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Random processes

v

Random processes assign a function X(t) to a random event
= Without restrictions, there is little to say about them

= Markov property simplifies matters and is not too restrictive

» Also constrained ourselves to discrete state spaces
= Further simplification but might be too restrictive

v

Time t and range of X(t) values continuous in general
» Time and/or state may be discrete as particular cases

v

Restrict attention to (any type or a combination of types)
= Markov processes (memoryless)
= Gaussian processes (Gaussian probability distributions)

= Stationary processes ( “limit distribution”)



Markov processes

v

X(t) is a Markov process when the future is independent of the past

v

For all t > s and arbitrary values x(t), x(s) and x(u) for all u <'s

P (X(t) < x(t)| X(s) < x(s), X(u) < x(u),u <s)
=P (X t) < x(t) ‘ X(s) < X(s))

= Markov property defined in terms of cdfs, not pmfs

v

Markov property useful for same reasons as in discrete time/state

= But not that useful as in discrete time /state



Gaussian processes

» X(t) is a Gaussian process when all prob. distributions are Gaussian

v

For arbitrary n > 0, times t;, tp, ..., t, it holds
= Values X(t1), X(t2),...,X(tn) are jointly Gaussian RVs

v

Simplifies study because Gaussian distribution is simplest possible
= Suffices to know mean, variances and (cross-)covariances
= Linear transformation of independent Gaussians is Gaussian

= Linear transformation of jointly Gaussians is Gaussian



Markov processes + Gaussian processes

» Markov (memoryless) and Gaussian properties are different
= Will study cases when both hold

» Brownian motion, also known as Wiener process
= Brownian motion with drift

= White noise = Linear evolution models

» Geometric brownian motion
= Arbitrages
= Risk neutral measures

= Pricing of stock options (Black-Scholes)



Stationary processes

v

Process X(t) is stationary if probabilities are invariant to time shifts

v

For arbitrary n > 0, times ty, tp, ..., t, and arbitrary time shift s

P(X(t1+5) < x1,X(t2+5) <xope o, X(tn +5) < xa) =
P(X(t1) < x1,X(t2) < x2,...,X(ta) < xp)

= System's behavior is independent of time origin

v

Follows from our success studying limit probabilities
= Study of stationary process = Study of limit distribution

v

Will study = Spectral analysis of stationary random processes
= Linear filtering of stationary random processes



Jointly Gaussian random variables

» Def: Random variables Xi, ..., X, are jointly Gaussian (normal) if any
linear combination of them is Gaussian

= Given n > 0, for any scalars ay, ..., a, the RV
Y =aXi+aXo+...4+a,X,=a’ X is Gaussian distributed
= May also say vector RV X = [Xy,..., X,]" is Gaussian
» Consider 2 dimensions = 2 RVs X; and X; are jointly normal

» To describe joint distribution have to specify
= Means: 1 = E[Xi] and pp = E[X5]
= Variances: 0%, = var[Xi] and 03, = var [X]
= Covariance: 0%, = cov(Xy, X2) = E[(X1 — p1)(X2 — m2)]



Pdf of jointly Gaussian RVs in 2 dimensions

» Define mean vector pu = [u1, 12]7 and covariance matrix C € R?*2
2 2
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= C is symmetric, i.e., CT = C because 03, = 03,

» Joint pdf of X = [X1, X3] T is given by

K (%) e (50— 1TCHx)

1
 2rdet/?(C)
= Assumed that C is invertible, thus det(C) # 0

> If the pdf of X is fx(x) above, can verify Y = a’X is Gaussian



Pdf of jointly Gaussian RVs in n dimensions

» For X € R" (n dimensions) define p = E [X] and covariance matrix

2 2 2
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= C symmetric, (i, j)-th element is o5 = cov(X;, X;)

> Joint pdf of X defined as before (almost, spot the difference)
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= C invertible and det(C) # 0. All linear combinations normal

fx(X) =

» To fully specify the probability distribution of a Gaussian vector X

=- The mean vector 1 and covariance matrix C suffice



Notational aside and independence

» With x € R", p € R" and C € R™", define function N(x; i, C) as

; = 1 ex —lx— TCi(x—
N(x;p, C) = 272 4et () p( 5(x—p) e u))

