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Random processes

I Random processes assign a function X (t) to a random event

) Without restrictions, there is little to say about them

) Markov property simplifies matters and is not too restrictive

I Also constrained ourselves to discrete state spaces

) Further simplification but might be too restrictive

I Time t and range of X (t) values continuous in general
I Time and/or state may be discrete as particular cases

I Restrict attention to (any type or a combination of types)

) Markov processes (memoryless)

) Gaussian processes (Gaussian probability distributions)

) Stationary processes (“limit distribution”)
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Markov processes

I X (t) is a Markov process when the future is independent of the past

I For all t > s and arbitrary values x(t), x(s) and x(u) for all u < s

P
�
X (t)  x(t)

��X (s)  x(s),X (u)  x(u), u < s
�

= P
�
X (t)  x(t)

��X (s)  x(s)
�

) Markov property defined in terms of cdfs, not pmfs

I Markov property useful for same reasons as in discrete time/state

) But not that useful as in discrete time /state

I More details later
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Gaussian processes

I X (t) is a Gaussian process when all prob. distributions are Gaussian

I For arbitrary n > 0, times t1, t2, . . . , tn it holds

) Values X (t1),X (t2), . . . ,X (tn) are jointly Gaussian RVs

I Simplifies study because Gaussian distribution is simplest possible

) Su�ces to know mean, variances and (cross-)covariances

) Linear transformation of independent Gaussians is Gaussian

) Linear transformation of jointly Gaussians is Gaussian

I More details later
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Markov processes + Gaussian processes

I Markov (memoryless) and Gaussian properties are di↵erent

) Will study cases when both hold

I Brownian motion, also known as Wiener process

) Brownian motion with drift

) White noise ) Linear evolution models

I Geometric brownian motion

) Arbitrages

) Risk neutral measures

) Pricing of stock options (Black-Scholes)
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Stationary processes

I Process X (t) is stationary if probabilities are invariant to time shifts

I For arbitrary n > 0, times t1, t2, . . . , tn and arbitrary time shift s

P (X (t1 + s)  x1,X (t2 + s)  x2, . . . ,X (tn + s)  xn) =

P (X (t1)  x1,X (t2)  x2, . . . ,X (tn)  xn)

) System’s behavior is independent of time origin

I Follows from our success studying limit probabilities

) Study of stationary process ⇡ Study of limit distribution

I Will study ) Spectral analysis of stationary random processes
) Linear filtering of stationary random processes

I More details later
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Jointly Gaussian random variables

I Def: Random variables X1, . . . ,Xn are jointly Gaussian (normal) if any
linear combination of them is Gaussian

) Given n > 0, for any scalars a1, . . . , an the RV (a = [a1, . . . , an]T )

Y = a1X1 + a2X2 + . . .+ anXn = aTX is Gaussian distributed

) May also say vector RV X = [X1, . . . ,Xn]T is Gaussian

I Consider 2 dimensions ) 2 RVs X1 and X2 are jointly normal

I To describe joint distribution have to specify

) Means: µ1 = E [X1] and µ2 = E [X2]

) Variances: �2
11 = var [X1] = E

⇥
(X1 � µ1)2

⇤
and �2

22 = var [X2]

) Covariance: �2
12 = cov(X1,X2) = E [(X1 � µ1)(X2 � µ2)]= �2

21
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Pdf of jointly Gaussian RVs in 2 dimensions

I Define mean vector µ = [µ1, µ2]T and covariance matrix C 2 R2⇥2

C =

✓
�2
11 �2

12

�2
21 �2

22

◆

) C is symmetric, i.e., CT = C because �2
21 = �2

12

I Joint pdf of X = [X1,X2]T is given by

fX(x) =
1

2⇡ det1/2(C)
exp

✓
�1

2
(x� µ)TC�1(x� µ)

◆

) Assumed that C is invertible, thus det(C) 6= 0

I If the pdf of X is fX(x) above, can verify Y = aTX is Gaussian

Introduction to Random Processes Gaussian, Markov and stationary processes 10



Pdf of jointly Gaussian RVs in n dimensions

I For X 2 Rn (n dimensions) define µ = E [X] and covariance matrix

C := E
h
(X� µ)(X� µ)T

i
=

0

BBB@

�2
11 �2

12 . . . �2
1n

�2
21 �2

22 . . . �2
2n

...
. . .

