

Continuous-time Markov Chains

Gonzalo Mateos Dept. of ECE and Goergen Institute for Data Science University of Rochester gmateosb@ece.rochester.edu http://www.ece.rochester.edu/~gmateosb/

October 31, 2016

- Continuous-time positive variable $t \in [0, \infty)$
- Time-dependent random state X(t) takes values on a countable set
 - ▶ In general denote states as i = 0, 1, 2, ..., i.e., here the state space is \mathbb{N}
 - ► If X(t) = i we say "the process is in state i at time t"
- **Def:** Process X(t) is a continuous-time Markov chain (CTMC) if

$$P(X(t+s) = j | X(s) = i, X(u) = x(u), u < s)$$

= $P(X(t+s) = j | X(s) = i)$

• Markov property \Rightarrow Given the present state X(s)

 \Rightarrow Future X(t + s) is independent of the past X(u) = x(u), u < s

In principle need to specify functions P (X(t + s) = j | X(s) = i) ⇒ For all times t and s, for all pairs of states (i, j)

Notation

- ► X[s : t] state values for all times s ≤ u ≤ t, includes borders
- X(s:t) values for all times s < u < t, borders excluded
- X(s:t] values for all times $s < u \le t$, exclude left, include right
- X[s:t) values for all times $s \le u < t$, include left, exclude right
- ► Homogeneous CTMC if P (X(t + s) = j | X(s) = i) invariant for all s ⇒ We restrict consideration to homogeneous CTMCs
- ► Still need $P_{ij}(t) := P(X(t+s) = j | X(s) = i)$ for all t and pairs (i, j) $\Rightarrow P_{ij}(t)$ is known as the transition probability function. More later

Markov property and homogeneity make description somewhat simpler

Transition times

- T_i = time until transition out of state *i* into any other state *j*
- ► **Def:** T_i is a random variable called transition time with ccdf $P(T_i > t) = P(X(0 : t] = i | X(0) = i)$
- ▶ Probability of $T_i > t + s$ given that $T_i > s$? Use cdf expression

$$P(T_i > t + s | T_i > s) = P(X(0 : t + s] = i | X[0 : s] = i)$$

= P(X(s : t + s] = i | X[0 : s] = i)
= P(X(s : t + s] = i | X(s) = i)
= P(X(0 : t] = i | X(0) = i)

• Used that X[0:s] = i given, Markov property, and homogeneity

► From definition of $T_i \Rightarrow P(T_i > t + s | T_i > s) = P(T_i > t)$ ⇒ Transition times are exponential random variables

- Exponential transition times is a fundamental property of CTMCs
 ⇒ Can be used as "algorithmic" definition of CTMCs
- Continuous-time random process X(t) is a CTMC if
 - (a) Transition times T_i are exponential random variables with mean $1/
 u_i$
 - (b) When they occur, transition from state i to j with probability P_{ij}

$$\sum_{j=1}^{\infty} P_{ij} = 1, \qquad P_{ii} = 0$$

(c) Transition times T_i and transitioned state j are independent

- Define matrix P grouping transition probabilities P_{ij}
- CTMC states evolve as in a discrete-time Markov chain
 - \Rightarrow State transitions occur at exponential intervals $T_i \sim \exp(\nu_i)$
 - \Rightarrow As opposed to occurring at fixed intervals

- Consider a CTMC with transition matrix \mathbf{P} and rates ν_i
- Def: CTMC's embedded discrete-time MC has transition matrix P
- ► Transition probabilities **P** describe a discrete-time MC
 - \Rightarrow No self-transitions ($P_{ii} = 0$, **P**'s diagonal null)
 - \Rightarrow Can use underlying discrete-time MCs to study CTMCs
- **Def:** State *j* accessible from *i* if accessible in the embedded MC
- Def: States i and j communicate if they do so in the embedded MC
 ⇒ Communication is a class property
- ► Recurrence, transience, ergodicity. Class properties More later

Transition rates

- Expected value of transition time T_i is $\mathbb{E}[T_i] = 1/\nu_i$
 - \Rightarrow Can interpret ν_i as the rate of transition out of state i
 - \Rightarrow Of these transitions, a fraction P_{ij} are into state j
- **Def:** Transition rate from *i* to *j* is $q_{ij} := \nu_i P_{ij}$
- Transition rates offer yet another specification of CTMCs
- If q_{ij} are given can recover ν_i as

$$\nu_i = \nu_i \sum_{j=1}^{\infty} P_{ij} = \sum_{j=1}^{\infty} \nu_i P_{ij} = \sum_{j=1}^{\infty} q_{ij}$$

