Introduction to Time Series Analysis. Lecture 1.
Peter Bartlett

. Organizational issues.
. Objectives of time series analysis. Examples.
. Overview of the course.

. Time series models.

. Time series modelling: Chasing stationarity.
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SP500: 1960-1990




A Time Series

SP500: Jan-Jun 1987
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A Time Series

SP500 Jan-Jun 1987. Histogram




A Time Series

SP500: Jan-Jun 1987. Permuted.




Objectives of Time Series Analysis

. Compact description of data.
. Interpretation.

. Forecasting.

. Control.

. Hypothesis testing.

. Simulation.




Classical decomposition: An example I

Monthly sales for a souvenir shop at a beach resort town in Queensland.

(Makridakis, Wheelwright and Hyndman, 1998)




‘ Transformed data I
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Residuals I
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‘ Trend and seasonal variation I
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Objectives of Time Series Analysis

. Compact description of data.
Example: Classical decomposition: X =T, + S +Y;.

. Interpretation. Example: Seasonal adjustment.
. Forecasting. Example: Predict sales.
. Control.

. Hypothesis testing.

. Simulation.
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‘ Unemployment data I

Monthly number of unemployed people in Australia. aipet ana Mcteod, 1994)
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Trend plus seasonal variation

4 | | | |
1983 1984 1985 1986 1987 1988 1989

17



Residuals I
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‘ Predictions based on a (simulated) variable I
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Objectives of Time Series Analysis

. Compact description of data:
Xe =Ty + S + f(Yy) + Wh.

. Interpretation. Example: Seasonal adjustment.
. Forecasting. Example: Predict unemployment.
. Control. Example: Impact of monetary policy on unemployment.
. Hypothesis testing. Example: Global warming.

. Simulation. Example: Estimate probability of catastrophic events.
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Overview of the Course I

1. Time series models
(a) Stationarity.

(b) Autocorrelation function.

(¢) Transforming to stationarity.

2. Time domain methods
3. Spectral analysis

4. State space models(?)
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Overview of the Course I

1. Time series models

2. Time domain methods

(a) AR/ MA/ARMA models.

(b) ACF and partial autocorrelation function.

(¢) Forecasting
(d) Parameter estimation

(e) ARIMA models/seasonal ARIMA models

3. Spectral analysis

4. State space models(?)
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Overview of the Course I

1. Time series models

2. Time domain methods

3. Spectral analysis

(a) Spectral density
(b) Periodogram

(¢) Spectral estimation

4. State space models(?)
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Overview of the Course I

1. Time series models

2. Time domain methods

3. Spectral analysis

4. State space models(?)
(a) ARMAX models.
(b) Forecasting, Kalman filter.

(c) Parameter estimation.
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‘ Time Series Models I

A time series model specifies the joint distribution of the se-

quence { X;} of random variables.
For example:

PXy <zp,...,Xs <ayforalltand xq, ..., x;.

Notation:
X1, Xo,...1s a stochastic process.

1,9, ...1s a single realization.

We’ll mostly restrict our attention to second-order properties only:
EX:, E(X:, X4,).
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‘ Time Series Models I

Example: White noise: X; ~ WN(0, 0?).
i.e., {X;} uncorrelated, EX; = 0, VarX; = 2.

Example: i.i.d. noise: {X;} independent and identically distributed.

PXy <my,...,Xe <ay] = P[Xy <m]--- PlXy <yl
Not interesting for forecasting:

P[Xt S ZCt|X1, . -aXt—l] — P[Xt S ZCt].
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‘ Gaussian white noise I

_fcg/zdaj.
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Gaussian white noise
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‘ Time Series Models I

Example: Binary 1.1.d.
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Random walk '

Differences: V.S; = S5; — S;—1 = X;.
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Random walk

ESt ? V&I’St ?
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Random Walk

Recall S&P500 data. (Notice that it’s smooth)

SP500: Jan-Jun 1987
T T T
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year
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Random Walk

Differences:

SP500, Jan—-Jun 1987. first differences

T T T T

_1 0 | | | | | | | | |
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year
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‘ Trend and Seasonal Models I

Xy =T, + St + By = Bo + Bit + ), (Bi cos(Ait) + s sin(At)) + E

w

| &
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‘ Trend and Seasonal Models I

Xe =Ty + By = PBo + Bit + By

6
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‘ Trend and Seasonal Models I

Xy =T, + St + By = Bo + Bit + ), (Bi cos(Ait) + s sin(At)) + E
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Trend and Seasonal Models: Residuals I
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Time Series Modelling I

1. Plot the time series.

Look for trends, seasonal components, step changes, outliers.
2. Transform data so that residuals are stationary.