...
�2
n1 �2

n2 . . . �2
nn

1

CCCA

) C symmetric, (i , j)-th element is �2
ij = cov(Xi ,Xj)

I Joint pdf of X defined as before (almost, spot the di↵erence)

fX(x) =
1

(2⇡)n/2 det1/2(C)
exp

✓
�1

2
(x� µ)TC�1(x� µ)

◆

) C invertible and det(C) 6= 0. All linear combinations normal

I To fully specify the probability distribution of a Gaussian vector X

) The mean vector µ and covariance matrix C su�ce
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Notational aside and independence

I With x 2 Rn, µ 2 Rn and C 2 Rn⇥n, define function N (x;µ,C) as

N (x;µ,C) :=
1

(2⇡)n/2 det1/2(C)
exp

✓
�1

2
(x� µ)TC�1(x� µ)

◆

) µ and C are parameters, x is the argument of the function

I Let X 2 Rn be a Gaussian vector with mean µ, and covariance C

) Can write the pdf of X as fX(x) = N (x;µ,C)

I If X1, . . . ,Xn are mutually independent, then C = diag(�2
11, . . . ,�

2
nn) and

fX(x) =
nY

i=1

1p
2⇡�2

ii

exp

✓
� (xi � µi )2

2�2
ii

◆
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Gaussian processes

I Gaussian processes (GP) generalize Gaussian vectors to infinite dimensions

I Def: X (t) is a GP if any linear combination of values X (t) is Gaussian

) For arbitrary n > 0, times t1, . . . , tn and constants a1, . . . , an

Y = a1X (t1) + a2X (t2) + . . .+ anX (tn) is Gaussian distributed

) Time index t can be continuous or discrete

I More general, any linear functional of X (t) is normally distributed

) A functional is a function of a function

Ex: The (random) integral Y =

Z t2

t1

X (t) dt is Gaussian distributed

) Integral functional is akin to a sum of X (ti ), for all ti 2 [t1, t2]

Introduction to Random Processes Gaussian, Markov and stationary processes 13



Joint pdfs in a Gaussian process

I Consider times t1, . . . , tn. The mean value µ(ti ) at such times is

µ(ti ) = E [X (ti )]

I The covariance between values at times ti and tj is

C(ti , tj) = E
⇥�
X (ti )� µ(ti )

��
X (tj)� µ(tj)

�⇤

I Covariance matrix for values X (t1), . . . ,X (tn) is then

C(t1, . . . , tn) =

0

BBB@

C(t1, t1) C(t1, t2) . . . C(t1, tn)
C(t2, t1) C(t2, t2) . . . C(t2, tn)

...
...

. . .
...

C(tn, t1) C(tn, t2) . . . C(tn, tn)

1

CCCA

I Joint pdf of X (t1), . . . ,X (tn) then given as

fX (t1),...,X (tn)(x1, . . . , xn) = N
⇣
[x1, . . . , xn]

T ; [µ(t1), . . . , µ(tn)]
T ,C(t1, . . . , tn)

⌘
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Mean value and autocorrelation functions

I To specify a Gaussian process, su�ces to specify:

) Mean value function ) µ(t) = E [X (t)]; and

) Autocorrelation function ) R(t1, t2) = E
⇥
X (t1)X (t2)

⇤

I Autocovariance obtained as C (t1, t2) = R(t1, t2)� µ(t1)µ(t2)

I For simplicity, will mostly consider processes with µ(t) = 0

) Otherwise, can define process Y (t) = X (t)� µX (t)

) In such case C (t1, t2) = R(t1, t2) because µY (t) = 0

I Autocorrelation is a symmetric function of two variables t1 and t2

R(t1, t2) = R(t2, t1)
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Probabilities in a Gaussian process

I All probs. in a GP can be expressed in terms of µ(t) and R(t1, t2)

I For example, pdf of X (t) is

fX (t)(xt) =
1q

2⇡
�
R(t, t)� µ2(t)

� exp
 
�

�
xt � µ(t)

�2

2
�
R(t, t)� µ2(t)

�
!

