
Review: least squares linear prediction

Consider a linear predictor of Xn+h given Xn = xn:

f(xn) = α0 + α1xn.

For a stationary time series {Xt}, the best linear predictor is
f∗(xn) = (1 − ρ(h))µ + ρ(h)xn:

E (Xn+h − (α0 + α1Xn))2 ≥ E (Xn+h − f∗(Xn))2

= σ2(1 − ρ(h)2).
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Linear prediction

Given X1, X2, . . . , Xn, the best linear predictor

Xn
n+m = α0 +

n∑

i=1

αiXi

of Xn+m satisfies the prediction equations

E
(
Xn+m − Xn

n+m

)
= 0

E
[(

Xn+m − Xn
n+m

)
Xi

]
= 0 for i = 1, . . . , n.

This is a special case of the projection theorem.
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Projection Theorem

If H is a Hilbert space,
M is a closed linear subspace ofH,
and y ∈ H,
then there is a point Py ∈ M
(the projection of y onM)
satisfying
1. ∥Py − y∥ ≤ ∥w − y∥ for w ∈ M,
2. ∥Py− y∥ < ∥w− y∥ for w ∈ M, w ̸= y

3. ⟨y − Py, w⟩ = 0 for w ∈ M.

y
y−Py

Py

M
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Projection theorem: Linear prediction

Let Xn
n+m denote the best linear predictor:

∥Xn
n+m − Xn+m∥2 ≤ ∥Z − Xn+m∥2 for all Z ∈ M.

The projection theorem implies the orthogonality

⟨Xn
n+m − Xn+m, Z⟩ = 0 for all Z ∈ M

⇔ ⟨Xn
n+m − Xn+m, Z⟩ = 0 for all Z ∈ {1, X1, . . . , Xn}

⇔
E
(
Xn

n+m − Xn+m

)
= 0

E
[(

Xn
n+m − Xn+m

)
Xi

]
= 0

That is, the prediction errors (Xn
n+m − Xn+m) are uncorrelated with the

prediction variables (1, X1, . . . , Xn).

11



Linear prediction

Error (Xn
n+m − Xn+m) is uncorrelated with the prediction variable 1:

E
(
Xn

n+m − Xn+m

)
= 0

⇔ E

(
α0 +

∑

i

αiXi − Xn+m

)
= 0

⇔ µ

(
1 −

∑

i

αi

)
= α0.

So Xn
n+m = α0 +

∑

i

αiXi ⇔ Xn
n+m − µ =

∑

i

αi (Xi − µ) .

Thus, for forecasting, we can assume µ = 0. So we’ll ignore α0.
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One-step-ahead linear prediction

Write Xn
n+1 = φn1Xn + φn2Xn−1+ · · · + φnnX1

Prediction equations: E
(
(Xn

n+1 − Xn+1)Xi

)
= 0, for i = 1, . . . , n

⇔
n∑

j=1

φnjE (Xn+1−jXi) = E(Xn+1Xi)

⇔
n∑

j=1

φnjγ(i − j) = γ(i)

⇔ Γnφn = γn,
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One-step-ahead linear prediction

Prediction equations: Γnφn = γn.

Γn =

⎡

⎢⎢⎢⎢⎢⎢⎣

γ(0) γ(1) · · · γ(n − 1)

γ(1) γ(0) γ(n − 2)
...

. . .
...

γ(n − 1) γ(n − 2) · · · γ(0)

⎤

⎥⎥⎥⎥⎥⎥⎦
,

φn = (φn1, φn2, . . . , φnn)′, γn = (γ(1), γ(2), . . . , γ(n))′.
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Mean squared error of one-step-ahead linear prediction

P n
n+1 = E

(
Xn+1 − Xn

n+1

)2

= E
((

Xn+1 − Xn
n+1

) (
Xn+1 − Xn

n+1

))

= E
(
Xn+1

(
Xn+1 − Xn

n+1

))

= γ(0) − E (φ′
nXXn+1)

= γ(0) − γ′
nΓ−1

n γn,

where X = (Xn, Xn−1, . . . , X1)′.
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Backcasting: Predictingm steps in the past

Given X1, . . . , Xn, we wish to predict X1−m form > 0.
That is, we choose Z ∈ M = s̄p {X1, . . . , Xn} to minimize ∥Z −X1−m∥2.