(a) Estimate and subtract 73, S;.

(b) Differencing.

(c) Nonlinear transformations (log, 1/-).

3. Fit model to residuals.

38



Nonlinear transformations I

Recall: MOIlthly sales. (Makridakis, Wheelwright and Hyndman, 1998)
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Differencing

Recall: S&P 500 data.
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Differencing and Trend I

Define the lag-1 difference operator, (think ‘fi rst derivative”)
VX=X — X1 = (1 - B)Xy,
where B is the backshift operator, BX; = X;_1.
If X; = By + Bt + Y, then

VX; =01 + VY.

If X, = Y0, Bit’ + Y, then

VEX: = KBk + V'Y,

where VFX; = V(V*71X,) and V1 X, = VX;.
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Differencing and Seasonal Variation I

Define the lag-s difference operator,

vth — Xt - Xt—s — (1 - BS)Xt,

where B? is the backshift operator applied s times, B*X; = B(B*1X})
and BlXt = BXt

If X; =T+ 5 + Y, and S; has period s (that is, Sy = S;_ ¢ for all ¢), then

vth — Tt — Tt—s + vs)/t
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Least Squares Regression I

Xt:

(Xl\

X
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Least Squares Regression I

x=Z03+ w.

Least squares: choose (3 to minimize [|w|]* = ||z — Z8||°.

Solution B satisfies the normal equations:

Vellw|* = 22" (x — Zj3) =0.

If Z'Z is nonsingular, the solution is unique:

B=(Z2'2)"7"z.
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Least Squares Regression I

Properties of the least squares solution (3 = (Z'2)~1Z'x):

Linear.
Unbiased.

For {W,} i.i.d., it is the linear unbiased estimator with smallest
variance.

Other regressors Z: polynomial, trigonometric functions, piecewise
polynomial (splines), etc.
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Testing i.i.d.: Turning point test

{X;}ii.d. implies that X;, X;.1 and X, are equally likely to occur in

any of six possible orders:

35

(provided X;, X;y1, X¢1o are distinct).

Four of the six are turning points.




Testing i.i.d.: Turning point test

Define T' = |{t : X, Xy11, X¢10 is a turning point}|.
ET = (n — 2)2/3.
Can ShOW T Y/ AN(Q’I?,/S, 8”/45). Notation: X ~ AN (p, 02) & S 4, N(0,1).

(o2

Reject (at 5% level) the hypothesis that the series 1s 1.1.d. if

2n 8N
T — —| > 1.96\/ —
‘ 3 45

Tests for positive/negative correlations at lag 1.




Testing i.i.d.: Difference-sign test

S={i:X;> X, 1Y =|{i:(VX); > 0}].

n—1
ES =
2

Can show S ~ AN (n/2,n/12).

Reject (at 5% level) the hypothesis that the series 1s 1.1.d. if
n n
-2 >1.96 /.
‘ 2 ~ 12

(But a periodic sequence can pass this test...)

Tests for trend.




‘ Testing 1.i.d.: Rank test I

N = |{(’L,j) X > Xj and 7 > ]}‘

n(n—l).

EN =
4

Can show N ~ AN (n?/4,n3/36).

Reject (at 5% level) the hypothesis that the series is 1.1.d. if

n? n3
N - s 196/
| i|” 36

Tests for linear trend.




Testing if an i.l.d. sequence is Gaussian: qq plot I

Plot the pairs (my, X(1)), ..., (mn, X)),

where m; = EX(j),

X1y < -+- < X(y) are order statistics from N (0, 1) sample of size n, and
X1y < --- < X(p) are order statistics of the series Xq,..., X,,.

Idea: If X; ~ N(u,0?), then
EX(j) = p+omy,

so (my, X(;)) should be linear.

There are tests based on how far correlation of (m;, X ;) is from 1.




‘ Stationarity I

{X}} is strictly stationary if

forall k,t1,...,tx,x1,...,2,and h,

P(Xy, <w1,..., Xy, < ap) = P(wg, 40 <1500, Xgypon < )

1.e., shifting the time axis does not affect the distribution.