I Notice that X (t)�µ(t)p
R(t,t)�µ2(t)

is a standard Gaussian random variable

) P (X (t) > a) = �
⇣

a�µ(t)p
R(t,t)�µ2(t)

⌘
, where

�(x) =

Z 1

x

1p
2⇡

exp

✓
�x

2

2

◆
dx
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Joint and conditional probabilities in a GP

I For a zero-mean GP X (t) consider two times t1 and t2

I The covariance matrix for X (t1) and X (t2) is

C =

✓
R(t1, t1) R(t1, t2)
R(t1, t2) R(t2, t2)

◆

I Joint pdf of X (t1) and X (t2) then given as (recall µ(t) = 0)

fX (t1),X (t2)(xt1 , xt2) =
1

2⇡ det1/2(C)
exp

✓
�1

2
[xt1 , xt2 ]

TC�1[xt1 , xt2 ]

◆

I Conditional pdf of X (t1) given X (t2) computed as

fX (t1)|X (t2)(xt1
�� xt2) =

fX (t1),X (t2)(xt1 , xt2)

fX (t2)(xt2)

Introduction to Random Processes Gaussian, Markov and stationary processes 17



Brownian motion as limit of random walk

I Gaussian processes are natural models due to Central Limit Theorem

I Let us reconsider a symmetric random walk in one dimension

Time interval = h

t

x(t)

I Walker takes increasingly frequent and increasingly smaller steps
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Brownian motion as limit of random walk

I Gaussian processes are natural models due to Central Limit Theorem

I Let us reconsider a symmetric random walk in one dimension

Time interval = h/2

t

x(t)

I Walker takes increasingly frequent and increasingly smaller steps
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Brownian motion as limit of random walk

I Gaussian processes are natural models due to Central Limit Theorem

I Let us reconsider a symmetric random walk in one dimension

Time interval = h/4

t

x(t)

I Walker takes increasingly frequent and increasingly smaller steps
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Random walk, time step h and step size �
p
h

I Let X (t) be the position at time t with X (0) = 0

) Time interval is h and �
p
h is the size of each step

) Walker steps right or left w.p. 1/2 for each direction

I Given X (t) = x , prob. distribution of the position at time t + h is

P
⇣
X (t + h) = x + �

p
h
��X (t) = x

⌘
= 1/2

P
⇣
X (t + h) = x � �

p
h
��X (t) = x

⌘
= 1/2

I Consider time T = Nh and index n = 1, 2, . . . ,N

) Introduce step RVs Yn = ±1, with P (Yn = ±1) = 1/2

) Can write X (nh) in terms of X ((n � 1)h) and Yn as

X (nh) = X ((n � 1)h) +
⇣
�
p
h

⌘
Yn
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Central Limit Theorem as h ! 0

I Use recursion to write X (T ) = X (Nh) as (recall X (0) = 0)

X (T ) = X (Nh) = X (0) +
⇣
�
p
h

⌘ NX

n=1

Yn =
⇣
�
p
h

⌘ NX

n=1

Yn

I Y1, . . . ,YN are i.i.d. with zero-mean and variance

var [Yn] = E
⇥
Y

2
n

⇤
= (1/2)⇥ 12 + (1/2)⇥ (�1)2 = 1

I As h ! 0 we have N = T/h ! 1, and from Central Limit Theorem

NX

n=1

Yn ⇠ N (0,N) = N (0,T/h)

) X (T ) ⇠ N
�
0, (�2

h)⇥ (T/h)
�
= N

�
0,�2

T
�
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Conditional distribution of future values

I More generally, consider times T = Nh and T + S = (N +M)h

I Let X (T ) = x(T ) be given. Can write X (T + S) as

X (T + S) = x(T ) +
⇣
�
p
h

⌘ N+MX

n=N+1

Yn

I From Central Limit Theorem it then follows

N+MX

n=N+1

Yn ⇠ N
�
0, (N +M � N)

�
= N (0, S/h)

)
h
X (T + S)

��X (T ) = x(T )
i
⇠ N (x(T ),�2

S)
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Definition of Brownian motion