The prediction equations are

⟨Xn
1−m − X1−m, Z⟩ = 0 for all Z ∈ M

⇔ E
((

Xn
1−m − X1−m

)
Xi

)
= 0 for i = 1, . . . , n.
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One-step backcasting

Write the least squares prediction ofX0 given X1, . . . , Xn as

Xn
0 = φn1X1 + φn2X2 + · · · + φnnXn = φ′

nX,

where the predictor vector is reversed: nowX = (X1, . . . , Xn)′.
The prediction equations are

E ((Xn
0 − X0) Xi) = 0 for i = 1, . . . , n

⇔ E

⎛

⎝

⎛

⎝
n∑

j=1

φnjXj − X0

⎞

⎠Xi

⎞

⎠ = 0

⇔
n∑

j=1

φnjγ(j − i) = γ(i)

⇔ Γnφn = γn.
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One-step backcasting

The prediction equations are

Γnφn = γn,

which is exactly the same as for forecasting, but with the indices of the
predictor vector reversed: X = (X1, . . . , Xn)′ versus X = (Xn, . . . , X1)′.
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Example: Forecasting AR(1)

AR(1) model: Xt = φ1Xt−1 + Wt

linear prediction ofX2: X1
2 = φ11X1

Prediction equation: γ(0)φ11 = γ(1)

= Cov(X0, X1)

= φ1γ(0)

⇔ φ11 = φ1.
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Example: Backcasting AR(1)

AR(1) model: Xt = φ1Xt−1 + Wt

linear prediction ofX0: X1
0 = φ11X1

Prediction equation: γ(0)φ11 = γ(1)

= Cov(X0, X1)

= φ1γ(0)

⇔ φ11 = φ1.
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The prediction operator

For random variables Y, Z1, . . . , Zn, define the
best linear prediction of Y given Z = (Z1, . . . , Zn)′

as the operator P (·|Z) applied to Y :

P (Y |Z) = µY + φ′(Z − µZ)

with Γφ = γ,

where γ = Cov(Y, Z)

Γ = Cov(Z, Z).
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Properties of the prediction operator

1. E(Y − P (Y |Z)) = 0, E((Y − P (Y |Z))Z) = 0.
2. E((Y − P (Y |Z))2) = Var(Y ) − φ′γ.
3. P (α1Y1 + α2Y2 + α0|Z) = α0 + α1P (Y1|Z) + α2P (Y2|Z).
4. P (Zi|Z) = Zi.
5. P (Y |Z) = EY if γ = 0.
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Example: predictingm steps ahead

Write Xn
n+m = φ(m)

n1 Xn + φ(m)
n2 Xn−1 + · · · + φ(m)

nn X1

Γnφ(m)
n = γ(m)

n ,

with Γn = Cov(X, X),

γ(m)
n = Cov(Xn+m, X)

= (γ(m), γ(m + 1), . . . , γ(m + n − 1))′.

Also, E((Xn+m − Xn
n+m)2) = γ(0) − φ(m)′γ(m)

n .
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Partial autocovariance function

AR(1) model: Xt = φ1Xt−1 + Wt

γ(1) = Cov(X0, X1) = φ1γ(0)

γ(2) = Cov(X0, X2)

= Cov(X0, φ1X1 + W2)

= Cov(X0, φ
2
1X0 + φ1W1 + W2)

= φ2
1γ(0).

Clearly, X0 and X2 are correlated through X1.

In the PACF, we remove this dependence by considering the covariance of
the prediction errors ofX1

2 and X1
0 .
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Partial autocorrelation function

The Partial AutoCorrelation Function (PACF) of a stationary
time series {Xt} is

φ11 = Corr(X1, X0) = ρ(1)

φhh = Corr(Xh − Xh−1
h , X0 − Xh−1

0 ) for h = 2, 3, . . .

This removes the linear effects of X1, . . . , Xh−1:

. . . , X−1, X0, X1, X2, . . . , Xh−1︸ ︷︷ ︸
partial out

, Xh, Xh+1, . . .
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Partial autocorrelation function

The PACF φhh is also the last coefficient in the best linear prediction of
Xh+1 given X1, . . . , Xh:

Γhφh = γh Xh
h+1 = φ′

hX

φh = (φh1, φh2, . . . , φhh).
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Example: Forecasting an AR(p)

For Xt =
p∑

i=1

φiXt−i + Wt,

Xn
n+1 = P (Xn+1|X1, . . . , Xn)

= P

(
p∑

i=1

φiXn+1−i + Wn+1|X1, . . . , Xn

)

=
p∑

i=1

φiP (Xn+1−i|X1, . . . , Xn)

=
p∑

i=1

φiXn+1−i for n ≥ p.
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Example: PACF of an AR(p)

For Xt =
p∑

i=1

φiXt−i + Wt,

Xn
n+1 =

p∑

i=1

φiXn+1−i.