We shall consider second-order properties only.




‘ Mean and Autocovariance I

Suppose that { X; } is a time series with E[X?] < oo.

Its mean function is
My = E[Xt]
Its autocovariance function is

vx (s,t) = Cov(Xs, Xy)
= E[(Xs — ps)( Xy — )]




Weak Stationarity I

We say that { X;} is (weakly) stationary if

1. ¢ 1s independent of ¢, and
2. For each h,vx(t + h,t) is independent of ¢.

In that case, we write
vx (h) = vx(h,0).




‘ Stationarity I

The autocorrelation function (ACF) of { X} is defined as

. vx (h)
px(h) = vx (0)

_ COV(Xt_|_h, Xt)
COV(Xt, Xt)
= COI'(Xt_|_h, Xt)

10




‘ Stationarity I

Example: i.i.d. noise, E[X;] = 0, E[X?] = 0°. We have

o ifh=0,
0 otherwise.

Thus,

1. py = 01s independent of .

2. vx(t+ h,t) = vx(h,0) for all ¢.
So { X} is stationary.

Similarly for any white noise (uncorrelated, zero mean), X; ~ WN (0, 02).
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‘ Stationarity I

Example: Random walk, S; = Zzzl X, fori.i.d., mean zero { X;}.
We have E[S;] = 0, E[S?] = to?, and

YS (t + h, t) = COV(SH_h, St)

h
= Cov (St —+ ZXH_S, St>

s=1

= COV(St, St) = t0'2.
I. us = 01s independent of ¢, but
2. vs(t + h,t) is not.

So {S;} is not stationary.
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‘ An aside: covariances I

Cov(X +Y,7Z)=Cov(X,Z)+ Cov(Y, Z),
Cov(aX,Y) =aCov(X,Y),

Also if X and Y are independent (e.g., X = c¢), then

Cov(X,Y) =0.

13



‘ Stationarity I

Example: MA(1) process (Moving Average):

Xy =W, 4+ 0W,_1, (W} ~WN(0,0%).

We have E| X;| = 0, and

Yx(t+h,t) = E(Xi1nXy)
=E[(Witn + OWipn—1) (W + 0Wi_1)]

’

o?(140%) ifh=0,
020 if h = +1,

\ 0 otherwise.

Thus, { X;} is stationary.
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ACF of the MA(1) process I

MA(1): X =Z, +6Z,_

©

® 0%0/(1+6%)
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‘ Stationarity I

Example: AR(1) process (AutoRegressive):

X, = X1 + W, (W} ~WN(0,0%).

Assume that X is stationary and |¢| < 1. Then we have

E[ Xt = ¢EX; 4
=0 (from stationarity)

E[X{] = ¢"E[X{_] + 0”

0.2

-5

(from stationarity),

17



‘ Stationarity I

Example: AR(1) process, X; = ¢ X;_1 + W4, {W;} ~ WN(0,0%).
Assume that X, is stationary and |¢| < 1. Then we have

2
2 0

-5

E[Xt] — 07 E[Xt]
vx (h) = Cov(¢pXipn—1+ Zitn, Xt)

— ¢C0V(Xt+h—1> Xt)

= ¢yx(h —1)

= ¢/Mlyx(0)  (check for h > 0 and h < 0)

Pl g2

S
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‘ ACF of the AR(1) process I

19



Linear Processes I

An important class of stationary time series:

Xt =p+ Z YiWi—;

j=—00

where (W} ~WN(0,02)

and [, 1; are parameters satisfying

oo

Z |¢j| < OQ.

j=—oc

20



Linear Processes I

X¢=p+ Z YiWi—;

j=—00

We have

21



Examples of Linear Processes: White noise I

Xt =p+ Z YWy

j=—00

Choose L4,

1 ifj=0,

0O otherwise.

Then {X;} ~ WN (u,0%,).

22



‘ Examples of Linear Processes: MA(1) I

Xy =p+ Z YiWi_;

j=—o0

’

1 ifj=0,
0 ifj=1,

0O otherwise.

\

Then Xt = Wt + HWt_l.

23



Examples of Linear Processes: AR(1) I

oo

= [+ Z Y Wi

j=—00

Choose =

¢ ifj >0,

V; =

0 otherwise.

Then for |¢| < 1, we have X; = ¢ X;_1 + W,.