I The former analysis was for motivational purposes

I Def: A Brownian motion process (a.k.a Wiener process) satisfies

(i) X (t) is normally distributed with zero mean and variance �2
t

X (t) ⇠ N
�
0,�2

t
�

(ii) Independent increments ) For disjoint intervals (t1, t2) and (s1, s2)
increments X (t2)� X (t1) and X (s2)� X (s1) are independent RVs

(iii) Stationary increments ) Probability distribution of increment
X (t + s)� X (s) is the same as probability distribution of X (t)

I Property (ii) ) Brownian motion is a Markov process

I Properties (i)-(iii) ) Brownian motion is a Gaussian process
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Mean and autocorrelation of Brownian motion

I Mean function µ(t) = E [X (t)] is null for all times (by definition)

µ(t) = E [X (t)] = 0

I For autocorrelation RX (t1, t2) start with times t1 < t2

I Use conditional expectations to write

RX (t1, t2) = E [X (t1)X (t2)] = EX (t1)

h
EX (t2)

⇥
X (t1)X (t2)

��X (t1)
⇤i

I In the innermost expectation X (t1) is a given constant, then

RX (t1, t2) = EX (t1)

h
X (t1)EX (t2)

⇥
X (t2)

��X (t1)
⇤i

) Proceed by computing innermost expectation
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Autocorrelation of Brownian motion (continued)

I The conditional distribution of X (t2) given X (t1) for t1 < t2 is

h
X (t2)

��X (t1)
i
⇠ N

⇣
X (t1),�

2(t2 � t1)
⌘

) Innermost expectation is EX (t2)

⇥
X (t2)

��X (t1)
⇤
= X (t1)

I From where autocorrelation follows as

RX (t1, t2) = EX (t1)

⇥
X (t1)X (t1)

⇤
= EX (t1)

⇥
X

2(t1)
⇤
= �2

t1

I Repeating steps, if t2 < t1 ) RX (t1, t2) = �2
t2

I Autocorrelation of Brownian motion ) RX (t1, t2) = �2 min(t1, t2)
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Brownian motion with drift

I Similar to Brownian motion, but start from biased random walk

I Time interval h, step size �
p
h, right or left with di↵erent probs.

P
⇣
X (t + h) = x + �

p
h
��X (t) = x

⌘
=

1

2

⇣
1 +

µ

�

p
h

⌘

P
⇣
X (t + h) = x � �

p
h
��X (t) = x

⌘
=

1

2

⇣
1� µ

�

p
h

⌘

) If µ > 0 biased to the right, if µ < 0 biased to the left

I Definition requires h small enough to make (µ/�)
p
h  1

I Notice that bias vanishes as
p
h, same as step size
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Mean and variance of biased steps

I Define step RV Yn = ±1, with probabilities

P (Yn = 1) =
1
2

⇣
1 +

µ
�

p
h
⌘
, P (Yn = �1) =

1
2

⇣
1� µ

�

p
h
⌘

I Expected value of Yn is

E [Yn] = 1⇥ P (Yn = 1) + (�1)⇥ P (Yn = �1)

=
1
2

⇣
1 +

µ
�

p
h
⌘

� 1
2

⇣
1� µ

�

p
h
⌘
=

µ
�

p
h

I Second moment of Yn is

E
h
Y 2

n

i
= (1)2 ⇥ P (Yn = 1) + (�1)2 ⇥ P (Yn = �1) = 1

I Variance of Yn is ) var [Yn] = E
h
Y 2

n

i
� E2[Yn] = 1� µ2

�2
h
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Central Limit Theorem as h ! 0

I Consider time T = Nh, index n = 1, 2, . . . ,N. Write X (nh) as

X (nh) = X ((n � 1)h) +
⇣
�
p
h
⌘
Yn

I Use recursively to write X (T ) = X (Nh) as

X (T ) = X (Nh) = X (0) +
⇣
�
p
h
⌘ NX

n=1

Yn =
⇣
�
p
h
⌘ NX

n=1

Yn

I As h ! 0 we have N ! 1 and
PN

n=1 Yn normally distributed

I As h ! 0, X (T ) tends to be normally distributed by CLT
I Need to determine mean and variance (and only mean and variance)
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Mean and variance of X (T )