• Can also recover
$$P_{ij}$$
 as $\Rightarrow P_{ij} = q_{ij}/\nu_i = q_{ij} \left(\sum_{j=1}^{\infty} q_{ij}\right)^{-1}$

- State X(t) = 0, 1, ... Interpret as number of individuals
- Birth and deaths occur at state-dependent rates. When X(t) = i
- ► Births \Rightarrow Individuals added at exponential times with mean $1/\lambda_i$ \Rightarrow Birth or arrival rate $= \lambda_i$ births per unit of time
- ► Deaths \Rightarrow Individuals removed at exponential times with rate $1/\mu_i$ \Rightarrow Death or departure rate = μ_i deaths per unit of time
- Birth and death times are independent
- Birth and death (BD) processes are then CTMCs

Transition times and probabilities

- ▶ Q: Transition times T_i ? Leave state $i \neq 0$ when birth or death occur
- ▶ If T_B and T_D are times to next birth and death, $T_i = \min(T_B, T_D)$ ⇒ Since T_B and T_D are exponential, so is T_i with rate

$$\nu_i = \lambda_i + \mu_i$$

► When leaving state *i* can go to *i* + 1 (birth first) or *i* - 1 (death first) ⇒ Birth occurs before death with probability $\frac{\lambda_i}{\lambda_i + \mu_i} = P_{i,i+1}$ ⇒ Death occurs before birth with probability $\frac{\mu_i}{\lambda_i + \mu_i} = P_{i,i-1}$

Leave state 0 only if a birth occurs, then

$$u_0 = \lambda_0, \qquad P_{01} = 1$$

⇒ If CTMC leaves 0, goes to 1 with probability 1 ⇒ Might not leave 0 if $\lambda_0 = 0$ (e.g., to model extinction)

Transition rates

▶ Rate of transition from *i* to i + 1 is (recall definition $q_{ij} = \nu_i P_{ij}$)

$$q_{i,i+1} = \nu_i P_{i,i+1} = (\lambda_i + \mu_i) \frac{\lambda_i}{\lambda_i + \mu_i} = \lambda_i$$

• Likewise, rate of transition from i to i - 1 is

$$q_{i,i-1} = \nu_i P_{i,i-1} = (\lambda_i + \mu_i) \frac{\mu_i}{\lambda_i + \mu_i} = \mu_i$$

• For
$$i = 0 \Rightarrow q_{01} = \nu_0 P_{01} = \lambda_0$$

Somewhat more natural representation. Similar to discrete-time MCs

- ▶ A Poisson process is a BD process with $\lambda_i = \lambda$ and $\mu_i = 0$ constant
- State N(t) counts the total number of events (arrivals) by time t \Rightarrow Arrivals occur a rate of λ per unit time
 - \Rightarrow Transition times are the i.i.d. exponential interarrival times

► The Poisson process is a CTMC

M/M/1 queue example

- ▶ An M/M/1 queue is a BD process with $\lambda_i = \lambda$ and $\mu_i = \mu$ constant
- State Q(t) is the number of customers in the system at time t ⇒ Customers arrive for service at a rate of λ per unit time ⇒ They are serviced at a rate of μ customers per unit time

► The M/M is for Markov arrivals/Markov departures
 ⇒ Implies a Poisson arrival process, exponential services times
 ⇒ The 1 is because there is only one server

- Two equivalent ways of specifying a CTMC
- 1) Transition time averages $1/\nu_i$ + transition probabilities P_{ij}
 - \Rightarrow Easier description
 - \Rightarrow Typical starting point for CTMC modeling
- 2) Transition probability function $P_{ij}(t) := P(X(t+s) = j | X(s) = i)$
 - \Rightarrow More complete description for all $t \ge 0$
 - \Rightarrow Similar in spirit to P_{ii}^n for discrete-time Markov chains
- ► Goal: compute $P_{ij}(t)$ from transition times and probabilities ⇒ Notice two obvious properties $P_{ij}(0) = 0$, $P_{ii}(0) = 1$

- ► Goal is to obtain a differential equation whose solution is P_{ij}(t)
 ⇒ Study change in P_{ij}(t) when time changes slightly
- Separate in two subproblems (divide and conquer)
 - \Rightarrow Transition probabilities for small time h, $P_{ij}(h)$
 - \Rightarrow Transition probabilities in t + h as function of those in t and h
- ▶ We can combine both results in two different ways
- 1) Jump from 0 to t then to $t + h \Rightarrow$ Process runs a little longer \Rightarrow Changes where the process is going to \Rightarrow Forward equations
- 2) Jump from 0 to *h* then to $t + h \Rightarrow$ Process starts a little later
 - \Rightarrow Changes where the process comes from $\ \Rightarrow$ Backward equations

