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Definition

» Continuous-time positive variable t € [0, c0)

» Time-dependent random state X(t) takes values on a countable set

> In general denote states as /i = 0,1,2,..., i.e., here the state space is N
> If X(t) = i we say “the process is in state i at time t”

v

Def: Process X(t) is a continuous-time Markov chain (CTMC) if

P(X(t+s)=j|X(s)=1i,X(u)=x(u),u<5s)
=P (X(t+s)=j|X(s)=1)
» Markov property = Given the present state X(s)
= Future X(t + s) is independent of the past X(u) = x(u),u <'s

v

In principle need to specify functions P (X(t 4+ s) = j | X(s) = i)
= For all times t and s, for all pairs of states (/, )



Notation and homogeneity

> Notation
> X|s : t] state values for all times s < u < t, includes borders
» X(s: t) values for all times s < u < t, borders excluded
> X(s: t] values for all times s < u < t, exclude left, include right
> X[s: t) values for all times s < u < t, include left, exclude right
>

Homogeneous CTMC if P (X(t +s) = j | X(s) = i) invariant for all s
= We restrict consideration to homogeneous CTMCs

v

Still need Py(t) := P (X(t+s) =j|X(s) =) for all t and pairs (i,})
= Pji(t) is known as the transition probability function.

v

Markov property and homogeneity make description somewhat simpler



Transition times

» T; = time until transition out of state / into any other state j

» Def: T; is a random variable called transition time with ccdf

p(T’.>t):P(X(O:t]Zi‘X(O):i)

v

Probability of T; > t + s given that T; > s? Use cdf expression

P(T>t+s|T>s)—P( (0:t+s]=i|X[0:s]=1i)
P(X(s:t+s]=i|X[0:s]=1i)
P(X(s:t+s]=i|X(s)=1)
P(X(0: ¢ =i|X(0)=1i)

v

Used that X[0: s] = i given, Markov property, and homogeneity

v

From definition of T, = P (T; > t+s|T;>s) =P(T; > 1)

= Transition times are exponential random variables



Alternative definition

» Exponential transition times is a fundamental property of CTMCs
= Can be used as “algorithmic” definition of CTMCs

» Continuous-time random process X(t) is a CTMC if

(a) Transition times T; are exponential random variables with mean 1/v;
(b) When they occur, transition from state i to j with probability P;

ip,-j =1, P;=0
j=1

(c) Transition times T; and transitioned state j are independent
» Define matrix P grouping transition probabilities Pj

» CTMC states evolve as in a discrete-time Markov chain
= State transitions occur at exponential intervals T; ~ exp(v;)

= As opposed to occurring at fixed intervals



Embedded discrete-time Markov chain

» Consider a CTMC with transition matrix P and rates v;
» Def: CTMC's embedded discrete-time MC has transition matrix P

» Transition probabilities P describe a discrete-time MC
= No self-transitions (P; = 0, P's diagonal null)
= Can use underlying discrete-time MCs to study CTMCs

» Def: State j accessible from i if accessible in the embedded MC
> Def: States i and j communicate if they do so in the embedded MC

= Communication is a class property

» Recurrence, transience, ergodicity. Class properties ...



Transition rates

v

Expected value of transition time T; is E[T;] = 1/v;
= Can interpret v; as the rate of transition out of state f

= Of these transitions, a fraction Pj; are into state j

v

Def: Transition rate from / to j is g := v; P}

v

Transition rates offer yet another specification of CTMCs

v

If gjj are given can recover v; as

oo oo o0
Vi = Vj E P,J = E V,'P,'j = E q,'j
j=1 j=1 j=1

v

e -1
Can also recover Pjj as = Pjj = q;j/v; = qu(z qU)

Jj=1



Birth and death process example

» State X(t) =0,1,... Interpret as number of individuals

» Birth and deaths occur at state-dependent rates. When X(t) =i

» Births = Individuals added at exponential times with mean 1/\;
= Birth or arrival rate = )\; births per unit of time

