
Introduction to Time Series Analysis. Lecture 1.
Peter Bartlett

1. Organizational issues.

2. Objectives of time series analysis. Examples.

3. Overview of the course.

4. Time series models.

5. Time series modelling: Chasing stationarity.
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A Time Series
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A Time Series
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A Time Series
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A Time Series
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SP500: Jan−Jun 1987. Permuted.
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Objectives of Time Series Analysis

1. Compact description of data.

2. Interpretation.

3. Forecasting.

4. Control.

5. Hypothesis testing.

6. Simulation.
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Classical decomposition: An example

Monthly sales for a souvenir shop at a beach resort town in Queensland.
(Makridakis, Wheelwright and Hyndman, 1998)
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Transformed data
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Trend
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Residuals
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Trend and seasonal variation
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Objectives of Time Series Analysis

1. Compact description of data.
Example: Classical decomposition: Xt = Tt + St + Yt.

2. Interpretation. Example: Seasonal adjustment.

3. Forecasting. Example: Predict sales.

4. Control.

5. Hypothesis testing.

6. Simulation.
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Unemployment data

Monthly number of unemployed people in Australia. (Hipel and McLeod, 1994)
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Trend
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Trend plus seasonal variation
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Residuals
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Predictions based on a (simulated) variable
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Objectives of Time Series Analysis

1. Compact description of data:

Xt = Tt + St + f(Yt) + Wt.

2. Interpretation. Example: Seasonal adjustment.

3. Forecasting. Example: Predict unemployment.

4. Control. Example: Impact of monetary policy on unemployment.

5. Hypothesis testing. Example: Global warming.

6. Simulation. Example: Estimate probability of catastrophic events.
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Overview of the Course

1. Time series models

(a) Stationarity.

(b) Autocorrelation function.

(c) Transforming to stationarity.

2. Time domain methods

3. Spectral analysis

4. State space models(?)
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Overview of the Course

1. Time series models

2. Time domain methods

(a) AR/MA/ARMA models.

(b) ACF and partial autocorrelation function.

(c) Forecasting

(d) Parameter estimation

(e) ARIMA models/seasonal ARIMA models

3. Spectral analysis

4. State space models(?)
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Overview of the Course

1. Time series models

2. Time domain methods

3. Spectral analysis

(a) Spectral density

(b) Periodogram

(c) Spectral estimation

4. State space models(?)
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Overview of the Course

1. Time series models

2. Time domain methods

3. Spectral analysis

4. State space models(?)

(a) ARMAX models.

(b) Forecasting, Kalman filter.

(c) Parameter estimation.
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Time Series Models

A time series model specifies the joint distribution of the se-
quence {Xt} of random variables.
For example:

P [X1 ≤ x1, . . . , Xt ≤ xt] for all t and x1, . . . , xt.

Notation:
X1, X2, . . . is a stochastic process.
x1, x2, . . . is a single realization.

We’ll mostly restrict our attention to second-order properties only:
EXt,E(Xt1Xt2).
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Time Series Models

Example: White noise: Xt ∼ WN(0, σ2).
i.e., {Xt} uncorrelated, EXt = 0, VarXt = σ2.

Example: i.i.d. noise: {Xt} independent and identically distributed.

P [X1 ≤ x1, . . . , Xt ≤ xt] = P [X1 ≤ x1] · · ·P [Xt ≤ xt].

Not interesting for forecasting:

P [Xt ≤ xt|X1, . . . , Xt−1] = P [Xt ≤ xt].
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Gaussian white noise

P [Xt ≤ xt] = Φ(xt) =
1√
2π

∫ xt

−∞

e−x2/2dx.
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Gaussian white noise
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Time Series Models

Example: Binary i.i.d. P [Xt = 1] = P [Xt = −1] = 1/2.
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Random walk

St =
∑t

i=1
Xi. Differences: ∇St = St − St−1 = Xt.
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Random walk

ESt? VarSt?
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RandomWalk

Recall S&P500 data. (Notice that it’s smooth)
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RandomWalk

Differences: ∇St = St − St−1 = Xt.
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Trend and Seasonal Models

Xt = Tt + St + Et = β0 + β1t +
∑

i (βi cos(λit) + γi sin(λit)) + Et
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Trend and Seasonal Models

Xt = Tt + Et = β0 + β1t + Et
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Trend and Seasonal Models

Xt = Tt + St + Et = β0 + β1t +
∑

i (βi cos(λit) + γi sin(λit)) + Et

0 50 100 150 200 250
2.5

3

3.5

4

4.5

5

5.5

6

36



Trend and Seasonal Models: Residuals
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Time Series Modelling

1. Plot the time series.
Look for trends, seasonal components, step changes, outliers.

2. Transform data so that residuals are stationary.

(a) Estimate and subtract Tt, St.

(b) Differencing.

(c) Nonlinear transformations (log,
√
·).

3. Fit model to residuals.
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Nonlinear transformations

Recall: Monthly sales. (Makridakis, Wheelwright and Hyndman, 1998)
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Differencing

Recall: S&P 500 data.