Theorem

The transition probability functions $P_{ii}(t)$ and $P_{ij}(t)$ satisfy the following limits as t approaches 0

$$\lim_{t \to 0} \frac{P_{ij}(t)}{t} = q_{ij}, \qquad \lim_{t \to 0} \frac{1 - P_{ii}(t)}{t} = \nu_i$$

Since $P_{ij}(0) = 0$, $P_{ii}(0) = 1$ above limits are derivatives at t = 0

$$\left. \frac{\partial P_{ij}(t)}{\partial t} \right|_{t=0} = q_{ij}, \qquad \left. \frac{\partial P_{ii}(t)}{\partial t} \right|_{t=0} = -\nu_i$$

Limits also imply that for small h (recall Taylor series)

 $P_{ij}(h) = q_{ij}h + o(h),$ $P_{ii}(h) = 1 - \nu_i h + o(h)$

▶ Transition rates q_{ij} are "instantaneous transition probabilities"
 ⇒ Transition probability coefficient for small time h

Theorem

For all times s and t the transition probability functions $P_{ij}(t + s)$ are obtained from $P_{ik}(t)$ and $P_{kj}(s)$ as

$$P_{ij}(t+s) = \sum_{k=0}^{\infty} P_{ik}(t) P_{kj}(s)$$

► As for discrete-time MCs, to go from *i* to *j* in time t + s⇒ Go from *i* to some state *k* in time $t \Rightarrow P_{ik}(t)$

- \Rightarrow do nom 7 to some state k in time $t \Rightarrow r_{ik}(t)$
- \Rightarrow In the remaining time s go from k to $j \Rightarrow P_{kj}(s)$
- \Rightarrow Sum over all possible intermediate states k

Proof.

$$P_{ij}(t+s)$$

$$= P(X(t+s) = j | X(0) = i)$$
Definition of $P_{ij}(t+s)$

$$= \sum_{k=0}^{\infty} P(X(t+s) = j | X(t) = k, X(0) = i) P(X(t) = k | X(0) = i)$$
Law of total probability
$$= \sum_{k=0}^{\infty} P(X(t+s) = j | X(t) = k) P_{ik}(t)$$
Markov property of CTMC

and definition of $P_{ik}(t)$

Definition of $P_{kj}(s)$

$$=\sum_{k=0}^{\infty}P_{kj}(s)P_{ik}(t)$$

Combining both results

- Let us combine the last two results to express $P_{ij}(t+h)$
- ▶ Use Chapman-Kolmogorov's equations for $0 \rightarrow t \rightarrow h$

$$P_{ij}(t+h) = \sum_{k=0}^{\infty} P_{ik}(t) P_{kj}(h) = P_{ij}(t) P_{jj}(h) + \sum_{k=0, k \neq j}^{\infty} P_{ik}(t) P_{kj}(h)$$

• Substitute infinitesimal time expressions for $P_{jj}(h)$ and $P_{kj}(h)$

$$P_{ij}(t+h) = P_{ij}(t)(1-\nu_j h) + \sum_{k=0, k\neq j}^{\infty} P_{ik}(t)q_{kj}h + o(h)$$

Subtract $P_{ij}(t)$ from both sides and divide by h

$$rac{P_{ij}(t+h)-P_{ij}(t)}{h}=-
u_jP_{ij}(t)+\sum_{k=0,k
eq j}^{\infty}P_{ik}(t)q_{kj}+rac{o(h)}{h}$$

▶ Right-hand side equals a "derivative" ratio. Let $h \rightarrow 0$ to prove ...

Theorem

The transition probability functions $P_{ij}(t)$ of a CTMC satisfy the system of differential equations (for all pairs *i*, *j*)

$$rac{\partial P_{ij}(t)}{\partial t} = \sum_{k=0,k
eq j}^{\infty} q_{kj} P_{ik}(t) -
u_j P_{ij}(t)$$

- ► Interpret each summand in Kolmogorov's forward equations
 - $\partial P_{ij}(t)/\partial t$ = rate of change of $P_{ij}(t)$
 - $q_{kj}P_{ik}(t) = (\text{transition into } k \text{ in } 0 \rightarrow t) \times$

(rate of moving into *j* in next instant)

- ► $\nu_j P_{ij}(t) = (\text{transition into } j \text{ in } 0 \rightarrow t) \times (\text{rate of leaving } j \text{ in next instant})$
- Change in $P_{ij}(t) = \sum_{k} (\text{moving into } j \text{ from } k) (\text{leaving } j)$
- Kolmogorov's forward equations valid in most cases, but not always