= p and C are parameters, x is the argument of the function

» Let X € R" be a Gaussian vector with mean u, and covariance C
= Can write the pdf of X as fx(x) = N(x; , C)

» If X1,..., X, are mutually independent, then C = diag(o?,,...,02,) and

T 1 (Xf—ﬂi)2>
fx(x) = ex ——
) =[] om0t

i




Gaussian processes

» Gaussian processes (GP) generalize Gaussian vectors to infinite dimensions

» Def: X(t) is a GP if any linear combination of values X(t) is Gaussian

= For arbitrary n > 0, times ty, ..., t, and constants ay,...,a,
Y = a1 X(t1) + a2 X(t2) + ... + a,X(t,) is Gaussian distributed
= Time index t can be continuous or discrete

» More general, any linear functional of X(t) is normally distributed

= A functional is a function of a function

t
Ex: The (random) integral Y :/ X(t) dt is Gaussian distributed

ty
=



Joint pdfs in a Gaussian process

v

Consider times ty,...,t,. The mean value u(t;) at such times is
u(t) = E[X(8)]
» The covariance between values at times t; and t; is

C(ti, ;) = E [(X(t:) — u(t:)) (X(t) — u(ty))]

» Covariance matrix for values X(t1),...,X(t,) is then
C(ti,t1) C(t1,t2) ... C(ti,tn)
C(t,t1) C(t2,t2) ... C(t2,tn)
C(t1,...,ta) = ) , )
C(tn, t1) C(tn,t2) ... C(tn,tn)

v

Joint pdf of X(t1),...,X(t,) then given as

et (0t 50) = N (il ) ()] o)



Mean value and autocorrelation functions

v

To specify a Gaussian process, suffices to specify:
= Mean value function = p(t) = E[X(t)]; and
= Autocorrelation function = R(t1, ) = E[X(t1)X ()]

v

Autocovariance obtained as C(t1, t2) = R(t1, t2) — p(t1)(t2)

v

For simplicity, will mostly consider processes with u(t) =0
= Otherwise, can define process Y(t) = X(t) — ux(t)
= In such case C(t1, t2) = R(t1, t2) because py(t) =0

v

Autocorrelation is a symmetric function of two variables t; and t;

R(tl, tg) = R(tg, tl)



Probabilities in a Gaussian process

» All probs. in a GP can be expressed in terms of u(t) and R(ty, to)

» For example, pdf of X(t) is

) (xe) = L exp <— (e — 'u(t))z )
V2 (R(t,1) = i2(0)) 2(R(t,t) — p3(t))

> Notice that —XB=£) s 5 standard Gaussian random variable
R(t,t)—p2(t)

— P(X(t)>a)=® (ﬁ) where

o) - [ o (L) o



Joint and conditional probabilities in a GP

» For a zero-mean GP X(t) consider two times t; and t»

» The covariance matrix for X(t;) and X(t2) is

_( R(ti,t1) R(t1, 1)
€= ( R(t1,t2) R(t2,t2) )

v

Joint pdf of X(t;) and X(t2) then given as

1

f, Xy, Xpy) = — 75—
XXt e X6) = 5 i )

1
exp <_2[Xt17 sz] TC?l[th Xt2])

v

Conditional pdf of X(t1) given X(t) computed as

fX(tl),X(tz)(tith)
fx(tz)(xl’z)

(e x(e) (Xt | Xe) =




Brownian motion as limit of random walk

» Gaussian processes are natural models due to Central Limit Theorem

> Let us reconsider a symmetric random walk in one dimension

Time interval = h

x(t)

» Walker takes increasingly frequent and increasingly smaller steps



Brownian motion as limit of random walk

» Gaussian processes are natural models due to Central Limit Theorem

» Let us reconsider a symmetric random walk in one dimension

Time interval = h/2

x(t)