1987 1987.05 1987.1 1987.15 1987.2 1987.25 1987.3 1987.35 1987.4 1987.45 1987.5
220

240

260

280

300

320

340

year

$

SP500: Jan−Jun 1987

1987 1987.05 1987.1 1987.15 1987.2 1987.25 1987.3 1987.35 1987.4 1987.45 1987.5
−10

−8

−6

−4

−2

0

2

4

6

8

10

year

$

SP500, Jan−Jun 1987. first differences

40



Differencing and Trend

Define the lag-1 difference operator, (think ‘fi rst derivative’)

∇Xt = Xt − Xt−1 = (1 − B)Xt,

where B is the backshift operator, BXt = Xt−1.

• IfXt = β0 + β1t + Yt, then

∇Xt = β1 + ∇Yt.

• IfXt =
∑k

i=0
βiti + Yt, then

∇kXt = k!βk + ∇kYt,

where ∇kXt = ∇(∇k−1Xt) and∇1Xt = ∇Xt.
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Differencing and Seasonal Variation

Define the lag-s difference operator,

∇sXt = Xt − Xt−s = (1 − Bs)Xt,

where Bs is the backshift operator applied s times, BsXt = B(Bs−1Xt)

and B1Xt = BXt.

IfXt = Tt + St + Yt, and St has period s (that is, St = St−s for all t), then

∇sXt = Tt − Tt−s + ∇sYt.
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Least Squares Regression

Model: Xt = β0 + β1t + Wt
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Least Squares Regression

x = Zβ + w.

Least squares: choose β to minimize ∥w∥2 = ∥x − Zβ∥2.

Solution β̂ satisfies the normal equations:

∇β∥w∥2 = 2Z ′(x − Zβ̂) = 0.

If Z ′Z is nonsingular, the solution is unique:

β̂ = (Z ′Z)−1Z ′x.
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Least Squares Regression

Properties of the least squares solution (β̂ = (Z ′Z)−1Z ′x):

• Linear.

• Unbiased.

• For {Wt} i.i.d., it is the linear unbiased estimator with smallest
variance.

Other regressors Z: polynomial, trigonometric functions, piecewise
polynomial (splines), etc.
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Testing i.i.d.: Turning point test

{Xt} i.i.d. implies that Xt, Xt+1 and Xt+2 are equally likely to occur in
any of six possible orders:
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(provided Xt, Xt+1, Xt+2 are distinct).

Four of the six are turning points.
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Testing i.i.d.: Turning point test

Define T = |{t : Xt, Xt+1, Xt+2 is a turning point}|.

ET = (n − 2)2/3.

Can show T ∼ AN(2n/3, 8n/45). Notation: X ∼ AN(µ, σ2) ⇔
X − µ

σ

d→ N(0, 1).

Reject (at 5% level) the hypothesis that the series is i.i.d. if
∣∣∣∣T − 2n

3

∣∣∣∣ > 1.96
√

8n
45

.

Tests for positive/negative correlations at lag 1.
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Testing i.i.d.: Difference-sign test

S = |{i : Xi > Xi−1}| = |{i : (∇X)i > 0}|.

ES =
n − 1

2
.

Can show S ∼ AN(n/2, n/12).

Reject (at 5% level) the hypothesis that the series is i.i.d. if
∣∣∣S − n

2

∣∣∣ > 1.96
√

n

12
.

Tests for trend.

(But a periodic sequence can pass this test...)
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Testing i.i.d.: Rank test

N = |{(i, j) : Xi > Xj and i > j}|.

EN =
n(n − 1)

4
.

Can show N ∼ AN(n2/4, n3/36).

Reject (at 5% level) the hypothesis that the series is i.i.d. if
∣∣∣∣N − n2

4

∣∣∣∣ > 1.96

√
n3

36
.

Tests for linear trend.
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Testing if an i.i.d. sequence is Gaussian: qq plot

Plot the pairs (m1, X(1)), . . . , (mn, X(n)),
wheremj = EX(j),
X(1) < · · · < X(n) are order statistics from N(0, 1) sample of size n, and
X(1) < · · · < X(n) are order statistics of the series X1, . . . , Xn.

Idea: IfXi ∼ N(µ,σ2), then

EX(j) = µ + σmj ,

so (mj , X(j)) should be linear.

There are tests based on how far correlation of (mj , X(j)) is from 1.
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Stationarity

{Xt} is strictly stationary if
for all k, t1, . . . , tk, x1, . . . , xk, and h,

P (Xt1 ≤ x1, . . . , Xtk ≤ xk) = P (xt1+h ≤ x1, . . . , Xtk+h ≤ xk).

i.e., shifting the time axis does not affect the distribution.

We shall consider second-order properties only.

7



Mean and Autocovariance

Suppose that {Xt} is a time series with E[X2
t ] < ∞.

Its mean function is

µt = E[Xt].

Its autocovariance function is

γX(s, t) = Cov(Xs, Xt)

= E[(Xs − µs)(Xt − µt)].
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Weak Stationarity

We say that {Xt} is (weakly) stationary if

1. µt is independent of t, and

2. For each h, γX(t + h, t) is independent of t.

In that case, we write
γX(h) = γX(h, 0).
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Stationarity

The autocorrelation function (ACF) of {Xt} is defined as

ρX(h) =
γX(h)
γX(0)

=
Cov(Xt+h, Xt)
Cov(Xt, Xt)

= Cor(Xt+h, Xt).
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Stationarity

Example: i.i.d. noise, E[Xt] = 0, E[X2
t ] = σ2. We have

γX(t + h, t) =

⎧
⎨

⎩
σ2 if h = 0,

0 otherwise.