I Expected value of X (T ) = scaled sum of E [Yn] (recall T = Nh)

E [X (T )] =
⇣
�
p
h

⌘
⇥ N ⇥ E [Yn] =

⇣
�
p
h

⌘
⇥ N ⇥

⇣µ
�

p
h

⌘
= µT

I Variance of X (T ) = scaled sum of variances of independent Yn

var [X (T )] =
⇣
�
p
h

⌘2
⇥ N ⇥ var [Yn]

=
�
�2

h
�
⇥ N ⇥

✓
1� µ2

�2
h

◆
! �2

T

) Used T = Nh and 1� (µ2/�2)h ! 1

I Brownian motion with drift (BMD) ) X (t) ⇠ N
�
µt,�2

t
�

) Normal with mean µt and variance �2
t

) Independent and stationary increments
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Mean-square derivative of a random process

I Consider a realization x(t) of the random process X (t)

I Def: The derivative of (lowercase) x(t) is

@x(t)

@t
= lim

h!0

x(t + h)� x(t)

h

I When this limit exists ) Limit may not exist for all realizations

I Can define sure limit, a.s. limit, in probability, . . .

) Notion of convergence used here is in mean-squared sense

I Def: Process @X (t)/@t is the mean-square sense derivative of X (t) if

lim
h!0

E
"✓

X (t + h)� X (t)

h
� @X (t)

@t

◆2
#
= 0
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Mean-square integral of a random process

I Likewise consider the integral of a realization x(t) of X (t)

Z b

a
x(t)dt = lim

h!0

(b�a)/hX

n=1

hx(a+ nh)

) Limit need not exist for all realizations

I Can define in sure sense, almost sure sense, in probability sense, . . .

) Again, adopt definition in mean-square sense

I Def: Process
R b
a X (t)dt is the mean square sense integral of X (t) if

lim
h!0

E

2

4
✓ (b�a)/hX

n=1

hX (a+ nh)�
Z b

a
X (t)dt

◆2
3

5 = 0

I Mean-square sense convergence is convenient to work with GPs
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Linear state model example

I Def: A random process X (t) follows a linear state model if

@X (t)
@t

= aX (t) +W (t)

with W (t) WGN, autocorrelation RW (t1, t2) = �2�(t1 � t2)

I Discrete-time representation of X (t) ) X (nh) with step size h

I Solving di↵erential equation between nh and (n + 1)h (h small)

X ((n + 1)h) ⇡ X (nh)eah +

Z (n+1)h

nh

W (t) dt

I Defining X (n) := X (nh) and W (n) :=
R (n+1)h
nh

W (t) dt may write

X (n + 1) ⇡ (1 + ah)X (n) +W (n)

) Where E
⇥
W 2(n)

⇤
= �2h and W (n1) independent of W (n2)
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Stationary random processes

I All joint probabilities invariant to time shifts, i.e., for any s

P (X (t1 + s)  x1,X (t2 + s)  x2, . . . ,X (tn + s)  xn) =

P (X (t1)  x1,X (t2)  x2, . . . ,X (tn)  xn)

) If above relation holds X (t) is called strictly stationary (SS)

I First-order stationary ) probs. of single variables are shift invariant

P (X (t + s)  x) = P (X (t)  x)

I Second-order stationary ) joint probs. of pairs are shift invariant

P (X (t1 + s)  x1,X (t2 + s)  x2) = P (X (t1)  x1,X (t2)  x2)
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Pdfs and moments of stationary processes

I For SS process joint cdfs are shift invariant. Hence, pdfs also are

fX (t+s)(x) = fX (t)(x) = fX (0)(x) := fX (x)