» Walker takes increasingly frequent and increasingly smaller steps



Brownian motion as limit of random walk

» Gaussian processes are natural models due to Central Limit Theorem

» Let us reconsider a symmetric random walk in one dimension

Time interval = h/4

ﬁ t

ﬁ—|_|_I_'_,_|—ﬁ

x(t)

» Walker takes increasingly frequent and increasingly smaller steps



Random walk, time step h and step size ovh

> Let X(t) be the position at time t with X(0) =0
= Time interval is h and ov/h is the size of each step
= Walker steps right or left w.p. 1/2 for each direction

» Given X(t) = x, prob. distribution of the position at time t + h is
P(X(t+h):x+a\/E|X(t):x) —1/2
P(X(¢+h) = x = ov/h| X(t) = x) = 1/2

» Consider time T = Nh and index n=1,2,... N

= Introduce step RVs Y, = £1, with P(Y, = £1) =1/2
= Can write X(nh) in terms of X((n—1)h) and Y, as

X(nh) = X((n = 1)h) + (o V'h) Y,



Central Limit Theorem as h — 0

» Use recursion to write X(T) = X(Nh) as

N N
X(T) = X(Nh) = X(0) + (a\fh) S V.= (a\fh) R
n=1 n=1
» Yi,..., Yy areiid. with zero-mean and variance
var[Y,] = =1

» As h — 0 we have N = T /h — oo, and from Central Limit Theorem

> Yo~ N(0,N) = N(0, T/h)

n=1

= X(T) NN(O,(O'2/7) X (T/h)) :./\/(0.,02T>



Conditional distribution of future values

» More generally, consider times T = Nhand T+ S =(N+ M)h
> Let X(T) = x(T) be given. Can write X(T + S) as

N+M

X(T+8)=x(T)+ (sVh) 3 Vi
n=N+1
» From Central Limit Theorem it then follows
N+M
> Yo~ N(0,(N+ M= N)) =N(0,5/h)
n=N+1

- [X(T +S)| X(T) = X(T)} ~ N (x(T),025)



Definition of Brownian motion

» The former analysis was for motivational purposes
» Def: A Brownian motion process (a.k.a Wiener process) satisfies
(i) X(t) is normally distributed with zero mean and variance o2t
X(t) ~ N (0,0%t)

(ii) Independent increments =- For disjoint intervals (t1, t) and (s, s2)
increments X(t2) — X(t1) and X(s;) — X(s1) are independent RVs

(i) Stationary increments = Probability distribution of increment
X(t + s) — X(s) is the same as probability distribution of X(t)

> Property (ii) = Brownian motion is a Markov process

> Properties (i)-(iii) = Brownian motion is a Gaussian process



Mean and autocorrelation of Brownian motion

v

Mean function p(t) = E[X(t)] is null for all times (by definition)

p(t) =E[X(t)] =0

» For autocorrelation Rx(t1, tp) start with times t; < t,

» Use conditional expectations to write
Rx(t, 1) = E[X(8)X(2)] = Ex(a) [Ex(m [X(8)X(8) | X(tl)]}
> In the innermost expectation X(t;) is a given constant, then

Rx(t1, t2) = Ex(s) [X(tl)EX(tz) [X(t2) | X(tl)]}

= Proceed by computing innermost expectation



Autocorrelation of Brownian motion (continued)

v

The conditional distribution of X(t2) given X(t1) for t; < ty is
[X(tz) | X(tl)} ~ J\/(X(tl),a2(t2 - tl))

= Innermost expectation is Exs,) [X(t2) | X(t1)] = X(t1)

v

From where autocorrelation follows as

Rx(tl, t2) = ]EX(tl) [X(tl)X(tl)] = EX(tl) [XZ(tl)] = 0'21'1

v

Repeating steps, if t, < t; = Rx(t1, t2) = 0%t>

v

Autocorrelation of Brownian motion = Rx(t1,t2) = o min(ty, t5)



Brownian motion with drift

v

Similar to Brownian motion, but start from biased random walk

v

Time interval h, step size aVh, right or left with different probs.
1
P(X(t+h):x+ax/E|X(t):x) = 5 (1+E\/E>
P(X(t+h) =x—oVh| X(t) = x) = 5 (1——f)
= If > 0 biased to the right, if 4 < 0 biased to the left