Thus,

1. µt = 0 is independent of t.

2. γX(t + h, t) = γX(h, 0) for all t.

So {Xt} is stationary.

Similarly for any white noise (uncorrelated, zero mean), Xt ∼ WN(0,σ2).
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Stationarity

Example: Random walk, St =
∑t

i=1 Xi for i.i.d., mean zero {Xt}.
We have E[St] = 0, E[S2

t ] = tσ2, and

γS(t + h, t) = Cov(St+h, St)

= Cov

(
St +

h∑

s=1

Xt+s, St

)

= Cov(St, St) = tσ2.

1. µt = 0 is independent of t, but

2. γS(t + h, t) is not.

So {St} is not stationary.
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An aside: covariances

Cov(X + Y, Z) = Cov(X, Z) + Cov(Y, Z),

Cov(aX, Y ) = aCov(X, Y ),

Also ifX and Y are independent (e.g., X = c), then

Cov(X, Y ) = 0.
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Stationarity

Example: MA(1) process (Moving Average):

Xt = Wt + θWt−1, {Wt} ∼ WN(0,σ2).

We have E[Xt] = 0, and

γX(t + h, t) = E(Xt+hXt)

= E[(Wt+h + θWt+h−1)(Wt + θWt−1)]

=

⎧
⎪⎪⎨

⎪⎪⎩

σ2(1 + θ2) if h = 0,

σ2θ if h = ±1,

0 otherwise.

Thus, {Xt} is stationary.
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ACF of the MA(1) process
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Stationarity

Example: AR(1) process (AutoRegressive):

Xt = φXt−1 + Wt, {Wt} ∼ WN(0,σ2).

Assume that Xt is stationary and |φ| < 1. Then we have

E[Xt] = φEXt−1

= 0 (from stationarity)

E[X2
t ] = φ2E[X2

t−1] + σ2

=
σ2

1 − φ2
(from stationarity),
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Stationarity

Example: AR(1) process, Xt = φXt−1 + Wt, {Wt} ∼ WN(0,σ2).
Assume that Xt is stationary and |φ| < 1. Then we have

E[Xt] = 0, E[X2
t ] =

σ2

1 − φ2

γX(h) = Cov(φXt+h−1 + Zt+h, Xt)

= φCov(Xt+h−1, Xt)

= φγX(h − 1)

= φ|h|γX(0) (check for h > 0 and h < 0)

=
φ|h|σ2

1 − φ2
.
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ACF of the AR(1) process
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Linear Processes

An important class of stationary time series:

Xt = µ +
∞∑

j=−∞
ψjWt−j

where {Wt} ∼ WN(0,σ2
w)

and µ,ψj are parameters satisfying
∞∑

j=−∞
|ψj | < ∞.
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Linear Processes

Xt = µ +
∞∑

j=−∞
ψjWt−j

We have

µX = µ

γX(h) = σ2
w

∞∑

j=−∞
ψjψh+j . (why?)
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Examples of Linear Processes: White noise

Xt = µ +
∞∑

j=−∞
ψjWt−j

Choose µ,

ψj =

⎧
⎨

⎩
1 if j = 0,

0 otherwise.

Then {Xt} ∼ WN(µ,σ2
W ). (why?)
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Examples of Linear Processes: MA(1)

Xt = µ +
∞∑

j=−∞
ψjWt−j

Choose µ = 0

ψj =

⎧
⎪⎪⎨

⎪⎪⎩

1 if j = 0,

θ if j = 1,

0 otherwise.

Then Xt = Wt + θWt−1. (why?)
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Examples of Linear Processes: AR(1)

Xt = µ +
∞∑

j=−∞
ψjWt−j

Choose µ = 0

ψj =

⎧
⎨

⎩
φj if j ≥ 0,

0 otherwise.

Then for |φ| < 1, we have Xt = φXt−1 + Wt. (why?)
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Estimating the ACF: Sample ACF

For observations x1, . . . , xn of a time series,

the sample mean is x̄ =
1
n

n∑

t=1

xt.

The sample autocovariance function is

γ̂(h) =
1
n

n−|h|∑

t=1

(xt+|h| − x̄)(xt − x̄), for −n < h < n.

The sample autocorrelation function is

ρ̂(h) =
γ̂(h)
γ̂(0)

.
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Estimating the ACF: Sample ACF

Sample autocovariance function:

γ̂(h) =
1
n

n−|h|∑

t=1

(xt+|h| − x̄)(xt − x̄).

≈ the sample covariance of (x1, xh+1), . . . , (xn−h, xn), except that
• we normalize by n instead of n − h, and
• we subtract the full sample mean.
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Sample ACF for white Gaussian (hence i.i.d.) noise
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Sample ACF

We can recognize the sample autocorrelation functions of many non-white
(even non-stationary) time series.