Kolmogorov's backward equations

- ▶ For forward equations used Chapman-Kolmogorov's for $0 \rightarrow t \rightarrow h$
- ▶ For backward equations we use $0 \rightarrow h \rightarrow t$ to express $P_{ij}(t + h)$ as

$$P_{ij}(t+h) = \sum_{k=0}^{\infty} P_{ik}(h) P_{kj}(t) = P_{ii}(h) P_{ij}(t) + \sum_{k=0, k \neq i}^{\infty} P_{ik}(h) P_{kj}(t)$$

• Substitute infinitesimal time expression for $P_{ii}(h)$ and $P_{ik}(h)$

$$P_{ij}(t+h) = (1-\nu_i h)P_{ij}(t) + \sum_{k=0, k\neq i}^{\infty} q_{ik}hP_{kj}(t) + o(h)$$

Subtract $P_{ij}(t)$ from both sides and divide by h

$$rac{P_{ij}(t+h) - P_{ij}(t)}{h} = -
u_i P_{ij}(t) + \sum_{k=0, k
eq i}^{\infty} q_{ik} P_{kj}(t) + rac{o(h)}{h}$$

▶ Right-hand side equals a "derivative" ratio. Let $h \rightarrow 0$ to prove ...

Theorem

The transition probability functions $P_{ij}(t)$ of a CTMC satisfy the system of differential equations (for all pairs *i*, *j*)

$$rac{\partial P_{ij}(t)}{\partial t} = \sum_{k=0,k
eq i}^{\infty} q_{ik} P_{kj}(t) -
u_i P_{ij}(t)$$

- Interpret each summand in Kolmogorov's backward equations
 - $\partial P_{ij}(t)/\partial t$ = rate of change of $P_{ij}(t)$
 - $q_{ik}P_{kj}(t) = (\text{transition into } j \text{ in } h \rightarrow t) \times$

(rate of transition into k in initial instant)

• $\nu_i P_{ij}(t) = (\text{transition into } j \text{ in } h \rightarrow t) \times$

(rate of leaving *i* in initial instant)

- Forward equations \Rightarrow change in $P_{ij}(t)$ if finish h later
- Backward equations \Rightarrow change in $P_{ij}(t)$ if start h earlier
- ▶ Where process goes (forward) vs. where process comes from (backward)

 $\mathsf{Ex:}\,$ Simplest possible CTMC has only two states. Say 0 and 1

- Transition rates are q_{01} and q_{10}
- ▶ Given q₀₁ and q₁₀ can find rates of transitions out of {0, 1}

$$u_0 = \sum_j q_{0j} = q_{01}, \qquad
u_1 = \sum_j q_{1j} = q_{10}$$

Use Kolmogorov's equations to find transition probability functions

$$P_{00}(t), P_{01}(t), P_{10}(t), P_{11}(t)$$

Transition probabilities out of each state sum up to one

$$P_{00}(t) + P_{01}(t) = 1, \qquad P_{10}(t) + P_{11}(t) = 1$$

ROCHESTER

Kolmogorov's forward equations (process runs a little longer)

$${\sf P}_{ij}^{'}(t) = \sum_{k=0,k
eq j}^{\infty} q_{kj} {\sf P}_{ik}(t) -
u_j {\sf P}_{ij}(t)$$

For the two state CTMC

$$\begin{aligned} P_{00}^{'}(t) &= q_{10}P_{01}(t) - \nu_{0}P_{00}(t), \qquad P_{01}^{'}(t) &= q_{01}P_{00}(t) - \nu_{1}P_{01}(t) \\ P_{10}^{'}(t) &= q_{10}P_{11}(t) - \nu_{0}P_{10}(t), \qquad P_{11}^{'}(t) &= q_{01}P_{10}(t) - \nu_{1}P_{11}(t) \end{aligned}$$

• Probabilities out of 0 sum up to $1 \Rightarrow eqs.$ in first row are equivalent

▶ Probabilities out of 1 sum up to 1 \Rightarrow eqs. in second row are equivalent \Rightarrow Pick the equations for $P'_{00}(t)$ and $P'_{11}(t)$