I As a consequence, the mean of a SS process is constant

µ(t) := E [X (t)] =

Z 1

�1
xfX (t)(x)dx =

Z 1

�1
xfX (x)dx = µ

I The variance of a SS process is also constant

var [X (t)] :=

Z 1

�1
(x � µ)2 fX (t)(x)dx =

Z 1

�1
(x � µ)2 fX (x)dx = �2

I The power (second moment) of a SS process is also constant

E
⇥
X

2(t)
⇤
:=

Z 1

�1
x
2
fX (t)(x)dx =

Z 1

�1
x
2
fX (x)dx = �2 + µ2

Introduction to Random Processes Stationary Processes 4



Joint pdfs of stationary processes

I Joint pdf of two values of a SS random process

fX (t1)X (t2)(x1, x2) = fX (0)X (t2�t1)(x1, x2)

) Used shift invariance for shift of t1

) Note that t1 = 0 + t1 and t2 = (t2 � t1) + t1

I Result above true for any pair t1, t2

) Joint pdf depends only on time di↵erence s := t2 � t1

I Writing t1 = t and t2 = t + s we equivalently have

fX (t)X (t+s)(x1, x2) = fX (0)X (s)(x1, x2) = fX (x1, x2; s)
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Stationary processes and limit distributions

I Stationary processes follow the footsteps of limit distributions

I For Markov processes limit distributions exist under mild conditions
I Limit distributions also exist for some non-Markov processes

I Process somewhat easier to analyze in the limit as t ! 1
) Properties can be derived from the limit distribution

I Stationary process ⇡ study of limit distribution

) Formally initialize at limit distribution

) In practice results true for time su�ciently large

I Deterministic linear systems ) transient + steady-state behavior

) Stationary systems akin to the study of steady-state

I But steady-state is in a probabilistic sense (probs., not realizations)
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Autocorrelation function

I From the definition of autocorrelation function we can write

RX (t1, t2) = E [X (t1)X (t2)] =

Z 1

�1

Z 1

�1
x1x2fX (t1)X (t2)(x1, x2) dx1dx2

I For SS process fX (t1)X (t2)(·) depends on time di↵erence only

RX (t1, t2) =

Z 1

�1

Z 1

�1
x1x2fX (0)X (t2�t1)(x1, x2) dx1dx2 = E [X (0)X (t2�t1)]

) RX (t1, t2) is a function of s = t2 � t1 only

RX (t1, t2) = RX (0, t2 � t1) := RX (s)

I The autocorrelation function of a SS random process X (t) is RX (s)

) Variable s denotes a time di↵erence / shift / lag

) RX (s) specifies correlation between values X (t) spaced s in time
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Autocovariance function

I Similarly to autocorrelation, define the autocovariance function as

CX (t1, t2) = E
⇥�
X (t1)� µ(t1)

��
X (t2)� µ(t2)

�⇤

I Expand product to write CX (t1, t2) as

CX (t1, t2) = E [X (t1)X (t2)]+µ(t1)µ(t2)�E [X (t1)]µ(t2)�E [X (t2)]µ(t1)

I For SS process µ(t1) = µ(t2) = µ and E [X (t1)X (t2)] = RX (t2 � t1)

CX (t1, t2) = RX (t2 � t1)� µ2
= CX (t2 � t1)

) Autocovariance function depends only on the shift s = t2 � t1

I We will typically assume that µ = 0 in which case

RX (s) = CX (s)

) If µ 6= 0 can study process X (t) � µ whose mean is null
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Wide-sense stationary processes

I Def: A process is wide-sense stationary (WSS) when its

) Mean is constant ) µ(t) = µ for all t

) Autocorrelation is shift invariant ) RX (t1, t2) = RX (t2 � t1)

I Consequently, autocovariance of WSS process is also shift invariant

CX (t1, t2) = E [X (t1)X (t2)] + µ(t1)µ(t2)� E [X (t1)]µ(t2)� E [X (t2)]µ(t1)

= RX (t2 � t1)� µ2

I Most of the analysis of stationary processes is based on RX (t2 � t1)

) Thus, such analysis does not require SS, WSS su�ces
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Wide-sense stationarity versus strict stationarity

I SS processes have shift-invariant pdfs

) Mean function is constant

) Autocorrelation is shift-invariant

I Then, a SS process is also WSS

) For that reason WSS is also called weak-sense stationary

I The opposite is obviously not true in general

I But if Gaussian, process determined by mean and autocorrelation

) WSS implies SS for Gaussian process

I WSS and SS are equivalent for Gaussian processes (More coming)
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Gaussian wide-sense stationary process

I WSS Gaussian process X (t) with mean 0 and autocorrelation R(s)

I The covariance matrix for X (t1 + s),X (t2 + s), . . . ,X (tn + s) is

C(t1+s, . . . , tn+s) =

0

BBB@

R(t1 + s, t1 + s) R(t1 + s, t2 + s) . . . R(t1 + s, tn + s)
R(t2 + s, t1 + s) R(t2 + s, t2 + s) . . . R(t2 + s, tn + s)

...
...