Time series: Sample ACF:

White zero

Trend Slow decay

Periodic Periodic

MA(q) Zero for |h| > q

AR(p) Decays to zero exponentially
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Sample ACF: Trend
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Sample ACF: Trend
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Sample ACF: Periodic
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Sample ACF: Periodic
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Sample ACF: Periodic
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ACF: MA(1)
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Sample ACF: MA(1)
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ACF: AR(1)
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Sample ACF: AR(1)
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ACF of a MA(1) process
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Properties of the autocovariance function

For the autocovariance function γ of a stationary time series {Xt},

1. γ(0) ≥ 0, (variance is non-negative)

2. |γ(h)| ≤ γ(0), (from Cauchy-Schwarz)

3. γ(h) = γ(−h), (from stationarity)

4. γ is positive semidefinite.

Furthermore, any function γ : Z → R that satisfies (3) and (4) is the
autocovariance of some stationary (Gaussian) time series.
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Properties of the autocovariance function

A function f : Z → R is positive semidefinite if for all n, the matrix Fn,
with entries (Fn)i,j = f(i − j), is positive semidefinite.

A matrix Fn ∈ Rn×n is positive semidefinite if, for all vectors a ∈ Rn,

a′Fa ≥ 0.

To see that γ is psd, consider the variance of (X1, . . . , Xn)a.
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Properties of the sample autocovariance function

The sample autocovariance function:

γ̂(h) =
1
n

n−|h|∑

t=1

(xt+|h| − x̄)(xt − x̄), for −n < h < n.

For any sequence x1, . . . , xn, the sample autocovariance function γ̂ satisfies

1. γ̂(h) = γ̂(−h),

2. γ̂ is positive semidefinite, and hence

3. γ̂(0) ≥ 0 and |γ̂(h)| ≤ γ̂(0).

5



Properties of the sample autocovariance function: psd

Γ̂n =

⎛

⎜⎜⎜⎜⎜⎜⎝

γ̂(0) γ̂(1) · · · γ̂(n − 1)

γ̂(1) γ̂(0) · · · γ̂(n − 2)
...

...
. . .

...

γ̂(n − 1) γ̂(n − 2) · · · γ̂(0)

⎞

⎟⎟⎟⎟⎟⎟⎠

=
1
n

MM ′,

so a′Γ̂na =
1
n

(a′M)(M ′a)

=
1
n
∥M ′a∥2

≥ 0.

6



Sample ACF and testing for white noise

If {Xt} is white noise, we expect no more than ≈ 5% of the peaks of the
sample ACF to satisfy

|ρ̂(h)| >
1.96√

n
.

This is useful because we often want to introduce transformations that
reduce a time series to white noise.
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Sample ACF for white Gaussian (hence i.i.d.) noise

−20 −15 −10 −5 0 5 10 15 20
−0.2

0

0.2

0.4

0.6

0.8

1

1.2
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Sample ACF for MA(1)

Recall: ρ(0) = 1, ρ(±1) = θ
1+θ2 , and ρ(h) = 0 for |h| > 1. Thus,

V1,1 =
∞∑

h=1

(ρ(h + 1) + ρ(h − 1) − 2ρ(1)ρ(h))2 = (ρ(0) − 2ρ(1)2)2 + ρ(1)2,

V2,2 =
∞∑

h=1

(ρ(h + 2) + ρ(h − 2) − 2ρ(2)ρ(h))2 =
1∑

h=−1

ρ(h)2.

And if {Xt} is a realization of this MA(1) process, with probability 0.95,

|ρ̂(h) − ρ(h)| ≤ 1.96
√

Vhh

n
.

15



Sample ACF for MA(1)

−10 −8 −6 −4 −2 0 2 4 6 8 10
−0.2

0
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Confidence interval
Sample ACF
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AR(1) and Causality

Let Xt be the stationary solution to

Xt − φXt−1 = Wt,

whereWt ∼ WN(0,σ2).

If |φ| < 1,

Xt =
∞∑

j=0

φjWt−j .

φ = 1?
φ = −1?
|φ| > 1?

2



AR(1) and Causality

If |φ| > 1, π(B)Wt does not converge.
But we can rearrange

Xt = φXt−1 + Wt

as Xt−1 =
1
φ

Xt −
1
φ

Wt,

and we can check that the unique stationary solution is

Xt = −
∞∑

j=1

φ−jWt+j .

But... Xt depends on future values ofWt.

3



Causality

A linear process {Xt} is causal (strictly, a causal function
of {Wt}) if there is a

ψ(B) = ψ0 + ψ1B + ψ2B
2 + · · ·

with
∞∑

j=0

|ψj | < ∞

and Xt = ψ(B)Wt.

4



AR(1) and Causality

• Causality is a property of {Xt} and {Wt}.
• The AR(1) process defined by φ(B)Xt = Wt (with φ(B) = 1 − φB) is
causal iff |φ| < 1, iff the root z1 of the polynomial φ(z) = 1 − φz satisfies
|z1| > 1.
• If |φ| > 1, we can define an equivalent causal model,
Xt − φ−1Xt−1 = W̃t, where W̃t is a new white noise sequence.
• Is an MA(1) process causal?

5



MA(1) and Invertibility

Define

Xt = Wt + θWt−1

= (1 + θB)Wt.

If |θ| < 1, we can write

(1 + θB)−1Xt = Wt

⇔ (1 − θB + θ2B2 − θ3B3 + · · · )Xt = Wt

⇔
∞∑

j=0

(−θ)jXt−j = Wt.