» Deaths = Individuals removed at exponential times with rate 1/p;
= Death or departure rate = p; deaths per unit of time

» Birth and death times are independent

» Birth and death (BD) processes are then CTMCs



Transition times and probabilities

Q: Transition times T;? Leave state i # 0 when birth or death occur

v

If Tg and Tp are times to next birth and death, T; = min(Tg, Tp)
= Since Tg and Tp are exponential, so is T; with rate

v

vi = A\ + i
» When leaving state i can go to i+ 1 (birth first) or i — 1 (death first)
= Birth occurs before death with probability — =P
= Death occurs before birth with probability )\i'iiui =P i

v

Leave state 0 only if a birth occurs, then
Vo = Ao, Popr=1

= If CTMC leaves 0, goes to 1 with probability 1
= Might not leave 0 if \g = 0 (e.g., to model extinction)



Transition rates

> Rate of transition from i to i 4 1 is (recall definition g; = v;iPj;)
Giiv1 = ViPiiv1 = (N + Mi))\i Jrl 0 = A
» Likewise, rate of transition from j to i — 1 is
ii-1 = ViPii—1= (i + ) B i
Ai + i
» Fori=0 = qo1 = 1Po1 = Xo
Ao Ai—1 A Aig1
0 @ 0o
M1 i Hit+1

v

Somewhat more natural representation. Similar to discrete-time MCs



Poisson process example

» A Poisson process is a BD process with A; = A and u; = 0 constant

» State N(t) counts the total number of events (arrivals) by time t
= Arrivals occur a rate of A per unit time

= Transition times are the i.i.d. exponential interarrival times

A A A A
o @ o O

» The Poisson process is a CTMC



M/M/1 queue example

» An M/M/1 queue is a BD process with A\; = X and p; = p constant

» State Q(t) is the number of customers in the system at time ¢
= Customers arrive for service at a rate of A per unit time

= They are serviced at a rate of p customers per unit time

A A A A
13 H I

» The M/M is for Markov arrivals/Markov departures
= Implies a Poisson arrival process, exponential services times

= The 1 is because there is only one server



Transition probability function

» Two equivalent ways of specifying a CTMC

1) Transition time averages 1/v; + transition probabilities Pj;
= Easier description
= Typical starting point for CTMC modeling

2) Transition probability function Pj(t) := P (X(t +s)=j | X(s) = i)
= More complete description for all t > 0

= Similar in spirit to P; for discrete-time Markov chains

» Goal: compute Pj(t) from transition times and probabilities
= Notice two obvious properties Pj;(0) =0, P;(0) =1



Roadmap to determine Pj(t)

» Goal is to obtain a differential equation whose solution is Pj(t)

= Study change in P;(t) when time changes slightly

» Separate in two subproblems
= Transition probabilities for small time h, P;(h)
= Transition probabilities in t + h as function of those in t and h

» We can combine both results in two different ways

1) Jump from O to t then to t + h = Process runs a little longer

=- Changes where the process is going to = Forward equations

2) Jump from 0 to h then to t + h = Process starts a little later
= Changes where the process comes from = Backward equations



Transition probability in infinitesimal time

Theorem
The transition probability functions P;i(t) and Pjj(t) satisfy the following
limits as t approaches 0

P;i(t .1 —Py(t
lim Pi(t) = gjj, lim 1= Pilt) =V
t—0 t t—0 t

» Since P;(0) =0, P;;(0) =1 above limits are derivatives at t =0

aPU(t) o 8P,-,-(t)
ot r:oiqw It [

= —]/,-

» Limits also imply that for small h (recall Taylor series)
PU(h) = q,jh—l—o(h), P,,(h) = 177/;h—|—0(h)

» Transition rates g are “instantaneous transition probabilities”

= Transition probability coefficient for small time h



Chapman-Kolmogorov equations

Theorem
For all times s and t the transition probability functions Pj(t + s) are
obtained from Py(t) and Pyj(s) as

Pi(t+s)= Z Pi(t) Pij(s)
k=0

» As for discrete-time MCs, to go from j to j in time t + s
= Go from i to some state k in time t = Pu(t)
= In the remaining time s go from k to j = Py(s)

= Sum over all possible intermediate states k



Chapman-Kolmogorov equations (proof)

Proof.