. . .
...

R(tn + s, t1 + s) R(tn + s, t2 + s) . . . R(tn + s, tn + s)

1

CCCA

I For WSS process, autocorrelations depend only on time di↵erences

C(t1 + s, . . . , tn + s) =

0

BBB@

R(t1 � t1) R(t2 � t1) . . . R(tn � t1)
R(t1 � t2) R(t2 � t2) . . . R(tn � t2)

...
...

. . .
...

R(t1 � tn) R(t2 � tn) . . . R(tn � tn)

1

CCCA
= C(t1, . . . , tn)

) Covariance matrices C(t1, . . . , tn) are shift invariant
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Gaussian wide-sense stationary process (continued)

I The joint pdf of X (t1 + s),X (t2 + s), . . . ,X (tn + s) is

fX (t1+s),...,X (tn+s)(x1, . . . , xn) = N (0,C(t1 + s, . . . , tn + s); [x1, . . . , xn]
T
)

) Completely determined by C(t1 + s, . . . , tn + s)

I Since covariance matrix is shift invariant can write

fX (t1+s),...,X (tn+s)(x1, . . . , xn) = N (0,C(t1, . . . , tn); [x1, . . . , xn]
T
)

I Expression on the right is the pdf of X (t1),X (t2), . . . ,X (tn). Then

fX (t1+s),...,X (tn+s)(x1, . . . , xn) = fX (t1),...,X (tn)(x1, . . . , xn)

I Joint pdf of X (t1),X (t2), . . . ,X (tn) is shift invariant

) Proving that WSS is equivalent to SS for Gaussian processes

Introduction to Random Processes Stationary Processes 13



Brownian motion and white Gaussian noise

Ex: Brownian motion X (t) with variance parameter �2

) Mean function is µ(t) = 0 for all t � 0

) Autocorrelation is RX (t1, t2) = �2 min(t1, t2)

I While the mean is constant, autocorrelation is not shift invariant

) Brownian motion is not WSS (hence not SS)

Ex: White Gaussian noise W (t) with variance parameter �2

) Mean function is µ(t) = 0 for all t

) Autocorrelation is RW (t1, t2) = �2�(t2 � t1)

I The mean is constant and the autocorrelation is shift invariant

) White Gaussian noise is WSS

) Also SS because white Gaussian noise is a GP
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Properties of autocorrelation function

For WSS processes:

(i) The autocorrelation for s = 0 is the power of the process

RX (0) = E
⇥
X

2(t)
⇤
= E [X (t)X (t + 0)]

(ii) The autocorrelation function is symmetric ) RX (s) = RX (�s)

Proof.
Commutative property of product and shift invariance of RX (t1, t2)

RX (s) = RX (t, t + s)

= E [X (t)X (t + s)]

= E [X (t + s)X (t)]

= RX (t + s, t) = RX (�s)
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Properties of autocorrelation function (continued)

For WSS processes:

(iii) Maximum absolute value of the autocorrelation function is for s = 0

��RX (s)
��  RX (0)

Proof.
Expand the square E

h�
X (t + s) ± X (t)

�2i

E
h�
X (t + s)± X (t)

�2i
= E

h
X

2
(t + s)

i
+ E

h
X

2
(t)

i
± 2E [X (t + s)X (t)]

= RX (0) + RX (0)± 2RX (s)

Square E
h�
X (t + s)± X (t)

�2i is always nonnegative, then

0  E
h�
X (t + s)± X (t)

�2i
= 2RX (0)± 2RX (s)

Rearranging terms ) RX (0) � ⌥RX (s)
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