▶ Use \Rightarrow Relation between transition rates: $\nu_0 = q_{01}$ and $\nu_1 = q_{10}$ \Rightarrow Probs. sum 1: $P_{01}(t) = 1 - P_{00}(t)$ and $P_{10}(t) = 1 - P_{11}(t)$

$$egin{aligned} & P_{00}^{'}(t) = q_{10}ig[1-P_{00}(t)ig] - q_{01}P_{00}(t) = q_{10} - (q_{10}+q_{01})P_{00}(t) \ & P_{11}^{'}(t) = q_{01}ig[1-P_{11}(t)ig] - q_{10}P_{11}(t) = q_{01} - (q_{10}+q_{01})P_{11}(t) \end{aligned}$$

- ► Can obtain exact same pair of equations from backward equations
- ▶ First-order linear differential equations \Rightarrow Solutions are exponential
- For $P_{00}(t)$ propose candidate solution (just differentiate to check)

$$P_{00}(t) = \frac{q_{10}}{q_{10} + q_{01}} + c e^{-(q_{10} + q_{01})t}$$

 \Rightarrow To determine *c* use initial condition $P_{00}(0) = 1$

Solution of forward equations (continued)

• Evaluation of candidate solution at initial condition $P_{00}(0) = 1$ yields

$$1 = \frac{q_{10}}{q_{10} + q_{01}} + c \Rightarrow c = \frac{q_{01}}{q_{10} + q_{01}}$$

• Finally transition probability function $P_{00}(t)$

$$P_{00}(t) = \frac{q_{10}}{q_{10} + q_{01}} + \frac{q_{01}}{q_{10} + q_{01}} e^{-(q_{10} + q_{01})t}$$

• Repeat for $P_{11}(t)$. Same exponent, different constants

$$P_{11}(t) = rac{q_{01}}{q_{10}+q_{01}} + rac{q_{10}}{q_{10}+q_{01}}e^{-(q_{10}+q_{01})t}$$

► As time goes to infinity, P₀₀(t) and P₁₁(t) converge exponentially ⇒ Convergence rate depends on magnitude of q₁₀ + q₀₁

• Recall $P_{01}(t) = 1 - P_{00}(t)$ and $P_{10}(t) = 1 - P_{11}(t)$

Limiting (steady-state) probabilities are

$$\lim_{t \to \infty} P_{00}(t) = \frac{q_{10}}{q_{10} + q_{01}}, \qquad \lim_{t \to \infty} P_{01}(t) = \frac{q_{01}}{q_{10} + q_{01}}$$
$$\lim_{t \to \infty} P_{11}(t) = \frac{q_{01}}{q_{10} + q_{01}}, \qquad \lim_{t \to \infty} P_{10}(t) = \frac{q_{10}}{q_{10} + q_{01}}$$

Limit distribution exists and is independent of initial condition

 \Rightarrow Compare across diagonals

Kolmogorov's forward equations in matrix form

- ► Restrict attention to finite CTMCs with *N* states ⇒ Define matrix $\mathbf{R} \in \mathbb{R}^{N \times N}$ with elements $\mathbf{r}_{ij} = \mathbf{q}_{ij}$, $\mathbf{r}_{ii} = -\nu_i$
- ► Rewrite Kolmogorov's forward eqs. as (process runs a little longer) $P'_{ij}(t) = \sum_{k=1, k \neq i}^{N} q_{kj} P_{ik}(t) - \nu_j P_{ij}(t) = \sum_{k=1}^{N} r_{kj} P_{ik}(t)$
- Right-hand side defines elements of a matrix product

$$\mathbf{P}(t) = \begin{pmatrix} r_{11} \rightarrow r_{1j} & r_{1N} \\ r_{1j} P_{iN}(t) & r_{1N} \rightarrow r_{1N} \\ r_{kj} P_{iR}(t) & r_{k1} \rightarrow r_{kj} \rightarrow r_{kN} \\ r_{kj} P_{iR}(t) & r_{k1} \rightarrow r_{kj} \rightarrow r_{kN} \\ r_{k1} \rightarrow r_{kj} + r_{kN} \rightarrow r_{kN} \end{pmatrix} = \mathbf{R}$$

$$\mathbf{P}(t) = \begin{pmatrix} P_{11}(t) & P_{1k}(t) + P_{1N}(t) \\ r_{k1} \rightarrow r_{k1} \rightarrow r_{k1} \rightarrow r_{k1} \rightarrow r_{k1} \\ P_{i1}(t) + P_{ik}(t) + P_{iN}(t) \\ r_{k1} \rightarrow r_{k2} \rightarrow r_{k1} \rightarrow r_{k1} \rightarrow r_{k1} \rightarrow r_{k1} \end{pmatrix} = \mathbf{P}(t)\mathbf{R} = \mathbf{P}'(t)$$