P(f )

(X(t+5s)=j|X(0) =) Definition of Pj(t + s)

1j+

UL

P (X(t+5) = J| X(t) = k. X(0) = )P (X(£) = k| X(0) = )

x

o

Law of total probability

M

P (X(t+s) =j|X(t) = k)Pw(t) Markov property of CTMC

x
Il
IS)

and definition of Pi(t)

Pyi(s)Pi(t) Definition of Py;(s)

M
O

»
Il
o



Combining both results

v

Let us combine the last two results to express Pjj(t + h)

v

Use Chapman-Kolmogorov's equations for 0 — t — h

Pi(t+h) = ZP:k t)Pg(h) = Pi(t)Pi(h) + > Pu(t)Pi(h)

k=0,k#j
> Substitute infinitesimal time expressions for Pj(h) and Py;(h)
Pyi(t + h) = P;(t)(1 )+ > Pult)agh+ o(h)
k=0,kj
» Subtract Pjj(t) from both sides and divide by h
Pii(t+ h) — Py(t = o(h
it ,), ) —vPi(t)+ D Pu(t)ay + 7(,7)
k=0,k#j

v

Right-hand side equals a “derivative” ratio. Let h — 0 to prove ...



Kolmogorov's forward equations

Theorem
The transition probability functions Pjj(t) of a CTMC satisfy the system
of differential equations (for all pairs i, j)

P S~ auPult) — vPi(t)
k=0,k#j

> Interpret each summand in Kolmogorov's forward equations
» OPj(t)/0t = rate of change of P;(t)
> qiPi(t) = (transition into k in 0 — t) X
(rate of moving into j in next instant)
» vjPjj(t) = (transition into j in 0 — t) X
(rate of leaving j in next instant)

» Change in Pj(t) = ), (moving into j from k) — (leaving j)

» Kolmogorov's forward equations valid in most cases, but not always



Kolmogorov's backward equations

v

For forward equations used Chapman-Kolmogorov's for 0 — t — h

v

For backward equations we use 0 — h — t to express Pj(t + h) as

,J t+ h Z P,k PkJ = P,,(h)PU(t) —+ i P,'k(h)ij(t)

k=0, ki
» Substitute infinitesimal time expression for P;(h) and Py(h)
Pi(t+h) = (1 —wvih)Pi(t)+ > quhPyg(t) + o(h)
k=0,ksi

v

Subtract Pj(t) from both sides and divide by h

Pi(t + h) — Py(t = o(h
i /)7 i) _ —viPy(t) + Z ik P (t) + %
k=0, ki

v

Right-hand side equals a “derivative” ratio. Let h — 0 to prove ...



Kolmogorov's backward equations

Theorem
The transition probability functions Pj(t) of a CTMC satisfy the system
of differential equations (for all pairs i, j)

alglft) = Y quPy(t) — viPy(t)
k=0,ki

> Interpret each summand in Kolmogorov's backward equations
» OP;i(t)/0t = rate of change of Pj(t)
> qikPij(t) = (transition into j in h — t) X
(rate of transition into k in initial instant)
» v;Pj(t) = (transition into j in h — t) X
(rate of leaving i in initial instant)

» Forward equations = change in Pj(t) if finish h later
» Backward equations =- change in Pj(t) if start h earlier

» Where process goes (forward) vs. where process comes from (backward)



