typically arise in a large population of agents acting independently

) Larger interval, larger chance an agent takes an action

) Action of one agent has no e↵ect on action of other agents

) Has therefore negligible e↵ect on action of group
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Examples of Poisson processes

Ex.1: Number of people arriving at subway station. Number of cars
arriving at a highway entrance. Number of customers entering a
store ... Large number of agents (people, drivers, customers) acting
independently

Ex.2: SMS generated by all students in the class. Once you send an SMS
you are likely to stay silent for a while. But in a large population this
has a minimal e↵ect in the probability of someone generating a SMS

Ex.3: Count of molecule reactions. Molecules are “removed” from pool of
reactants once they react. But e↵ect is negligible in large
population. Eventually reactants are depleted, but in small time
scale process is approximately Poisson
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Arrival times and interarrival times

t

N(t)

1

2

3

4

5

6

S1 S2 S3 S4 S5 S6

T1T2 T3 T4 T5T6

I Let S1, S2, . . . be the sequence of absolute times of events (arrivals)
I Def: Si is known as the i-th arrival time

) Notice that Si = mint(N(t) � i)

I Let T1,T2, . . . be the sequence of times between events
I Def: Ti is known as the i-th interarrival time

I Useful identities: Si =
Pi

k=1 Tk and Ti = Si � Si�1, where S0 = 0
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Interarrival times are i.i.d. exponential RVs

I Ccdf of T1 ) P (T1 > t) = P (N(t) = 0) = e��t

) T1 has exponential distribution with parameter �

I Since increments are stationary and independent, likely Ti are i.i.d.

Theorem
Interarrival times Ti of a Poisson process are independent identically
distributed exponential random variables with parameter �, i.e.,

P (Ti > t) = e��t

I Have already proved for T1. Let us see the rest
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Interarrival times example

I Let N1(t) and N2(t) be Poisson processes with rates �1 and �2

) Suppose N1(t) and N2(t) are independent

I Q: What is the expected time till the first arrival from either process?

I Denote as S (i)
1 the first arrival time from process i = 1, 2

) We are looking for E
h
min

⇣
S (1)
1 , S (2)

1

⌘i

I Note that S (1)
1 = T (1)

1 and S (2)
1 = T (2)

1

) S (1)
1 ⇠ exp(�1) and S (2)

1 ⇠ exp(�2)

) Also, S (1)
1 and S (2)

1 are independent

I Recall that min
⇣
S (1)
1 , S (2)

1

⌘
⇠ exp(�1 + �2), then

E
h
min

⇣
S (1)
1 , S (2)

1

⌘i
=

1

�1 + �2
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Alternative definition of Poisson process

I Start with sequence of independent random times T1,T2, . . .

I Times Ti ⇠ exp(�) have exponential distribution with parameter �

I Define i-th arrival time Si

Si = T1 + T2 + . . .+ Ti

I Define counting process of
events occurred by time t

N(t) = max
i
(Si  t)

I N(t) is a Poisson process
t

N(t)

1

2

3

4

5

6

S1 S2 S3 S4 S5 S6

T1T2 T3 T4 T5T6

I If N(t) is a Poisson process interarrival times Ti are i.i.d. exponential

I To show that definition is equivalent have to show the converse

) If interarrival times are i.i.d. exponential, process is Poisson
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Alternative definition of Poisson process (cont.)

I Exponential i.i.d. interarrival times ) Q: Poisson process?

) Show that implies definition (i)-(iii)

I Stationarity true because all Ti have same distribution

I Independent increments true because
I Interarrival times are independent
I Exponential RVs are memoryless

I Can have more than one event in (0, h] only if T1 < h and T2 < h

P (N(h) > 1)  P (T1  h) P (T2  h)

= (1� e��h)2 = (�h)2 + o(h2) = o(h)

I We have no event in (0, h] if T1 > h

P (N(h) = 0) = P (T1 � h) = e��h = 1� �h + o(h)

I The remaining case is N(h) = 1, whose probability is

P (N(h) = 1) = 1� P (N(h) = 0)� P (N(h) > 1) = �h + o(h)
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Three definitions of Poisson processes

Def. 1: Prob. of event proportional to interval width. Intervals independent

I Physical model definition

I Can a phenomenon be reasonably modeled as a Poisson process?