24



‘ Estimating the ACF: Sample ACF I

For observations x1, ..., x, of a time series,

mn
: 1
the sample mean is T = — E Tt.
n
t=1

The sample autocovariance function is

n—|h|

1
- Z (g n) — Z) (2t — T), for —n < h < n.
t=1

The sample autocorrelation function is




‘ Estimating the ACF: Sample ACF I

Sample autocovariance function:

n—|h|

§0) =~ 3 e — 2w — 7).

t=1

~ the sample covariance of (z1,Xp11),-- -, (Tn_h,Tn),except that
e we normalize by n instead of n — h, and
e we subtract the full sample mean.




Sample ACF for white Gaussian (hence i.i.d.) noise

[ 7.t

BN E I R 1
ST [P 1T

-5 0 5 10 15 20




Sample ACF I

We can recognize the sample autocorrelation functions of many non-white

(even non-stationary) time series.

Time series: Sample ACF:
White Zero
Trend Slow decay
Periodic Periodic
MA(q) Zero for |h| > ¢
AR(p) Decays to zero exponentially




Sample ACF: Trend

10



‘ Sample ACF: Trend I

11



Sample ACF: Periodic

12



Sample ACF: Periodic

— - signal
—©— signal plus noise

13



Periodic

Sample ACF

4

1



ACF: MA(1)

O 0/(1+6%)

15



‘ Sample ACF: MA(1) I

T T
O ACF
O Sample ACF
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ACF: AR(1)

17



Sample ACF: AR(1) I

T T
O ACF
O Sample ACF

18



ACF of a MA(1) process I

20



Properties of the autocovariance function I

For the autocovariance function v of a stationary time series { X;},

1. v(0) >0, (variance is non-negative)

2. |v(h)| < ~(0), (from Cauchy-Schwarz)

3. v(h) = y(—h), (from stationarity)
4. ~ 1s positive semidefinite.

Furthermore, any function v : Z — R that satisfies (3) and (4) is the
autocovariance of some stationary (Gaussian) time series.

26



Properties of the autocovariance function I

A function f : Z — R is positive semidefinite if for all n, the matrix F,,

with entries (F},); ; = f(¢ — j), is positive semidefinite.

A matrix F,, € R™*" is positive semidefinite if, for all vectors a € R",

a' Fa > 0.

To see that v is psd, consider the variance of (X1,..., X, )a.

27



‘ Properties of the sample autocovariance function I

The sample autocovariance function:

n—|h|
Z (Tpn) — T) (2 — ), for —n < h < n.

t=1

y(h) =

1
n

For any sequence 1, ..., Z,, the sample autocovariance function # satisfies

2. # is positive semidefinite, and hence

3. 4(0) = Oand |5(h)| < 4(0).




‘ Properties of the sample autocovariance function: psd I




‘ Sample ACF and testing for white noise I

If { X;} is white noise, we expect no more than =~ 5% of the peaks of the

sample ACF to satisty
1.96
o(h)| > —.
o) > =

This 1s useful because we often want to introduce transformations that

reduce a time series to white noise.

13



Sample ACF for white Gaussian (hence i.i.d.) noise

[ 7.t

e 1 [ 1sl.
R I A

5 10 15 20




Sample ACF for MA(1) I

: p(0) = 1, p(£1) = 155, and p(h) = 0 for [h| > 1. Thus,

oo

= (p(0) — 2p(1)?)* 4 p(1)*

(p(h +2) + p(h = 2) = 2p(2)p(h)* = > p(h)>.
h=-—1

And if { X} is a realization of this MA(1) process, with probability 0.95,

15



Sample ACF for MA(1) I

T T
O ACF

—— Confidence interval
O Sample ACF
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AR(1) and Causality I

Let X be the stationary solution to

Xt — o X1 = Wy,

where W; ~ WN (0, 0?).

If |p| < 1,




AR(1) and Causality I

If |¢| > 1, w(B)W; does not converge.
But we can rearrange

Xe =Xy 1 + Wy
1

1
as X1 = EXt — 5Wt7

and we can check that the unique stationary solution is

Xy = — Z ¢ Wiy ;.
=1

But... X; depends on future values of W,.