» Definition requires h small enough to make (u/0)vh <1

v

Notice that bias vanishes as v/h, same as step size



Mean and variance of biased steps

v

Define step RV Y, = £1, with probabilities
=1 I — 1) =
P(Ya=1)= (1+J\/E)7 P(Y,=—1)=
» Expected value of Y, is

E[Y)] =1xP(Ya=1)+(=1) x P (Y, = —1)
L 1 B — P
:§(1+§ﬁ) _5( —;\/E)_;\/E

v

Second moment of Y, is

E [Y,f} = (1P xP(Yo=1)+ (=12 xP(Y,=-1)=1

2
Variance of Y, is = var[Y,] =E [Y,f} —]Ez[Y,,] =1— %h

v



Central Limit Theorem as h — 0

v

Consider time T = Nh, index n=1,2,..., N. Write X(nh) as
X(nh) = X((n — 1)h) + (m/ﬁ) Y,

v

Use recursively to write X(T) = X(Nh) as

X(T) = X(Nh) = X(0) + (7 V/h) ZN: Yo = (o) ZN: Y,

v

As h — 0 we have N — oo and Zyzl Y, normally distributed

v

As h — 0, X(T) tends to be normally distributed by CLT

> Need to determine mean and variance (and only mean and variance)



Mean and variance of X(T)

» Expected value of X(T) = scaled sum of E[Y,] (recall T = Nh)

_ _ H _
EX(T)) = (ovh) x N x E[Y,] = (oVh) x/vx(a\/ﬁ) uT
» Variance of X(T) = scaled sum of variances of independent Y,

var[X(T)] = (aﬁ)z x N x var [Y]
= (0%h) x N x (1— Zih) —0o’T

= Used T = Nhand 1 — (42/02)h — 1

» Brownian motion with drift (BMD) = X(t) ~ N (ut,o?t)
= Normal with mean pt and variance %t

= Independent and stationary increments



Mean-square derivative of a random process

» Consider a realization x(t) of the random process X(t)
» Def: The derivative of (lowercase) x(t) is
ox(t) . x(t+ h)—x(t)
= lim
ot h—0
» When this limit exists = Limit may not exist for all realizations
» Can define sure limit, a.s. limit, in probability, ...
= Notion of convergence used here is in mean-squared sense
» Def: Process X (t)/0t is the mean-square sense derivative of X(t) if

lim E
h—0

h ot

(X(t+h) - X(t) 3X(t))2] —0



Mean-square integral of a random process

v

Likewise consider the integral of a realization x(t) of X(t)

(b—a)/h

b
li hx( h
/ax(t = Jim Z x(a+ nh)

= Limit need not exist for all realizations

v

Can define in sure sense, almost sure sense, in probability sense, ...

= Again, adopt definition in mean-square sense

v

Def: Process fab X(t)dt is the mean square sense integral of X(t) if

(b—a)/h b 2
lim B < ; hX(a+nh)—/a X(t)dt) =0

v

Mean-square sense convergence is convenient to work with GPs



state model example

Def: A random process X(t) follows a linear state model if

oX(t)
ot

= aX(t) + W(t)
with W(t) WGN, autocorrelation Ry (ti, t2) = o5(t1 — t2)
Discrete-time representation of X(t) = X(nh) with step size h

Solving differential equation between nh and (n+ 1)h (h small)
(n+1)h
X((n+ 1)h) = X(nh)e™ + / W(t) dt

nh

Defining X(n) := X(nh) and W(n) := frf:+1)h W(t) dt may write
X(n+1) = (1+ ah)X(n) + W(n)

= Where E [W?(n)] = 0h and W(n;) independent of W(n2)



Stationary random processes

» All joint probabilities invariant to time shifts, i.e., for any s

P(X(t14+5) <x1,X(t2 +5) < x2y..., X(th +5) < xn)
P(X(t]_) < X1,X(t2) < X2, ...,

X(tn) < xn)
= If above relation holds X(t) is called strictly stationary (SS)
> First-order stationary = probs. of single variables are shift invariant