I The other two definitions are used for analysis and/or simulation

Def. 2: Prob. distribution of events in (0, t] is Poisson

I Event centric definition. Nr. of events in given time intervals

I Allows analysis and simulation

I Used when information about nr. of events in given time is desired

Def. 3: Prob. distribution of interarrival times is exponential

I Time centric definition. Times at which events happen

I Allows analysis and simulation

I Used when information about event times is of interest
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Number of visitors to a web page example

Ex: Count number of visits to a webpage between 6:00pm to 6:10pm

Def 1: Q: Poisson process? Yes, seems reasonable to have
I Probability of visit proportional to time interval duration
I Independent visits over disjoint time intervals

I Model as Poisson process with rate � visits/second (v/s)

Def 2: Arrivals in (s, s + t] are Poisson with parameter �t

I Prob. of exactly 5 visits in 1 sec? ) P (N(1) = 5) = e���5/5!

I Expected nr. of visits in 10 minutes? ) E [N(600)] = 600�

I On average, data shows N visits in 10 minutes. Estimate �̂ = N/600

Def 3: Interarrival times are i.i.d. Ti ⇠ exp(�)

I Expected time between visits? ) E [Ti ] = 1/�

I Expected arrival time Sn of n-th visitor?

) Recall Sn =
Pn

i=1 Ti , hence E [Sn] =
Pn

i=1 E [Ti ] = n/�
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Superposition of Poisson processes

I Let N1(t),N2(t) be Poisson processes with rates �1 and �2

) Suppose N1(t) and N2(t) are independent

t t 

N1(t) N2(t) 

S2 S1 S1 S2 S3 
1 
2 

1 
2 
3 

I Then N(t) := N1(t) + N2(t) is a Poisson process with rate �1 + �2

t 

N(t) 

5 

S5 

4 

1 
2 

S2 S3 

3 

S4 S1 
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Thinning of a Poisson process

I Let BN = B1,B2, . . . be an i.i.d. sequence of Bernoulli(p) RVs

I Let N(t) be a Poisson process with rate �, independent of BN

I Then M(t) :=
PN(t)

i=1 Bi is a Poisson process with rate �p

t 

N(t) 

5 

S5 

4 

1 
2 

S2 S3 

3 

S4 S1 
t 

M(t) 

S1 S2 S3 
1 
2 
3 

Bi : 0 1 0 1 1 
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Splitting of a Poisson process

I Let ZN = Z1,Z2, . . . be an i.i.d. sequence of RVs, Zi 2 {1, . . . ,m}
I Let N(t) be a Poisson process with rate �, independent of ZN

I Define Nk(t) =
PN(t)

i=1 I {Zi = k}, for each k = 1, . . . ,m

I Then each Nk(t) is a Poisson process with rate �P (Z1 = k)

t 

N(t) 

5 

S5 

4 

1 
2 

S2 S3 

3 

S4 S1 

Zi : 1 2 3 2 2 t 

t 

N1(t) 

N2(t) 

S1 

S1 S2 S3 

1 

1 
2 
3 

t 

N3(t) 
1 

S1 
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M/M/1 queue example

I An M/M/1 queue is a BD process with �i = � and µi = µ constant

I State Q(t) is the number of customers in the system at time t

) Customers arrive for service at a rate of � per unit time

) They are serviced at a rate of µ customers per unit time

i i+1i�10

�

µ µ

�� �

µ

. . . . . .

I The M/M is for Markov arrivals/Markov departures

) Implies a Poisson arrival process, exponential services times

) The 1 is because there is only one server
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