Causality I

A linear process { X; } is causal (strictly, a causal function
of {W,}) if there is a

(B) = 1o + 1B + B + - --




AR(1) and Causality I

e Causality is a property of { X;} and {W,}.

e The AR(1) process defined by ¢(B)X; = W; (with ¢(B) =1 — ¢B) is
causal iff |¢| < 1, iff the root z; of the polynomial ¢(z) = 1 — ¢z satisfies
|21] > 1.

e If |¢| > 1, we can define an equivalent causal model,

X, — ¢t X,_1 = W,, where W; is a new white noise sequence.

e Is an MA(1) process causal?




MA(1) and Invertibility I

Xe =Wy +0W_4

If |6| < 1, we can write

(1+60B)"'X; =W,
(1-0B+6°B* —-0°B* +-- )X, =W,

oo

N
j=0

That 1s, we can write W, as a causal function of X;.
We say that this MA(1) is invertible.




MA(1) and Invertibility I

Xe =Wy +0W_4

If |6 > 1, the sum Z;‘;O(—Q)th_j diverges, but we can write

Wt—l — —9_1Wt + 9_1Xt.

Just like the noncausal AR(1), we can show that

oo

Wy ==Y (=077 X

j=1

That 1s, we can write W, as a linear function of X, but it is not causal.
We say that this MA(1) is not invertible.




‘ Invertibility I

A linear process { X; } is invertible (strictly, an invertible
function of {IW,}) if there is a

m(B) =mg+ m B+ mB? + - -

oo

with Z 7| < 00
j=0

and Wy = w(B)Xz.




MA(1) and Invertibility I

e Invertibility is a property of { X;} and {W,}.
e The MA(1) process defined by X; = 8(B)W; (with §(B) =1+ 0B) is

invertible iff || < 1 iff the root z; of the polynomial f(z) = 1 + 0z satisfies
|Z1‘ > 1.
e If |#| > 1, we can define an equivalent invertible model in terms of a new

white noise sequence.
e Is an AR(1) process invertible?




AR(p): Autoregressive models of order p I

An AR(p) process { X} is a stationary process that satisfies

Xt — o1 Xe—1 — - — PpXy—p = W,

where {W;} ~ WN(0,0?).

Equivalently, ¢(B) Xy = Wh,
where $(B)=1—¢pB—---— ¢,B".

10




AR(p): Constraints on ¢ I

Recall: For p =1 (AR(1)), ¢(B) =1 — ¢1 B.
This 1s an AR(1) model only if there is a stationary solution to
»(B)X: = W4, which is equivalent to |¢1| # 1.

This is equivalent to the following condition on ¢(z) = 1 — ¢ 2:

VzeR, ¢p(2) =0 = z# +1
equivalently, Vz € C, ¢(2) =0 = |z] # 1,

where C is the set of complex numbers.

11



AR(p): Constraints on ¢ I

Stationarity: V2eC, ¢(z) =0 = |z] #1,

where C is the set of complex numbers.

®(z) =1 — ¢1zhasonerootat z; = 1/¢; € R.
But the roots of a degree p > 1 polynomial might be complex.

For stationarity, we want the roots of ¢(z) to avoid the unit circle,
{z€C:|z| =1}.

12



‘ AR(p): Stationarity and causality I

Theorem: A (unique) stationary solution to ¢(B)X; = W;
exists iff

z|=1= d(z)=1—p12— - — P,z #0.

This AR(p) process 1s causal it

2 S1 = ¢(z) =1 =1z — - — 2" £0,

13




ARMA(p,q): Autoregressive moving average models

An ARMA(p,q) process { X;} is a stationary process that
satisfies

Xi—01 Xp1— = OpXp—p =W +O W1+ - - +0, Wiy,

where {W;} ~ WN(0,0?).

e AR(p) = ARMA(p): 6(B) = 1.
e MA(q) = ARMA(0,q): ¢(B) = 1.

10



‘ ARMA processes I

Can accurately approximate many stationary processes:

For any stationary process with autocovariance v, and any £ >
0, there is an ARMA process { X} for which

h=0.1,.... k

11



ARMA(p,q): Autoregressive moving average models

An ARMA(p,q) process { X;} is a stationary process that
satisfies

Xe— 01 X1 — = Op Xy p = W+ O W1+ - -+ 0, Wiy,

where {W;} ~ WN(0,0?).

Usually, we insist that ¢,,, 0, # 0 and that the polynomials
d(2) =1— 12— — Pp2P, 0(z2) =14+01z2+---+ 6,21

have no common factors. This implies it is not a lower order ARMA model.