Thus, φhh =

⎧
⎨

⎩
φh if 1 ≤ h ≤ p

0 otherwise.
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Example: PACF of an invertible MA(q)

For Xt =
q∑

i=1

θiWt−i + Wt, Xt = −
∞∑

i=1

πiXt−i + Wt,

Xn
n+1 = P (Xn+1|X1, . . . , Xn)

= P

( ∞∑

i=1

πiXn+1−i + Wt|X1, . . . , Xn

)

=
∞∑

i=1

πiP (Xn+1−i|X1, . . . , Xn)

=
n∑

i=1

πiXn+1−i +
∞∑

i=n+1

πiP (Xn+1−i|X1, . . . , Xn) .

In general, φhh ̸= 0.
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ACF of the MA(1) process
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ACF of the AR(1) process
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PACF of the MA(1) process
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PACF of the AR(1) process
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PACF and ACF

Model: ACF: PACF:

AR(p) decays zero for h > p

MA(q) zero for h > q decays

ARMA(p,q) decays decays
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Sample PACF

For a realization x1, . . . , xn of a time series,
the sample PACF is defined by

φ̂00 = 1

φ̂hh = last component of φ̂h,

where φ̂h = Γ̂−1
h γ̂h.
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The importance of P n
n+1: Prediction intervals

Xn
n+1 = φn1Xn + φn2Xn−1 + · · · + φnnX1

Γnφn = γn, P n
n+1 = E

(
Xn+1 − Xn

n+1

)2 = γ(0) − γ′
nΓ−1

n γn.

After seeing X1, . . . , Xn, we forecast Xn
n+1. The expected squared error of

our forecast is P n
n+1. We can construct a prediction interval:

Xn
n+1 ± cα/2

√
P n

n+1.

For a Gaussian process, the prediction error has distributionN (0, P n
n+1), so

c0.05/2 = 1.96 gives a 95% prediction interval. For any process with finite
second moments, we can apply Chebyshev’s inequality:

Pr
(
|X − EX| ≥ t

√
Var(X)

)
≤ 1

t2
.
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Computing linear prediction coefficients

Xn
n+1 = φn1Xn + φn2Xn−1 + · · · + φnnX1

Γnφn = γn,

P n
n+1 = E

(
Xn+1 − Xn

n+1

)2 = γ(0) − γ′
nΓ−1

n γn.

How can we compute these quantities recursively?
i.e., given the coefficients φn−1 ofXn−1

n , how can we
compute the coefficients φn of Xn

n+1, without
solving another linear system Γnφn = γn?
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Durbin-Levinson

φ0 = 0, φ00 = 0;

φ1 = φ11, φ11 =
γ(1)
γ(0)

;

φn =

⎛

⎝ φn−1 − φnnφ̃n−1

φnn

⎞

⎠ , φnn =
γ(n) − φ′

n−1γ̃n−1

γ(0) − φ′
n−1γn−1

.

φn = (φn1, . . . , φnn)′ φ̃n = (φnn, . . . , φn1)′,

γn = (γ(1), . . . , γ(n))′ γ̃n = (γ(n), . . . , γ(1))′.
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Durbin-Levinson: Example

φ0 = 0, φ00 = 0;

φ1 = φ11, φ11 =
γ(1)
γ(0)

;

φn =

⎛

⎝ φn−1 − φnnφ̃n−1

φnn

⎞

⎠ , φnn =
γ(n) − φ′

n−1γ̃n−1

γ(0) − φ′
n−1γn−1

.

This algorithm computes φ1, φ2, φ3, . . ., where

X1
2 = X1φ1, X2

3 = (X2, X1)φ2, X3
4 = (X3, X2, X1)φ3, . . .
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Durbin-Levinson: Example

φ1 = φ11, φ11 =
γ(1)
γ(0)

;

φn =

⎛

⎝ φn−1 − φnnφ̃n−1

φnn

⎞

⎠ , φnn =
γ(n) − φ′

n−1γ̃n−1

γ(0) − φ′
n−1γn−1

.