That is, we can writeWt as a causal function ofXt.
We say that this MA(1) is invertible.

6



MA(1) and Invertibility

Xt = Wt + θWt−1

If |θ| > 1, the sum
∑∞

j=0(−θ)jXt−j diverges, but we can write

Wt−1 = −θ−1Wt + θ−1Xt.

Just like the noncausal AR(1), we can show that

Wt = −
∞∑

j=1

(−θ)−jXt+j .

That is, we can writeWt as a linear function of Xt, but it is not causal.
We say that this MA(1) is not invertible.

7



Invertibility

A linear process {Xt} is invertible (strictly, an invertible
function of {Wt}) if there is a

π(B) = π0 + π1B + π2B
2 + · · ·

with
∞∑

j=0

|πj | < ∞

and Wt = π(B)Xt.

8



MA(1) and Invertibility

• Invertibility is a property of {Xt} and {Wt}.
• The MA(1) process defined by Xt = θ(B)Wt (with θ(B) = 1 + θB) is
invertible iff |θ| < 1 iff the root z1 of the polynomial θ(z) = 1 + θz satisfies
|z1| > 1.
• If |θ| > 1, we can define an equivalent invertible model in terms of a new
white noise sequence.
• Is an AR(1) process invertible?

9



AR(p): Autoregressive models of order p

An AR(p) process {Xt} is a stationary process that satisfies

Xt − φ1Xt−1 − · · ·− φpXt−p = Wt,

where {Wt} ∼ WN(0,σ2).

Equivalently, φ(B)Xt = Wt,

where φ(B) = 1 − φ1B − · · ·− φpB
p.

10



AR(p): Constraints on φ

Recall: For p = 1 (AR(1)), φ(B) = 1 − φ1B.
This is an AR(1) model only if there is a stationary solution to
φ(B)Xt = Wt, which is equivalent to |φ1| ̸= 1.
This is equivalent to the following condition on φ(z) = 1 − φ1z:

∀z ∈ R, φ(z) = 0 ⇒ z ̸= ±1

equivalently, ∀z ∈ C, φ(z) = 0 ⇒ |z| ̸= 1,

where C is the set of complex numbers.

11



AR(p): Constraints on φ

Stationarity: ∀z ∈ C, φ(z) = 0 ⇒ |z| ̸= 1,

where C is the set of complex numbers.

φ(z) = 1 − φ1z has one root at z1 = 1/φ1 ∈ R.
But the roots of a degree p > 1 polynomial might be complex.
For stationarity, we want the roots of φ(z) to avoid the unit circle,
{z ∈ C : |z| = 1}.

12



AR(p): Stationarity and causality

Theorem: A (unique) stationary solution to φ(B)Xt = Wt

exists iff

|z| = 1 ⇒ φ(z) = 1 − φ1z − · · ·− φpz
p ̸= 0.

This AR(p) process is causal iff

|z| ≤ 1 ⇒ φ(z) = 1 − φ1z − · · ·− φpz
p ̸= 0.

13



ARMA(p,q): Autoregressive moving average models

An ARMA(p,q) process {Xt} is a stationary process that
satisfies

Xt−φ1Xt−1− · · ·−φpXt−p = Wt +θ1Wt−1+ · · ·+θqWt−q,

where {Wt} ∼ WN(0,σ2).

• AR(p) = ARMA(p,0): θ(B) = 1.
•MA(q) = ARMA(0,q): φ(B) = 1.

10



ARMA processes

Can accurately approximate many stationary processes:

For any stationary process with autocovariance γ, and any k >

0, there is an ARMA process {Xt} for which

γX(h) = γ(h), h = 0, 1, . . . , k.

11



ARMA(p,q): Autoregressive moving average models

An ARMA(p,q) process {Xt} is a stationary process that
satisfies

Xt−φ1Xt−1− · · ·−φpXt−p = Wt +θ1Wt−1+ · · ·+θqWt−q,

where {Wt} ∼ WN(0,σ2).

Usually, we insist that φp, θq ̸= 0 and that the polynomials

φ(z) = 1 − φ1z − · · ·− φpz
p, θ(z) = 1 + θ1z + · · · + θqz

q

have no common factors. This implies it is not a lower order ARMA model.

12



ARMA(p,q): An example of parameter redundancy

Consider a white noise processWt. We can write

Xt = Wt

⇒ Xt − Xt−1 + 0.25Xt−2 = Wt − Wt−1 + 0.25Wt−2

(1 − B + 0.25B2)Xt = (1 − B + 0.25B2)Wt

This is in the form of an ARMA(2,2) process, with

φ(B) = 1 − B + 0.25B2, θ(B) = 1 − B + 0.25B2.

But it is white noise.

13



ARMA(p,q): An example of parameter redundancy

ARMA model: φ(B)Xt = θ(B)Wt,

with φ(B) = 1 − B + 0.25B2,

θ(B) = 1 − B + 0.25B2

Xt = ψ(B)Wt

⇔ ψ(B) =
θ(B)

φ(B)
= 1.

i.e., Xt = Wt.

14



ARMA(p,q): Stationarity, causality, and invertibility

Theorem: If φ and θ have no common factors, a (unique) sta-
tionary solution to φ(B)Xt = θ(B)Wt

exists iff

|z| = 1 ⇒ φ(z) = 1 − φ1z − · · ·− φpz
p ̸= 0.