P(X(t+s5) < x) = P(X(t) < x)

» Second-order stationary =- joint probs. of pairs are shift invariant

P(X(t1+5) <x, X(t2 +5) < x) = P(X(t1) < x1, X(12) < %)



Pdfs and moments of stationary processes

For SS process joint cdfs are shift invariant. Hence, pdfs also are

v

fx(e+s)(X) = fx()(x) = fx(0)(x) == fx(x)

» As a consequence, the mean of a SS process is constant

wu(t) :=E[X(t)] = / xfx () (x)dx = / xfx(x)dx = p
» The variance of a SS process is also constant
var [X(£)] = / (x — 1)? Fgey(x)dx = / (x — 1) Fe(x)dx = o

» The power (second moment) of a SS process is also constant
o0 (o)
E [X?(t)] == / X fx ey (x)dx = / X*fx(x)dx = o + pi?



Joint pdfs of stationary processes

» Joint pdf of two values of a SS random process

fx(e)x (1) (X1, X2) = Fx(0)x(t2—t) (X1, X2)

= Used shift invariance for shift of t;
= Notethat ty =0+t and b = (b — t1) + t1

> Result above true for any pair t1, t»
= Joint pdf depends only on time difference s := t, — t;

» Writing t; =t and t, = t + s we equivalently have

fx(e)x (t5) (X1, X2) = Fx(o)x(s) (X1, X2) = Fx(x1, %27 5)



Stationary processes and limit distributions

v

Stationary processes follow the footsteps of limit distributions

v

For Markov processes limit distributions exist under mild conditions
> Limit distributions also exist for some non-Markov processes

v

Process somewhat easier to analyze in the limit as t — oo

= Properties can be derived from the limit distribution

v

Stationary process =~ study of limit distribution
= Formally initialize at limit distribution

= In practice results true for time sufficiently large

v

Deterministic linear systems =- transient + steady-state behavior
= Stationary systems akin to the study of steady-state

v

But steady-state is in a probabilistic sense (probs., not realizations)



Autocorrelation function

» From the definition of autocorrelation function we can write

Rx(t1, t2) = E[X(t1)X(t2)] = / / X1 fx (1) X (1) (X1, X2) dx1 dx
» For SS process fx(t)x(t,)(-) depends on time difference only

Rx(tl, tz) :/ / X1X2fX(0)X(t2,t1)(X1,X2) dxidx; = E [X(O)X(tz— tl)]

= Rx(t1, t2) is a function of s = t, — t; only
Rx(tl, tg) = Rx(o, th — tl) = Rx(S)
» The autocorrelation function of a SS random process X(t) is Rx(s)

= Variable s denotes a time difference / shift / lag
= Rx(s) specifies correlation between values X(t) spaced s in time



Autocovariance function

v

Similarly to autocorrelation, define the autocovariance function as

Cx(t, ) = E [(X(8) — p(t)) (X(2) — p(t2))]

v

Expand product to write Cx(t1, t2) as
Cx(ti, &) = E[X(0)X(82)] + p(tr) p(t2) — E[X(01)] p(t2) — E [X(22)] (1)
For SS process u(t1) = p(t2) = p and E[X(t1)X(t2)] = Rx(t2 — t1)

v

Cx(tl, t2) = Rx(tz — t1) — ;LZ = Cx(tz — tl)

= Autocovariance function depends only on the shift s =t, — t;

v

We will typically assume that © = 0 in which case
Rx(s) = Cx(s)

= If i # 0 can study process X(t) — p whose mean is null



Wide-sense stationary processes

» Def: A process is wide-sense stationary (WSS) when its
= Mean is constant = p(t) = p for all ¢
= Autocorrelation is shift invariant = Rx(t1, &) = Rx(t> — t1)

» Consequently, autocovariance of WSS process is also shift invariant

Cx(tl, t2) =

= Rx(t2 — &) — p*

» Most of the analysis of stationary processes is based on Rx(t, — t1)
= Thus, such analysis does not require SS, WSS suffices