Kolmogorov's backward equations in matrix form

Similarly, Kolmogorov's backward eqs. (process starts a little later)

$$P_{ij}^{'}(t) = \sum_{k=1,k
eq i}^{N} q_{ik} P_{kj}(t) - \nu_i P_{ij}(t) = \sum_{k=1}^{N} r_{ik} P_{kj}(t)$$

Right-hand side also defines a matrix product

$$\mathbf{R} = \begin{pmatrix} r_{11} P_{1j}(t) & P_{11}(t) \rightarrow P_{1j}(t) & P_{1n}(t) \\ & \ddots & \ddots & \ddots \\ r_{ik} P_{kj}(t) & P_{kj}(t) \rightarrow P_{kj}(t) \rightarrow P_{kn}(t) \\ & \ddots & \ddots & \ddots \\ r_{in} P_{Nj}(t) & P_{Nj}(t) \rightarrow P_{Nj}(t) \rightarrow P_{NN}(t) \end{pmatrix} = \mathbf{P}(t)$$

$$\mathbf{R} = \begin{pmatrix} r_{11} & r_{ik} & r_{iN} \\ & \ddots & \ddots & \ddots \\ r_{i1} & r_{ik} & r_{iN} \\ & \ddots & \ddots & \ddots \\ r_{N1} & r_{Nk} & r_{JN} \end{pmatrix} \begin{pmatrix} s_{11} & s_{1j} & s_{1N} \\ & \ddots & \ddots & \ddots \\ s_{i1} & s_{ij} & s_{iN} \\ & \ddots & \ddots & \ddots \\ s_{N1} & s_{Nk} & s_{NN} \end{pmatrix} = \mathbf{RP}(t) = \mathbf{P}'(t)$$

- Matrix form of Kolmogorov's forward equation $\Rightarrow \mathbf{P}'(t) = \mathbf{P}(t)\mathbf{R}$
- Matrix form of Kolmogorov's backward equation ⇒ P'(t) = RP(t)
 ⇒ More similar than apparent

 \Rightarrow But not equivalent because matrix product not commutative

Notwithstanding both equations have to accept the same solution

Matrix exponential

- ▶ Kolmogorov's equations are first-order linear differential equations
 ⇒ They are coupled, P'_{ij}(t) depends on P_{kj}(t) for all k
 ⇒ Accepts exponential solution ⇒ Define matrix exponential
- **Def:** The matrix exponential e^{At} of matrix At is the series

$$e^{\mathbf{A}t} = \sum_{n=0}^{\infty} \frac{(\mathbf{A}t)^n}{n!} = \mathbf{I} + \mathbf{A}t + \frac{(\mathbf{A}t)^2}{2} + \frac{(\mathbf{A}t)^3}{2 \times 3} + \dots$$

Derivative of matrix exponential with respect to t

$$\frac{\partial e^{\mathbf{A}t}}{\partial t} = \mathbf{0} + \mathbf{A} + \mathbf{A}^2 t + \frac{\mathbf{A}^3 t^2}{2} + \ldots = \mathbf{A} \left(\mathbf{I} + \mathbf{A}t + \frac{(\mathbf{A}t)^2}{2} + \ldots \right) = \mathbf{A} e^{\mathbf{A}t}$$

▶ Putting **A** on right side of product shows that $\Rightarrow \frac{\partial e^{\mathbf{A}t}}{\partial t} = e^{\mathbf{A}t}\mathbf{A}$

- Propose solution of the form $\mathbf{P}(t) = e^{\mathbf{R}t}$
- P(t) solves backward equations, since derivative is

$$\frac{\partial \mathbf{P}(t)}{\partial t} = \frac{\partial e^{\mathbf{R}t}}{\partial t} = \mathbf{R}e^{\mathbf{R}t} = \mathbf{R}\mathbf{P}(t)$$

It also solves forward equations

$$\frac{\partial \mathbf{P}(t)}{\partial t} = \frac{\partial e^{\mathbf{R}t}}{\partial t} = e^{\mathbf{R}t}\mathbf{R} = \mathbf{P}(t)\mathbf{R}$$

• Notice that $\mathbf{P}(0) = \mathbf{I}$, as it should $(P_{ii}(0) = 1, \text{ and } P_{ij}(0) = 0)$

• Suppose $\mathbf{A} \in \mathbb{R}^{n \times n}$ is diagonalizable, i.e., $\mathbf{A} = \mathbf{U}\mathbf{D}\mathbf{U}^{-1}$

- \Rightarrow Diagonal matrix $\mathbf{D} = \text{diag}(\lambda_1, \dots, \lambda_n)$ collects eigenvalues λ_i
- \Rightarrow Matrix **U** has the corresponding eigenvectors as columns