This ARMA(p,q) process is causal iff

|z| ≤ 1 ⇒ φ(z) = 1 − φ1z − · · ·− φpz
p ̸= 0.

It is invertible iff

|z| ≤ 1 ⇒ θ(z) = 1 + θ1z + · · · + θqz
q ̸= 0.

15



ARMA(p,q): Stationarity, causality, and invertibility

Example: (1 − 1.5B)Xt = (1 + 0.2B)Wt.

φ(z) = 1 − 1.5z = −
3

2

(

z −
2

3

)

,

θ(z) = 1 + 0.2z =
1

5
(z + 5) .

1. φ and θ have no common factors, and φ’s root is at 2/3, which is not on
the unit circle, so {Xt} is an ARMA(1,1) process.
2. φ’s root (at 2/3) is inside the unit circle, so {Xt} is not causal.
3. θ’s root is at −5, which is outside the unit circle, so {Xt} is invertible.

17



ARMA(p,q): Stationarity, causality, and invertibility

Example: (1 + 0.25B2)Xt = (1 + 2B)Wt.

φ(z) = 1 + 0.25z2 =
1

4

(

z2 + 4
)

=
1

4
(z + 2i)(z − 2i),

θ(z) = 1 + 2z = 2

(

z +
1

2

)

.

1. φ and θ have no common factors, and φ’s roots are at ±2i, which is not
on the unit circle, so {Xt} is an ARMA(2,1) process.
2. φ’s roots (at ±2i) are outside the unit circle, so {Xt} is causal.
3. θ’s root (at −1/2) is inside the unit circle, so {Xt} is not invertible.

18



Causality and Invertibility

Theorem: Let {Xt} be an ARMA process defined by
φ(B)Xt = θ(B)Wt. If θ(z) ̸= 0 for all |z| = 1, then there
are polynomials φ̃ and θ̃ and a white noise sequence W̃t such
that {Xt} satisfies φ̃(B)Xt = θ̃(B)W̃t, and this is a causal,
invertible ARMA process.

So we’ll stick to causal, invertible ARMA processes.

19



Calculating ψ for an ARMA(p,q): matching coefficients

Example: Xt = ψ(B)Wt ⇔ (1 + 0.25B2)Xt = (1 + 0.2B)Wt,

so 1 + 0.2B = (1 + 0.25B2)ψ(B)

⇔ 1 + 0.2B = (1 + 0.25B2)(ψ0 + ψ1B + ψ2B
2 + · · · )

⇔ 1 = ψ0,

0.2 = ψ1,

0 = ψ2 + 0.25ψ0,

0 = ψ3 + 0.25ψ1,

...

20



Calculating ψ for an ARMA(p,q): example

⇔ 1 = ψ0, 0.2 = ψ1,

0 = ψj + 0.25ψj−2.

We can think of this as θj = φ(B)ψj , with θ0 = 1, θj = 0 for j < 0, j > q.

This is a first order difference equation in the ψjs.
We can use the θjs to give the initial conditions and solve it using the theory
of homogeneous difference equations.

ψj =
(

1, 1

5
,− 1

4
,− 1

20
, 1

16
, 1

80
,− 1

64
,− 1

320
, . . .

)

.
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Calculating ψ for an ARMA(p,q): general case

φ(B)Xt = θ(B)Wt, ⇔ Xt = ψ(B)Wt

so θ(B) = ψ(B)φ(B)

⇔ 1 + θ1B + · · · + θqB
q = (ψ0 + ψ1B + · · · )(1 − φ1B − · · ·− φpB

p)

⇔ 1 = ψ0,

θ1 = ψ1 − φ1ψ0,

θ2 = ψ2 − φ1ψ1 − · · ·− φ2ψ0,

...

This is equivalent to θj = φ(B)ψj , with θ0 = 1, θj = 0 for j < 0, j > q.

22



Review: Autoregressive moving average models

An ARMA(p,q) process {Xt} is a stationary process that
satisfies

Xt−φ1Xt−1− · · ·−φpXt−p = Wt +θ1Wt−1+ · · ·+θqWt−q,

where {Wt} ∼ WN(0,σ2).

Usually, we insist that φp, θq ̸= 0 and that the polynomials

φ(z) = 1 − φ1z − · · ·− φpz
p, θ(z) = 1 + θ1z + · · · + θqz

q

have no common factors. This implies it is not a lower order ARMA model.

2



Review: Properties of ARMA(p,q) models

Theorem: If φ and θ have no common factors, a (unique) sta-
tionary solution to φ(B)Xt = θ(B)Wt

exists iff

φ(z) = 1 − φ1z − · · ·− φpz
p = 0 ⇒ |z| ̸= 1.

This ARMA(p,q) process is causal iff

φ(z) = 1 − φ1z − · · ·− φpz
p = 0 ⇒ |z| > 1.

It is invertible iff

θ(z) = 1 + θ1z + · · · + θqz
q = 0. ⇒ |z| > 1.