A CTMC with two states

Ex: Simplest possible CTMC has only two states. Say 0 and 1

» Transition rates are go; and g

do1
» Given go; and gig can find e/\c
rates of transitions out of {0,1
iti u {0,1} s,
dio0
VOZZCIOJ':QOL Vlzquj:qlo
J J
» Use Kolmogorov's equations to find transition probability functions
Poo(t), Poi(t), Puo(t), Pu(t)
» Transition probabilities out of each state sum up to one

Poo(t) + Poi(t) =1, Pio(t) + P1i(t) =1



Kolmogorov's forward equations

» Kolmogorov's forward equations (process runs a little longer)

Pit)= > awPult) — vPy(t)
k=0, k]

For the two state CTMC

v

Poo(t) = GioPor(t) — voPoo(t),  Poy(t) = gorPoo(t) — 11 Poi(t)
Pro(t) = quoPui(t) — 1o Pio(t), P11 (t) = qoi1Pio(t) — 1 Pra(t)

v

Probabilities out of 0 sum up to 1 =- egs. in first row are equivalent

v

Probabilities out of 1 sum up to 1 = egs. in second row are equivalent
= Pick the equations for Py (t) and Py, (t)



Solution of forward equations

v

Use = Relation between transition rates: vy9 = go1 and v1 = g9
= Probs. sum 1: Pol(t) =1- Poo(t) and Plo(t) =1- Pll(t)

P(/JO(t) = q10[1 — Poo(t)] — qo1Poo(t) = 10 — (q10 + Go1)Poo(t)
Pil(t) = QOl[l — P11(t)] — qioP11(t) = go1 — (g10 + go1) P11 (1)

v

Can obtain exact same pair of equations from backward equations

v

First-order linear differential equations = Solutions are exponential

v

For Pyo(t) propose candidate solution (just differentiate to check)

_ q10 —(qi0+q01)t
POO t) = + ce q10+qo1
o g10 + qo1

= To determine ¢ use initial condition Py(0) =1



Solution of forward equations (continued)

v

Evaluation of candidate solution at initial condition Pyo(0) = 1 yields

1= 30 o= 9
g10 + qo1 gi0 + qo1

v

Finally transition probability function Poo(t)

POO(t) — 410 + o1 e*(‘?10+q01)f
gio +go1  Gio + Qo1

> Repeat for P11(t). Same exponent, different constants

Pii(t) = dor_ 90 —(awtan)t
g0 +qo1  Gio + qo1

v

As time goes to infinity, Poo(t) and P1(t) converge exponentially
= Convergence rate depends on magnitude of g10 + go1



Convergence of transition probabilities

» Recall POl(t) =1- Poo(t) and PlO(t) =1- 'Dll(t)

» Limiting (steady-state) probabilities are

. dio . do1
lim Pyo(t) = ————, lim Pyi(t) = ————
t—o0 (&) q10 + qo1 t—oo (&) gi0 + qo1

. do1 . dio
lim Pyi(t) = ——— lim Py(t) = ——
t—o0 (t) g0 + Go1’ t—o0 (&) g10 + qo1

» Limit distribution exists and is independent of initial condition

=- Compare across diagonals



Kolmogorov's forward equations in matrix form

» Restrict attention to finite CTMCs with N states
= Define matrix R € RV*N with elements rij = qij, i = —Vv;

» Rewrite Kolmogorov's forward eqgs. as (process runs a little longer)

Pi(t) =3 auPu(t) = uPi(t) = > rPu(t)

k=1,k#j

» Right-hand side defines elements of a matrix product

M1 rnj o+ onn
I’UP,‘l(t) Ce
Tkt g Tkn =
) R

i Pu(t) T\ TV N T

i(t) - Pu(t) - P‘ﬁt) s - sy - s

P(t) = Pa(t) - Pu(t) - Pin(t) sho- Sj - S IP(t)R:P,(t)