We have the following neat identity

$$e^{\mathbf{A}t} = \sum_{n=0}^{\infty} \frac{(\mathbf{U}\mathbf{D}\mathbf{U}^{-1}t)^n}{n!} = \mathbf{U}\left(\sum_{n=0}^{\infty} \frac{(\mathbf{D}t)^n}{n!}\right)\mathbf{U}^{-1} = \mathbf{U}e^{\mathbf{D}t}\mathbf{U}^{-1}$$

But since D is diagonal, then

$$e^{\mathbf{D}t} = \sum_{n=0}^{\infty} \frac{(\mathbf{D}t)^n}{n!} = \begin{pmatrix} e^{\lambda_1 t} & \dots & 0\\ \vdots & \ddots & \vdots\\ 0 & \dots & e^{\lambda_n t} \end{pmatrix}$$

Ex: Simplest CTMC with two states 0 and 1 $\,$

- Transition rates are $q_{01} = 3$ and $q_{10} = 1$
- ▶ Recall transition time rates are $\nu_0 = q_{01} = 3$, $\nu_1 = q_{10} = 1$, hence

$$\mathbf{R} = \begin{pmatrix} -\nu_0 & q_{01} \\ q_{10} & -\nu_1 \end{pmatrix} = \begin{pmatrix} -3 & 3 \\ 1 & -1 \end{pmatrix}$$

▶ Eigenvalues of **R** are 0, -4, eigenvectors $[1, 1]^T$ and $[-3, 1]^T$. Thus

$$\mathbf{U} = \begin{pmatrix} 1 & -3 \\ 1 & 1 \end{pmatrix}, \quad \mathbf{U}^{-1} = \begin{pmatrix} 1/4 & 3/4 \\ -1/4 & 1/1 \end{pmatrix}, \quad e^{\mathbf{D}t} = \begin{pmatrix} 1 & 0 \\ 0 & e^{-4t} \end{pmatrix}$$

The solution to the forward equations is

$$\mathbf{P}(t) = e^{\mathbf{R}t} = \mathbf{U}e^{\mathbf{D}t}\mathbf{U}^{-1} = \begin{pmatrix} 1/4 + (3/4)e^{-4t} & 3/4 - (3/4)e^{-4t} \\ 1/4 - (1/4)e^{-4t} & 3/4 + (1/4)e^{-4t} \end{pmatrix}$$

- ► Recall the embedded discrete-time MC associated with any CTMC
 - \Rightarrow Transition probs. of MC form the matrix ${\bf P}$ of the CTMC

 \Rightarrow No self transitions ($P_{ii} = 0$, **P**'s diagonal null)

- States i ↔ j communicate in the CTMC if i ↔ j in the MC
 ⇒ Communication partitions MC in classes
 - \Rightarrow Induces CTMC partition as well
- ▶ Def: CTMC is irreducible if embedded MC contains a single class
- ► State *i* is recurrent if it is recurrent in the embedded MC ⇒ Likewise, define transience and positive recurrence for CTMCs
- Transience and recurrence shared by elements of a MC class
 Transience and recurrence are class properties of CTMCs
- Periodicity not possible in CTMCs

Theorem

Consider irreducible, positive recurrent CTMC with transition rates ν_i and q_{ij} . Then, $\lim_{t\to\infty} P_{ij}(t)$ exists and is independent of the initial state *i*, *i.e.*,

$$P_j = \lim_{t \to \infty} P_{ij}(t)$$
 exists for all (i, j)

Furthermore, steady-state probabilities $P_j \ge 0$ are the unique nonnegative solution of the system of linear equations

$$u_j P_j = \sum_{k=0, k
eq j}^\infty q_{kj} P_k, \qquad \sum_{j=0}^\infty P_j = 1$$

► Limit distribution exists and is independent of initial condition

 \Rightarrow Obtained as solution of system of linear equations

 \Rightarrow Like discrete-time MCs, but equations slightly different

Algebraic relation to determine limit probabilities

- As with MCs difficult part is to prove that $P_j = \lim_{t \to \infty} P_{ij}(t)$ exists
- Algebraic relations obtained from Kolmogorov's forward equations

$$rac{\partial P_{ij}(t)}{\partial t} = \sum_{k=0,k
eq j}^{\infty} q_{kj} P_{ik}(t) -
u_j P_{ij}(t)$$

▶ If limit distribution exists we have, independent of initial state *i*

$$\lim_{t\to\infty}\frac{\partial P_{ij}(t)}{\partial t}=0,\qquad \lim_{t\to\infty}P_{ij}(t)=P_j$$