3



Review: Properties of ARMA(p,q) models

φ(B)Xt = θ(B)Wt, ⇔ Xt = ψ(B)Wt

so θ(B) = ψ(B)φ(B)

⇔ 1 + θ1B + · · · + θqB
q = (ψ0 + ψ1B + · · · )(1 − φ1B − · · ·− φpB

p)

⇔ 1 = ψ0,

θ1 = ψ1 − φ1ψ0,

θ2 = ψ2 − φ1ψ1 − · · ·− φ2ψ0,

...

This is equivalent to θj = φ(B)ψj , with θ0 = 1, θj = 0 for j < 0, j > q.

4



Autocovariance functions of linear processes

Consider a linear process {Xt} defined by Xt = ψ(B)Wt.

γ(h) = E (XtXt+h)

= E (ψ0Wt + ψ1Wt−1 + ψ2Wt−2 + · · · )
× (ψ0Wt+h + ψ1Wt+h−1 + ψ2Wt+h−2 + · · · )

= σ2
w (ψ0ψh + ψ1ψh+1 + ψ2ψh+2 + · · · ) .

5



Autocovariance functions of MA processes

Consider an MA(q) process {Xt} defined by Xt = θ(B)Wt.

γ(h) =

⎧
⎨

⎩
σ2

w

∑q−h
j=0 θjθj+h if h ≤ q,

0 if h > q.

6



Autocovariance functions of ARMA processes

ARMA process: φ(B)Xt = θ(B)Wt.

To compute γ, we can compute ψ, and then use

γ(h) = σ2
w (ψ0ψh + ψ1ψh+1 + ψ2ψh+2 + · · · ) .

7



Autocovariance functions of ARMA processes

An alternative approach:

Xt − φ1Xt−1 − · · ·− φpXt−p

= Wt + θ1Wt−1 + · · · + θqWt−q,

so E ((Xt − φ1Xt−1 − · · ·− φpXt−p) Xt−h)

= E ((Wt + θ1Wt−1 + · · · + θqWt−q)Xt−h) ,

that is, γ(h) − φ1γ(h − 1) − · · ·− φpγ(h − p)

= E (θhWt−hXt−h + · · · + θqWt−qXt−h)

= σ2
w

q−h∑

j=0

θh+jψj . (Write θ0 = 1).

This is a linear difference equation.

8



Autocovariance functions of ARMA processes: Example

(1 + 0.25B2)Xt = (1 + 0.2B)Wt, ⇔ Xt = ψ(B)Wt,

ψj =
(

1,
1
5
,−1

4
,− 1

20
,

1
16

,
1
80

,− 1
64

,− 1
320

, . . .

)
.

γ(h) − φ1γ(h − 1) − φ2γ(h − 2) = σ2
w

q−h∑

j=0

θh+jψj

⇔ γ(h) + 0.25γ(h − 2) =

⎧
⎪⎪⎨

⎪⎪⎩

σ2
w (ψ0 + 0.2ψ1) if h = 0,

0.2σ2
wψ0 if h = 1,

0 otherwise.
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Autocovariance functions of ARMA processes: Example

We have the homogeneous linear difference equation

γ(h) + 0.25γ(h − 2) = 0

for h ≥ 2, with initial conditions

γ(0) + 0.25γ(−2) = σ2
w (1 + 1/25)

γ(1) + 0.25γ(−1) = σ2
w/5.

We can solve these linear equations to determine γ.
Or we can use the theory of linear difference equations...

10



Difference equations

Examples:

xt − 3xt−1 = 0 (first order, linear)

xt − xt−1xt−2 = 0 (3rd order, nonlinear)

xt + 2xt−1 − x2
t−3 = 0 (3rd order, nonlinear)

11



Homogeneous linear diff eqns with constant coefficients

a0xt + a1xt−1 + · · · + akxt−k = 0

⇔
(
a0 + a1B + · · · + akBk

)
xt = 0

⇔ a(B)xt = 0

auxiliary equation: a0 + a1z + · · · + akzk = 0

⇔ (z − z1)(z − z2) · · · (z − zk) = 0

where z1, z2, . . . , zk ∈ C are the roots of this characteristic polynomial.

Thus,

a(B)xt = 0 ⇔ (B − z1)(B − z2) · · · (B − zk)xt = 0.

12



Homogeneous linear diff eqns with constant coefficients

a(B)xt = 0 ⇔ (B − z1)(B − z2) · · · (B − zk)xt = 0.

So any {xt} satisfying (B − zi)xt = 0 for some i also satisfies a(B)xt = 0.

Three cases:

1. The zi are real and distinct.

2. The zi are complex and distinct.

3. Some zi are repeated.

13



Homogeneous linear diff eqns with constant coefficients

1. The zi are real and distinct.

a(B)xt = 0

⇔ (B − z1)(B − z2) · · · (B − zk)xt = 0

⇔ (B − z1)xt = 0 or (B − z2)xt = 0 or · · · or (B − zk)xt = 0

⇔ xt = z−1
1 xt−1 or xt = z−1

2 xt−1 or · · · or xt = z−1
k xt−1

⇔ xt = c1z
−t
1 + c2z

−t
2 + · · · + ckz−t

k ,

for some constants c1, . . . , ck.