φ1 = γ(1)/γ(0),

φ2 =

⎛

⎝ φ1 − φ22φ11

φ22

⎞

⎠ =

⎛

⎝
γ(1)
γ(0)

(
1 − γ(2)−γ(1)

γ(0)−γ(1)

)

γ(2)−γ(1)
γ(0)−γ(1)

⎞

⎠ , etc.
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The innovations representation

Instead of writing the best linear predictor as

Xn
n+1 = φn1Xn + φn2Xn−1 + · · · + φnnX1,

we can write

Xn
n+1 = θn1

(

Xn − Xn−1
n

)

︸ ︷︷ ︸

innovation

+θn2

(

Xn−1 − Xn−2
n−1

)

+· · ·+θnn

(

X1 − X0
1

)

.

This is still linear in X1, . . . , Xn.

The innovations are uncorrelated:
Cov(Xj − Xj−1

j , Xi − Xi−1
i ) = 0 for i ̸= j.
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Comparing representations: Un = Xn − Xn−1

n
versus Xn

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

U1

U2

...

Un

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 · · · 0

−φ11 1 0
...

. . .

−φn−1,n−1 −φn−1,n−2 · · · 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

X1

X2

...

Xn

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

X0
1

X1
2

...

Xn−1
n

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 · · · 0

θ11 0 0
...

. . .

θn−1,n−1 θn−1,n−2 · · · 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

U1

U2

...

Un

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠
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Innovations Algorithm

X0
1 = 0, Xn

n+1 =
n
∑

i=1

θni

(

Xn+1−i − Xn−i
n+1−i

)

.

θn,n−i =
1

P i
i+1

⎛

⎝γ(n − i) −
i−1
∑

j=0

θi,i−jθn,n−jP
j
j+1

⎞

⎠ .

P 0
1 = γ(0) P n

n+1 = γ(0) −
n−1
∑

i=0

θ2
n,n−iP

i
i+1.

NB: error in text.
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Innovations Algorithm: Example

θn,n−i =
1

P i
i+1

⎛

⎝γ(n − i) −
i−1
∑

j=0

θi,i−jθn,n−jP
j
j+1

⎞

⎠ .

P 0
1 = γ(0) P n

n+1 = γ(0) −
n−1
∑

i=0

θ2
n,n−iP

i
i+1.

θ1,1 = γ(1)/P 0
1 , P 1

2 = γ(0) − θ2
1,1P

0
1

θ2,2 = γ(2)/P 0
1 , θ2,1 =

(

γ(1) − θ1,1θ2,2P
0
1

)

/P 1
2 ,

P 2
3 = γ(0) −

(

θ2
2,2P

0
1 + θ2

2,1P
1
2

)

θ3,3, θ3,2, θ3,1, P 3
4 , . . .
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Predicting h steps ahead using innovations

The innovations representation for the one-step-ahead forecast is

P (Xn+1|X1, . . . , Xn) =
n
∑

i=1

θni

(

Xn+1−i − Xn−i
n+1−i

)

,

What is the innovations representation for P (Xn+h|X1, . . . , Xn)?

Fact: If h ≥ 1 and 1 ≤ i ≤ n, we have
Cov(Xn+h − P (Xn+h|X1, . . . , Xn+h−1), Xi) = 0.

Thus, P (Xn+h − P (Xn+h|X1, . . . , Xn+h−1)|X1, . . . , Xn) = 0.
That is, the best prediction ofXn+h is the
best prediction of the one-step-ahead forecast ofXn+h.
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Predicting h steps ahead using innovations

P (Xn+h|X1, . . . , Xn)

= P (P (Xn+h|X1, . . . , Xn+h−1)|X1, . . . , Xn)

= P

(
n+h−1
∑

i=1

θn+h−1,i

(

Xn+h−i − Xn+h−i+1
n+h−i

)

|X1, . . . , Xn

)

=
n+h−1
∑

i=1

θn+h−1,iP
((

Xn+h−i − Xn+h−i+1
n+h−i

)

|X1, . . . , Xn

)

=
n+h−1
∑

i=h

θn+h−1,iP
((

Xn+h−i − Xn+h−i+1
n+h−i

)

|X1, . . . , Xn

)

=
n+h−1
∑

i=h

θn+h−1,i

(

Xn+h−i − Xn+h−i+1
n+h−i

)
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Predicting h steps ahead using innovations

P (Xn+1|X1, . . . , Xn) =
n
∑

i=1

θni

(

Xn+1−i − Xn−i
n+1−i

)

P (Xn+h|X1, . . . , Xn) =
n+h−1
∑

j=h

θn+h−1,j

(

Xn+h−j − Xn+h−j+1

n+h−j

)

=
n
∑

i=1

θn+h−1,h−1+i

(

Xn+1−i − Xn−i
n+1−i

)

(j = i + h − 1)
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Mean squared error of h-step-ahead forecasts

From orthogonality of the predictors and the error,
E ((Xn+h − P (Xn+h|X1, . . . , Xn))P (Xn+h|X1, . . . , Xn)) = 0.