12



ARMA(p,q): An example of parameter redundancy I

Consider a white noise process W;. We can write

Xy =W,
Xt — Xt—l -+ 0.25Xt_2 — Wt - Wt_l + 0.25Wt_2
(1-B+0.25B*)X, = (1 - B+0.25B>W,

This 1is in the form of an ARMA(2,2) process, with

¢(B) =1— B+ 0.25B%, 9(B)=1— B +0.25B.

But it 1s white noise.

13



ARMA(p,q): An example of parameter redundancy I

ARMA model:

with

14



ARMA (p,q): Stationarity, causality, and invertibility

Theorem: If ¢ and # have no common factors, a (unique) sta-
tionary solution to ¢(B)X; = 0(B)W,
exists iff

z|=1= d(z)=1—p12—---— P,z #0.
This ARMA(p,q) process is causal iff

2 <1 = ¢(z) = 1—rz—- - — g2 £0.
It 1s invertible ift

2| <1 =60()=1+012+ -+ 0,27 #0.

15



ARMA (p,q): Stationarity, causality, and invertibility

Example: (1-15B)X; = (14+0.2B)W,.

o(z) =1—1.5z= —g

0(z)=14+02z=—-(24+5).

1. ¢ and # have no common factors, and ¢’s root is at 2/3, which is not on
the unit circle, so { X;} is an ARMA(1,1) process.

2. ¢’s root (at 2/3) is inside the unit circle, so { X} is not causal.

3. ’s root is at —5, which is outside the unit circle, so { X;} is invertible.

17



ARMA (p,q): Stationarity, causality, and invertibility

Example:

1. ¢ and A have no common factors, and ¢’s roots are at £27, which is not
on the unit circle, so { X;} is an ARMA(2,1) process.

2. ¢’s roots (at £27) are outside the unit circle, so { X; } is causal.

3. ’s root (at —1/2) is inside the unit circle, so { X} is not invertible.

18



‘ Causality and Invertibility I

Theorem: Let {X;} be an ARMA process defined by
o»(B)X; = 0(B)W,. If 0(z) # 0 for all |z| = 1, then there

are polynomials é and 6 and a white noise sequence W; such
that {X,} satisfies ¢(B)X; = 6(B)Wy, and this is a causal,
invertible ARMA process.

So we’ll stick to causal, invertible ARMA processes.

19



‘ Calculating ) for an ARMA(p,q): matching coefficients I

Example: X, = ¢(B)W, & (1+0.25B*)X; = (1 +0.2B)W;
so 14+0.2B=(140.25B%)y(B)
& 1+0.2B = (1+0.25B%)(¢g + 1 B + 9o B* + - - )

& 1 = o,
0.2 = 1)y,

0 = 1)y 4 0.257),

0 = 13 + 0.25,

20



‘ Calculating ) for an ARMA(p,q): example I

1= ¢07 0.2 = wla
0= ij + O°25¢j—2°
We can think of this as §; = ¢(B);, withfy = 1,0, =0for j < 0,5 > q.

This 1s a first order difference equation in the 1);s.
We can use the 0;s to give the initial conditions and solve it using the theory
of homogeneous difference equations.

%‘ — (17 %7
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‘ Calculating ) for an ARMA(p,q): general case I

¢(B) Xy = 0(B)W, & X = p(B)Wy
so  0(B) =¢(B)¢(B)
& 14+6B+-+0,B= o+ 1B+ )(1 =1 B— - —¢pB")
& 1 = o,
01 = 11 — P10,
02 = Yo — @191 — - -+ — Patbo,

This is equivalent to §; = ¢(B),, withfy =1,60; =0for j < 0,5 > g.
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Review: Autoregressive moving average models I

An ARMA(p,q) process { X;} is a stationary process that

satisfies

Xe— 01 X1 — = Op Xy p = W+ O W1+ - -+ 0, Wiy,

where {W;} ~ WN(0,0?).

Usually, we insist that ¢,,, 0, # 0 and that the polynomials
d(2) =1— 12— — Pp2P, 0(z2) =14+01z2+---+ 6,21

have no common factors. This implies it is not a lower order ARMA model.




Review: Properties of ARMA(p,q) models I

Theorem: If ¢ and # have no common factors, a (unique) sta-
tionary solution to ¢(B)X; = 0(B)W,
exists iff

B(2) =1—rz— - —pa? =0 = |2| £ 1.