Pni(t) - Puk(t) - Pun(t) SN1 * SNk " SNN



Kolmogorov's backward equations in matrix form

» Similarly, Kolmogorov's backward egs. (process starts a little later)

N N
D awPu(t) —viPy(t) =Y rkPy(t)
k=1

k=1,ki

» Right-hand side also defines a matrix product

/?L_PF(?)_N Pij(t) - Pin(t)
2 Piy(t) S
e T Pa® T Pylt) - Pw(t) | =P(2)
ri Py (t) . . .
rin PN] i} wi(t ’ PNj(t) ’ PNN(t)
( S11 . S1j . SIN
R= sio- s - sw | =RP(t)=P(t)
Nyt vk TN Sn1 . SNk SNN




Kolmogorov's equations in matrix form

» Matrix form of Kolmogorov's forward equation = P'(t) = P(t)R

> Matrix form of Kolmogorov's backward equation = P’(t) = RP(t)
= More similar than apparent
= But not equivalent because matrix product not commutative

» Notwithstanding both equations have to accept the same solution



Matrix exponential

v

Kolmogorov's equations are first-order linear differential equations
= They are coupled, P;(t) depends on Py(t) for all k

= Accepts exponential solution = Define matrix exponential

v

Def: The matrix exponential e®t of matrix At is the series

At (AD)" (At)* | (At)?
€ ; nl TALE s T

v

Derivative of matrix exponential with respect to t

o At 3,2 2
dgt :0+A+A2t+A2t +...:A(I+At+(A2t) +”.):AeAt

A
0e™ oAt
ot

v

Putting A on right side of product shows that =



Solution of Kolmogorov's equations

» Propose solution of the form P(t) = eR¢
> P(t) solves backward equations, since derivative is
oP(t) oeRt R
= = Re™" = RP(t
o ot C ®)
» |t also solves forward equations
oP(t) oeRt Rt
= — = R=P(t)R
ot ot © (&)

v

Notice that P(0) = I, as it should (P;;(0) = 1, and P;;(0) = 0)



Computing the matrix exponential

» Suppose A € R"™*" is diagonalizable, i.e., A = UDU™!
= Diagonal matrix D = diag(\1, ..., An) collects eigenvalues )\;
= Matrix U has the corresponding eigenvectors as columns

» We have the following neat identity

At = (UDU~!¢)" - — (Dt)" ~1_ yy.Dtyy—1
e _ZT_U Z - U !=uUeliu

n=0

» But since D is diagonal, then

At O

[}

Dt_oo(Dt)n_
€ _Z nl
n=0



Two state CTMC example

Ex: Simplest CTMC with two states 0 and 1 e/\e

» Transition rates are gg; =3 and g9 =1

» Recall transition time rates are g = go1 = 3, ¥1 = g190 = 1, hence

=1y Qo1 -3 3
R: =
(o %)-(3 %)

» Eigenvalues of R are 0, —4, eigenvectors [1,1]7 and [-3,1]". Thus

o= (1) v () e (0 )

» The solution to the forward equations is

¢ ty- 1/4+ (3/4)e " 3/4—(3/4)e "
P(t) = e® = UePU! = ( 1/4— (1/4)e* 3/4+ (1/4)e >



Recurrent and transient states

> Recall the embedded discrete-time MC associated with any CTMC
= Transition probs. of MC form the matrix P of the CTMC
= No self transitions (P; = 0, P's diagonal null)

v

States i <» j communicate in the CTMC if j > j in the MC
= Communication partitions MC in classes
= Induces CTMC partition as well

v

Def: CTMC is irreducible if embedded MC contains a single class

v

State 7 is recurrent if it is recurrent in the embedded MC

= Likewise, define transience and positive recurrence for CTMCs

v

Transience and recurrence shared by elements of a MC class

= Transience and recurrence are class properties of CTMCs

v

Periodicity not possible in CTMCs



Limiting probabilities

Theorem
Consider irreducible, positive recurrent CTMC with transition rates v; and
gij. Then, Pji(t) exists and is independent of the initial state i, i.e.,

lim
t—00
Py = lim Py(t) exists for all (i, ])