Considering the limit of Kolomogorov's forward equations yields

$$0=\sum_{k=0,k\neq j}^{\infty}q_{kj}P_k-\nu_jP_j$$

Reordering terms the limit distribution equations follow

Ex: Simplest CTMC with two states 0 and 1

Transition rates are q₀₁ and q₁₀

- From transition rates find mean transition times $\nu_0 = q_{01}$, $\nu_1 = q_{10}$
- Stationary distribution equations

$$\begin{split} \nu_0 P_0 &= q_{10} P_1, \qquad \nu_1 P_1 &= q_{01} P_0, \qquad P_0 + P_1 = 1, \\ q_{01} P_0 &= q_{10} P_1, \qquad q_{10} P_1 = q_{01} P_0 \end{split}$$

• Solution yields
$$\Rightarrow P_0 = \frac{q_{10}}{q_{10} + q_{01}}, \qquad P_1 = \frac{q_{01}}{q_{10} + q_{01}}$$

- Larger rate q_{10} of entering $0 \Rightarrow$ Larger prob. P_0 of being at 0
- ▶ Larger rate q_{01} of entering 1 \Rightarrow Larger prob. P_1 of being at 1

Def: Fraction of time $T_i(t)$ spent in state *i* by time *t*

$$T_i(t) := \frac{1}{t} \int_0^t \mathbb{I}\left\{X(\tau) = i\right\} d\tau$$

 \Rightarrow $T_i(t)$ a time/ergodic average, $\lim_{t o \infty} T_i(t)$ is an ergodic limit

► If CTMC is irreducible, positive recurrent, the ergodic theorem holds

$$P_i = \lim_{t \to \infty} T_i(t) = \lim_{t \to \infty} \frac{1}{t} \int_0^t \mathbb{I} \{X(\tau) = i\} d\tau$$
 a.s.

• Ergodic limit coincides with limit probabilities (almost surely)

• Consider function f(i) associated with state *i*. Can write f(X(t)) as

$$f(X(t)) = \sum_{i=1}^{\infty} f(i)\mathbb{I}\{X(t) = i\}$$

• Consider the time average of f(X(t))

$$\lim_{t\to\infty}\frac{1}{t}\int_0^t f(X(\tau))d\tau = \lim_{t\to\infty}\frac{1}{t}\int_0^t\sum_{i=1}^\infty f(i)\mathbb{I}\left\{X(\tau)=i\right\}d\tau$$

Interchange summation with integral and limit to say

$$\lim_{t\to\infty}\frac{1}{t}\int_0^t f(X(\tau))d\tau = \sum_{i=1}^\infty f(i)\lim_{t\to\infty}\frac{1}{t}\int_0^t \mathbb{I}\{X(\tau)=i\}d\tau = \sum_{i=1}^\infty f(i)P_i$$

Function's ergodic limit = Function's expectation under limiting dist.

Limit distribution equations as balance equations

- ► Recall limit distribution equations $\Rightarrow \nu_j P_j = \sum_{k=0, k\neq j}^{\infty} q_{kj} P_k$
- P_j = fraction of time spent in state j
- ν_j = rate of transition out of state j given CTMC is in state j
 ⇒ ν_jP_j = rate of transition out of state j (unconditional)
- ► q_{kj} = rate of transition from k to j given CTMC is in state k⇒ $q_{kj}P_k$ = rate of transition from k to j (unconditional) ⇒ $\sum_{k=0,k\neq j}^{\infty} q_{kj}P_k$ = rate of transition into j, from all states
- ▶ Rate of transition out of state *j* = Rate of transition into state *j*
- Balance equations \Rightarrow Balance nr. of transitions in and out of state j

Limit distribution for birth and death process

- ROCHESTER
- Birth/deaths occur at state-dependent rates. When X(t) = i
- ► Births \Rightarrow Individuals added at exponential times with mean $1/\lambda_i$ \Rightarrow Birth rate = upward transition rate = $q_{i,i+1} = \lambda_i$
- ► Deaths \Rightarrow Individuals removed at exponential times with mean $1/\mu_i$ \Rightarrow Death rate = downward transition rate = $q_{i,i-1} = \mu_i$
- ▶ Transition time rates $\Rightarrow \nu_i = \lambda_i + \mu_i, i > 0$ and $\nu_0 = \lambda_0$

Limit distribution/balance equations: Rate out of j = Rate into j

$$(\lambda_i + \mu_i)P_i = \lambda_{i-1}P_{i-1} + \mu_{i+1}P_{i+1}$$

 $\lambda_0 P_0 = \mu_1 P_1$