That is, E (Xn+hP (Xn+h|X1, . . . , Xn)) = E
(

P (Xn+h|X1, . . . , Xn)2
)

.

Hence, we can express the mean squared error as

P n
n+h = E (Xn+h − P (Xn+h|X1, . . . , Xn))2

= γ(0) + E (P (Xn+h|X1, . . . , Xn))2

− 2E (Xn+hP (Xn+h|X1, . . . , Xn))

= γ(0) − E (P (Xn+h|X1, . . . , Xn))2 .
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Mean squared error of h-step-ahead forecasts

But the innovations are uncorrelated, so

P n
n+h = γ(0) − E (P (Xn+h|X1, . . . , Xn))2

= γ(0) − E

⎛

⎝

n+h−1
∑

j=h

θn+h−1,j

(

Xn+h−j − Xn+h−j−1

n+h−j

)

⎞

⎠

2

= γ(0) −
n+h−1
∑

j=h

θ2
n+h−1,j E

(

Xn+h−j − Xn+h−j−1

n+h−j

)2

= γ(0) −
n+h−1
∑

j=h

θ2
n+h−1,j P n+h−j−1

n+h−j .
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Example: Innovations algorithm for forecasting an MA(1)

Suppose that we have an MA(1) process {Xt} satisfying

Xt = Wt + θ1Wt−1.

Given X1, X2, . . . , Xn, we wish to compute the best linear forecast of
Xn+1, using the innovations representation,

X0
1 = 0, Xn

n+1 =
n

∑

i=1

θni

(

Xn+1−i − Xn−i
n+1−i

)

.
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Example: Innovations algorithm for forecasting an MA(1)

An aside: The linear predictions are in the form

Xn
n+1 =

n
∑

i=1

θniZn+1−i

for uncorrelated, zero mean random variables Zi. In particular,

Xn+1 = Zn+1 +
n

∑

i=1

θniZn+1−i,

where Zn+1 = Xn+1 − Xn
n+1 (and all the Zi are uncorrelated).

This is suggestive of an MA representation. Why isn’t it an MA?
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Example: Innovations algorithm for forecasting an MA(1)

θn,n−i =
1

P i
i+1

⎛

⎝γ(n − i) −
i−1
∑

j=0

θi,i−jθn,n−jP
j
j+1

⎞

⎠ .

P 0
1 = γ(0) P n

n+1 = γ(0) −
n−1
∑

i=0

θ2
n,n−iP

i
i+1.

The algorithm computes P 0
1 = γ(0), θ1,1 (in terms of γ(1));

P 1
2 , θ2,2 (in terms of γ(2)), θ2,1; P 2

3 , θ3,3 (in terms of γ(3)), etc.
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Example: Innovations algorithm for forecasting an MA(1)

θn,n−i =
1

P i
i+1

⎛

⎝γ(n − i) −
i−1
∑

j=0

θi,i−jθn,n−jP
j
j+1

⎞

⎠ .

For an MA(1), γ(0) = σ2(1 + θ2
1), γ(1) = θ1σ2.

Thus: θ1,1 = γ(1)/P 0
1 ;

θ2,2 = 0, θ2,1 = γ(1)/P 1
2 ;

θ3,3 = θ3,2 = 0; θ3,1 = γ(1)/P 2
3 , etc.

Because γ(n − i) ̸= 0 only for i = n − 1, only θn,1 ̸= 0.
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Example: Innovations algorithm for forecasting an MA(1)

For the MA(1) process {Xt} satisfying

Xt = Wt + θ1Wt−1,

the innovations representation of the best linear forecast is

X0
1 = 0, Xn

n+1 = θn1

(

Xn − Xn−1
n

)

.

More generally, for an MA(q) process, we have θni = 0 for i > q.

10



Example: Innovations algorithm for forecasting an MA(1)

For the MA(1) process {Xt},

X0
1 = 0, Xn

n+1 = θn1

(

Xn − Xn−1
n

)

.