Wide-sense stationarity versus strict stationarity

v

SS processes have shift-invariant pdfs
= Mean function is constant

= Autocorrelation is shift-invariant

v

Then, a SS process is also WSS

= For that reason WSS is also called weak-sense stationary

v

The opposite is obviously not true in general

v

But if Gaussian, process determined by mean and autocorrelation

= WSS implies SS for Gaussian process

v

WSS and SS are equivalent for Gaussian processes



Gaussian wide-sense stationary process

» WSS Gaussian process X(t) with mean 0 and autocorrelation R(s)

» The covariance matrix for X(t; +s), X(t2 +5),..., X(t, + 5) is

R(ti+s,t1+s) R(ti+s,to+s) ... R(ti+s,ta+s)

R(t +s,t1+s) R(k+s,to+s) ... R(ta+s,th+s)
C(ti+s,...,tats) = . . ) .

R(tn+s,t1+5s) R(th+s,ta+s) ... R(tn+s,ta+s)

» For WSS process, autocorrelations depend only on time differences

R(t1 —t1) R(t2—1t1) ... R(ta—t1)

R(ti—t) R(t—1t) ... R(th—t2)
Clti+s,...,th+5) = : : . : =C(t1,...,tn)

R(t1 .— tn) R(t .— ta) ... R(ta _ tn)

= Covariance matrices C(t1,..., t,) are shift invariant



Gaussian wide-sense stationary process (continued)

v

The joint pdf of X(t1 +5), X(t2+s),..., X(tn +5) is
fx(trss) X(tnts) Xty - ooy xn) = N(0,C(t1 45, .o, ta +5)i [x1, -+ -, X0 )
= Completely determined by C(t; +s,...,t, + 5)

Since covariance matrix is shift invariant can write

v

fX(t1+s) ..... X(tn+5)(X17 sy Xn) = N(07 C(t17 ey tn)v [X17 ... 7XI7]T)
Expression on the right is the pdf of X(t1), X(t2), ..., X(t,). Then

v

fx(z1+s) ..... X(tn+s)(X17 cee 7Xn) = fX(tl) ,,,,, X(t,,)(Xh cee 7Xn)

v

Joint pdf of X(t1), X(t2),. .., X(t,) is shift invariant
= Proving that WSS is equivalent to SS for Gaussian processes



Brownian motion and white Gaussian noise

Ex: Brownian motion X(t) with variance parameter o

= Mean function is u(t) =0 for all t >0
= Autocorrelation is Rx(t1, t2) = o min(ty, to)
» While the mean is constant, autocorrelation is not shift invariant

= Brownian motion is not WSS

Ex: White Gaussian noise W(t) with variance parameter o2
= Mean function is p(t) = 0 for all t
= Autocorrelation is Ry/(t1, t) = 025(t2 —t)
» The mean is constant and the autocorrelation is shift invariant
= White Gaussian noise is WSS
= Also SS because white Gaussian noise is a GP



Properties of autocorrelation function

For WSS processes:
(i) The autocorrelation for s = 0 is the power of the process

Rx(0) = E [X*(t)]

(ii) The autocorrelation function is symmetric = Rx(s) = Rx(—s)

Proof.
Commutative property of product and shift invariance of Rx(t1, t»)

Rx(s) = Rx(t, t+ S)
=E[X(t)X(t+ )]
=E[X(t + s)X(t)]
= Rx(t+s,t) = Rx(—s)



Properties of autocorrelation function (continued)

For WSS processes:
(iii)) Maximum absolute value of the autocorrelation function is for s = 0
|[Rx ()] < Rx(0)

Proof.
Expand the square E {(X(t +s)+ X(t))2]

E [(X(t +s)+ X(t))z} =E [XZ(t + s)] +E [XQ(t)] £ 2E[X(t + 5)X(1)]
= Rx(O) =+ Rx(O) + 2Rx(5)
Square E [(X(H— s) =+ X(t))2] is always nonnegative, then
0<E [(X(t +s)+ X(t))z] = 2Rx(0) £ 2Rx(s)

Rearranging terms = Rx(0) > FRx(s)
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