Furthermore, steady-state probabilities P; > 0 are the unique nonnegative
solution of the system of linear equations

yPi= Y P Y Pi=1
j=0

k=0,k#j

» Limit distribution exists and is independent of initial condition
= Obtained as solution of system of linear equations
= Like discrete-time MCs, but equations slightly different



Algebraic relation to determine limit probabilities

» As with MCs difficult part is to prove that P; = tlim Pji(t) exists
—00

> Algebraic relations obtained from Kolmogorov's forward equations
oP;(
U Z qk_j lk 'D (t)
k=0,k#j
» If limit distribution exists we have, independent of initial state /
. OPy(t)
t|l>oo ot 0, tll[go Pi(t) =P
» Considering the limit of Kolomogorov's forward equations yields
o0
Z qijk — I/jPJ
k=0,k#j
> Reordering terms the limit distribution equations follow



Two state CTMC example

qo1
Ex: Simplest CTMC with two states 0 and 1 o/\)
» Transition rates are go1 and gio
qio

» From transition rates find mean transition times vy = qo1, 1 = q10

» Stationary distribution equations
wPo = qP1, nP1 = qukFo, Po+ P1 =1,
qo1Po = qioP1,  qioP1 = qo1FPo
» Solution yields = Py = &, P = _ G
qio + qo1 qi0 + go1
» Larger rate gio of entering 0 = Larger prob. Py of being at 0
> Larger rate qo; of entering 1 =- Larger prob. P; of being at 1



Ergodicity

» Def: Fraction of time T;(t) spent in state / by time t

Ti(t) == %/0 I{X(r)=i}dr

= T;(t) a time/ergodic average, Ti(t) is an ergodic limit

lim
t—oo

» If CTMC is irreducible, positive recurrent, the ergodic theorem holds

P; = lim T;(t) = lim l/ot]I{X(T) =itdr a.s.

t—o0 t—oo t

» Ergodic limit coincides with limit probabilities (almost surely)



Function's ergodic limit

v

Consider function (i) associated with state i. Can write f(X(t)) as

FX(D) = S FOE{X(0) = 1}

i=1

v

Consider the time average of f(X(t))

t'L”So%/O f(X(7) dr_tmof/ z;f(i)H{X(T):i}dT

» Interchange summation with integral and limit to say
1 e’} t 0o
Jin g [ P9 = e i [ 1) = =X e
i—
» Function’s ergodic limit = Function’s expectation under limiting dist.



Limit distribution equations as balance equations

o0
> Recall limit distribution equations = 1;P; = > qiPx

k=0,k#j
» P; = fraction of time spent in state j
> v; = rate of transition out of state j given CTMC is in state j

= v;P; = rate of transition out of state j (unconditional)
> G

= rate of transition from k to j given CTMC is in state k
= qijPx = rate of transition from k to j (unconditional)
oo

= Z qij P = rate of transition into j, from all states
k=0,k#j

» Rate of transition out of state j = Rate of transition into state j

» Balance equations = Balance nr. of transitions in and out of state j



Limit distribution for birth and death process

» Birth/deaths occur at state-dependent rates. When X(t) =i

» Births = Individuals added at exponential times with mean 1/);
= Birth rate = upward transition rate = gj jiy1 = A;
» Deaths = Individuals removed at exponential times with mean 1/u;

= Death rate = downward transition rate = q; ;1 = y;

» Transition time rates = v; = A\j + pj, 1 >0 and vg = Ag

Ao Ai—1 A Aig1
O @& o0 o
M1 i Hit+1

v

Limit distribution/balance equations: Rate out of j = Rate into j

(N 4+ pi)Pi = Ni—1iPio1 + piv1Pisa
XoPo =P
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