14



Homogeneous linear diff eqns with constant coefficients

1. The zi are real and distinct. z1 = 1.2, z2 = −1.3

0 2 4 6 8 10 12 14 16 18 20
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
c1 z1

−t + c2 z2
−t

c1=1, c2=0
c1=0, c2=1
c1=−0.8, c2=−0.2
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Homogeneous linear diff eqns with constant coefficients

2. The zi are complex and distinct.

As before, a(B)xt = 0

⇔ xt = c1z
−t
1 + c2z

−t
2 + · · · + ckz−t

k .

If z1 ̸∈ R, since a1, . . . , ak are real, we must have the complex conjugate
root, zj = z̄1. And for xt to be real, we must have cj = c̄1. For example:

xt = c z−t
1 + c̄ z̄1

−t

= r eiθ|z1|−te−iωt + r e−iθ|z1|−teiωt

= r|z1|−t
(
ei(θ−ωt) + e−i(θ−ωt)

)

= 2r|z1|−t cos(ωt − θ)

where z1 = |z1|eiω and c = reiθ.
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Homogeneous linear diff eqns with constant coefficients

2. The zi are complex and distinct. z1 = 1.2 + i, z2 = 1.2 − i

0 2 4 6 8 10 12 14 16 18 20
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
c1 z1

−t + c2 z2
−t

c=1.0+0.0i
c=0.0+1.0i
c=−0.8−0.2i
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Homogeneous linear diff eqns with constant coefficients

2. The zi are complex and distinct. z1 = 1 + 0.1i, z2 = 1 − 0.1i

0 10 20 30 40 50 60 70
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
c1 z1

−t + c2 z2
−t

c=1.0+0.0i
c=0.0+1.0i
c=−0.8−0.2i
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Homogeneous linear diff eqns with constant coefficients

3. Some zi are repeated.

a(B)xt = 0

⇔ (B − z1)(B − z2) · · · (B − zk)xt = 0.

If z1 = z2, (B − z1)(B − z2)xt = 0

⇔ (B − z1)2xt = 0.

We can check that (c1 + c2t)z−t
1 is a solution...

More generally, (B − z1)mxt = 0 has the solution(
c1 + c2t + · · · + cm−1tm−1

)
z−t
1 .
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Homogeneous linear diff eqns with constant coefficients

3. Some zi are repeated. z1 = z2 = 1.5.

0 2 4 6 8 10 12 14 16 18 20
−1

−0.5

0

0.5

1

1.5

2
(c1 + c2 t) z1

−t

c1=1, c2=0
c1=0, c2=2
c1=−0.2, c2=−0.8
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Solving linear diff eqns with constant coefficients

a0xt + a1xt−1 + · · · + akxt−k = 0,

with initial conditions x1, . . . , xk.

Auxiliary equation in z ∈ C: a0 + a1z + · · · + akzk = 0

⇔ (z − z1)m1(z − z2)m2 · · · (z − zl)ml = 0,

where z1, z2, . . . , zl ∈ C are the roots of the characteristic polynomial, and
zi occurs with multiplicitymi.
Solutions: c1(t)z−t

1 + c2(t)z−t
2 + · · · + cl(t)z−t

l ,
where ci(t) is a polynomial in t of degreemi − 1.
We determine the coefficients of the ci(t) using the initial conditions
(which might be linear constraints on the initial values x1, . . . , xk).
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Autocovariance functions of ARMA processes: Example

(1 + 0.25B2)Xt = (1 + 0.2B)Wt, ⇔ Xt = ψ(B)Wt,

ψj =
(

1,
1
5
,−1

4
,− 1

20
,

1
16

,
1
80

,− 1
64

,− 1
320

, . . .

)
.

γ(h) − φ1γ(h − 1) − φ2γ(h − 2) = σ2
w

q−h∑

j=0

θh+jψj

⇔ γ(h) + 0.25γ(h − 2) =

⎧
⎪⎪⎨

⎪⎪⎩

σ2
w (ψ0 + 0.2ψ1) if h = 0,

0.2σ2
wψ0 if h = 1,

0 otherwise.
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Autocovariance functions of ARMA processes: Example

We have the homogeneous linear difference equation

γ(h) + 0.25γ(h − 2) = 0

for h ≥ 2, with initial conditions

γ(0) + 0.25γ(−2) = σ2
w (1 + 1/25)

γ(1) + 0.25γ(−1) = σ2
w/5.
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Autocovariance functions of ARMA processes: Example

Homogeneous lin. diff. eqn:

γ(h) + 0.25γ(h − 2) = 0.

The characteristic polynomial is

1 + 0.25z2 =
1
4

(
4 + z2

)
=

1
4
(z − 2i)(z + 2i),

which has roots at z1 = 2eiπ/2, z̄1 = 2e−iπ/2.
The solution is of the form

γ(h) = cz−h
1 + c̄z̄1

−h.
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Autocovariance functions of ARMA processes: Example

z1 = 2eiπ/2, z̄1 = 2e−iπ/2, c = |c|eiθ.

We have γ(h) = cz−h
1 + c̄z̄1

−h

= 2−h
(
|c|ei(θ−hπ/2) + |c|ei(−θ+hπ/2)

)

= c12−h cos
(

hπ

2
− θ

)
.

And we determine c1, θ from the initial conditions

γ(0) + 0.25γ(−2) = σ2
w (1 + 1/25)

γ(1) + 0.25γ(−1) = σ2
w/5.
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Autocovariance functions of ARMA processes: Example
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