This ARMA(p,q) process is causal iff

d(z) =1—prz2—-—¢dp2P =0 = |2z| > 1.

It 1s invertible 1ff

0(2) =14+61z4+---4+6,27=0. = |z| > 1.




Review: Properties of ARMA(p,q) models I

P(B) Xy = 0(B)W4, Xy = p(B)W,
so  0(B) =¢(B)¢(B)
< 1+60B+--+0,B'=(Yo+ 1B+ )(1—¢1B—---—¢,B")
& 1 = 1o,
01 = Y1 — P10,
O2 = 1p2 — P11 — - — P2y,

This is equivalent to §; = ¢(B),, withfy =1,60; =0for 7 < 0,5 > g.




Autocovariance functions of linear processes I

Consider a linear process { X;} defined by X; = ¢(B)W;.

v(h) = E(X: X¢yn)
=E (YoW; + )1 Wiy + poWi_o +---)
X (VoWian + V1 Wisn1 + YoWipn_o+ )
= o, (Votbn + V1tng1 + Yotbnga + 1)




Autocovariance functions of MA processes I

Consider an MA(q) process { X;} defined by X; = 0(B)W,.

0 310 004 ifh <q.
0 ith>q.

Y(h) =




‘ Autocovariance functions of ARMA processes I

ARMA process: ¢(B)X: = 0(B)W;.

To compute v, we can compute v/, and then use

v(h) = og, (Yotbn + Y1¥nt1 + Yatbhgo + -+ ).




‘ Autocovariance functions of ARMA processes I

An alternative approach:

Xt — 1 X1 — - — PpXiyp
=W+ 0Wy 1+ -+ 0, Wy,
SOE (Xt — g1 X1 — - — ¢pXi—p) Xy—p)
=E((Wy +OWi1 +-- -+ 0,Wi_y) X)),
thatis,y(h) — ¢1v(h—1) — - — ppy(h — p)
=E@0 Wi p Xeon + -+ 0, Wi Xi— )

q—h
=00 Y Opjtby.  (Write g = 1).
§=0

This 1s a linear difference equation.




Autocovariance functions of ARMA processes: Example I

(1+0.25B*)X; = (1 +0.2B)W,,
1 1 1 1 1 1 1
b= (1t )

57 47 20°16°80° 64° 320

i

02 (o +0.21) it h =0,
& y(h) +0.25v(h — 2) = < 0.202 1)y ifth=1,

0 otherwise.




Autocovariance functions of ARMA processes: Example I

We have the homogeneous linear difference equation
v(h) +0.25v(h—2) =0

for h > 2, with initial conditions

v(0) + 0.25v(—=2) = o2 (1 + 1/25)
(1) + 0.25v(—1) = 02 /5.

We can solve these linear equations to determine .

Or we can use the theory of linear difference equations...
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Difference equations I

Examples:

Ty —3Ti—1 =0 (first order, linear)
Ty — Tp—1Tp—o = 0 (3rd order, nonlinear)

Ty + 2T-1 — :1:%_3 =0 (3rd order, nonlinear)

11



Homogeneous linear diff eqns with constant coefficients I

aprt +a1ry—1 + -+ apri_p =0
(a0+alB+---+akBk):1:t =0
& a(B)xy =0
auxiliary equation: ao+ a1z +---+apz® =0
& (z—21)(z—29) - (2—2zk) =0
where 21, 29, ..., 2z € C are the roots of this characteristic polynomial.

Thus,

a(B)x; =0 (B—21)(B—23)---(B—zp)x; = 0.

12



Homogeneous linear diff eqns with constant coefficients I

a(B)x; =0 & (B—21)(B—23)---(B—zp)x: = 0.

So any {x;} satisfying (B — z;)x; = 0 for some i also satisfies a(B)x; = 0.

Three cases:
1. The z; are real and distinct.
2. The z; are complex and distinct.

3. Some z; are repeated.

13



Homogeneous linear diff eqns with constant coefficients I

1. The z; are real and distinct.
a(B)x; =0
(B—21)(B—29)---(B—zr)xy =0
(B—2z1)zy =00r (B —22)zy =0o0r --- or (B —zx)xy =0

— — —1
Ty = 21 13375_1 Or Ty = 29 13375_1 or --- Or ¥y = 25, Tt—1

—t —t —t
Ty = C121 +C229 -+ Ck2p

for some constants cq, ..., cg.

14



Homogeneous linear diff eqns with constant coefficients I

1. The z; are real and distinct. z; = 1.2, 29 = —1.3

~t ~t
C1 Z1 + 02 Z2

15



Homogeneous linear diff eqns with constant coefficients I

2. The z; are complex and distinct.

As before, a(B)x; =0

—t —t —t
= Tt = C127 T C229 + -+ Ck2p -

If 21 ¢ R, since a4, ..., a are real, we must have the complex conjugate
root, z; = z1. And for x; to be real, we must have ¢; = ¢;. For example:

Ty = czl_t + Ez_l_t

” ew\zl ‘—te—z’wt ipe 6—i9‘21|—t€z’wt
rlo |t (ez’(e—wt) X 6—i(9—wt)>
2r|z1| "¢ cos(wt — 0)

where z; = |z1]e™ and ¢ = re®.

17



Homogeneous linear diff eqns with constant coefficients I

2. The z; are complex and distinct. 21 = 1.2 + 17,20 = 1.2 —1

~t ~t
C1 Z1 + 02 Z2

T T

—©— ¢=1.0+0.0i
—©— ¢=0.0+1.0i
—©- ¢=-0.8-0.2i [

18



Homogeneous linear diff eqns with constant coefficients

2. The z; are complex and distinct. z; =1+ 0.17,20 =1 —0.12

~t ~t
C1 Z1 + 02 Z2

T T T

—©— ¢=1.0+0.0i
—©— ¢=0.0+1.0i
—©- ¢=-0.8-0.2i

19



Homogeneous linear diff eqns with constant coefficients I

3. Some z; are repeated.

We can check that (¢; + cot)z; ¥ is a solution...

More generally, (B — z1)""x; = 0 has the solution

20



Homogeneous linear diff eqns with constant coefficients I

3. Some z; are repeated. z; = zo = 1.5.

-t
(c1 +C, t) z,

21



‘ Solving linear diff eqns with constant coefficients I

aoT¢ + a1Ti—1 + -+ agri— = 0,

with initial conditions x1,..., k.

Aucxiliary equation in z € C: ao+ a1z 4+ +apz® =0

A (Z_Z1>m1(z_22)m2 "'(Z—Zl)ml = U,

where 21, 22, ..., z; € C are the roots of the characteristic polynomial, and
z; occurs with multiplicity m;;.

Solutions: c1(t)2;7 " + ca(t)zy " + -+ ci(t) 2 7,

where ¢;(t) is a polynomial in ¢ of degree m; — 1.

We determine the coefficients of the ¢;(¢) using the initial conditions
(which might be linear constraints on the initial values x4, ..., xy).
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Autocovariance functions of ARMA processes: Example I

(1+0.25B*)X; = (1 +0.2B)W,, &
1 1 1 1 1 1
b= (1h-k

5 47 20°16°80° 64

(02 (Yo +0.2¢01) ifh =0,
< y(h) +0.25vy(h — 2) = 0.202 1 if h =1,

0 otherwise.
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Autocovariance functions of ARMA processes: Example I

We have the homogeneous linear difference equation
v(h) 4+ 0.25v(h —2) =0

for h > 2, with 1nitial conditions

v(0) + 0.25v(=2) = 02 (1 + 1/25)
v(1) 4+ 0.25v(—1) = o2 /5.
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Autocovariance functions of ARMA processes: Example I

Homogeneous lin. diff. eqn:
v(h) + 0.25v(h — 2) = 0.

The characteristic polynomial is

1 1
L4+0252" = 7 (44 27%) = 7 (2 — 2i)(2 + 20),

i /2 —im /2

which has roots at z; = 2e , 21 = 2€

The solution 1s of the form

v(h) = ez + e 7"
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Autocovariance functions of ARMA processes: Example I

2 =2e2 5 =2e77/2 ¢ =|cle.

We have y(h) = cz; " +ez "

_9—h (‘C|ez’(«9—hw/2) 4 ‘C|ei(—«9—|—h7r/2))

h
= 127" cos (; — 9) .

And we determine c;, 6 from the initial conditions

v(0) + 0.25v(—2) = o2
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Autocovariance functions of ARMA processes: Example I
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