This is consistent with the observation that

Xn+1 = Zn+1 +
n

∑

i=1

θniZn+1−i,

where the uncorrelated Zi are defined by Zt = Xt − Xt−1
t for

t = 1, . . . , n + 1.

Indeed, as n increases, P n
n+1 → Var(Wt) (recall the recursion for P n

n+1),
and θn1 = γ(1)/P n−1

n → θ1.

11



Recall: Forecasting an AR(p)

For the AR(p) process {Xt} satisfying

Xt =
p

∑

i=1

φiXt−i + Wt,

X0
1 = 0, Xn

n+1 =
p

∑

i=1

φiXn+1−i

for n ≥ p. Then

Xn+1 =
p

∑

i=1

φiXn+1−i + Zn+1,

where Zn+1 = Xn+1 − Xn
n+1.

The Durbin-Levinson algorithm is convenient for AR(p) processes.
The innovations algorithm is convenient for MA(q) processes.

12



Linear prediction based on the infinite past

So far, we have considered linear predictors based on n observed values of
the time series:

Xn
n+m = P (Xn+m|Xn, Xn−1, . . . , X1).

What if we have access to all previous values, Xn, Xn−1, Xn−2, . . .?

Write

X̃n+m = P (Xn+m|Xn, Xn−1, . . .)

=
∞
∑

i=1

αiXn+1−i.

17



Linear prediction based on the infinite past

X̃n+m = P (Xn+m|Xn, Xn−1, . . .) =
∞
∑

i=1

αiXn+1−i.

The orthogonality property of the optimal linear predictor implies

E
[

(X̃n+m − Xn+m)Xn+1−i

]

= 0, i = 1, 2, . . .

Thus, if {Xt} is a zero-mean stationary time series, we have
∞
∑

j=1

αjγ(i − j) = γ(m − 1 + i), i = 1, 2, . . .

18



Linear prediction based on the infinite past

If {Xt} is a causal, invertible, linear process, we can write

Xn+m =
∞
∑

j=1

ψjWn+m−j + Wn+m, Wn+m =
∞
∑

j=1

πjXn+m−j + Xn+m.

In this case,

X̃n+m = P (Xn+m|Xn, Xn−1, . . .)

= P (Wn+m|Xn, . . .) −
∞
∑

j=1

πjP (Xn+m−j|Xn, . . .)

= −
m−1
∑

j=1

πjP (Xn+m−j |Xn, . . .) −
∞
∑

j=m

πjXn+m−j .
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Linear prediction based on the infinite past

X̃n+m = −
m−1
∑

j=1

πjP (Xn+m−j|Xn, . . .) −
∞
∑

j=m

πjXn+m−j .

That is, X̃n+1 = −
∞
∑

j=1

πjXn+1−j ,

X̃n+2 = −π1X̃n+1 −
∞
∑

j=2

πjXn+2−j,

X̃n+3 = −π1X̃n+2 − π2X̃n+1 −
∞
∑

j=3

πjXn+3−j.

The invertible (AR(∞)) representation gives the forecasts X̃n
n+m.
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Linear prediction based on the infinite past

To compute the mean squared error, we notice that

X̃n+m = P (Xn+m|Xn, Xn−1, . . .) =
∞
∑

j=1

ψjP (Wn+m−j |Xn, Xn−1, . . .)

+ P (Wn+m|Xn, Xn−1, . . .)

=
∞
∑

j=m

ψjWn+m−j .

E (Xn+m − P (Xn+m|Xn, Xn−1, . . .))
2 = E

⎛

⎝

m−1
∑

j=0

ψjWn+m−j

⎞

⎠

2

= σ2
w

m−1
∑

j=0

ψ2
j .
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Linear prediction based on the infinite past

That is, the mean squared error of the forecast based on the infinite history
is given by the initial terms of the causal (MA(∞)) representation:

E
(

Xn+m − X̃n+m

)2

= σ2
w

m−1
∑

j=0

ψ2
j .

In particular, form = 1, the mean squared error is σ2
w.
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The truncated forecast

For large n, truncating the infinite-past forecasts gives a good
approximation:

X̃n+m = −
m−1
∑

j=1

πjX̃n+m−j −
∞
∑

j=m

πjXn+m−j

X̃n
n+m = −

m−1
∑

j=1

πjX̃
n
n+m−j −

n+m−1
∑

j=m

πjXn+m−j .

The approximation is exact for AR(p) when n ≥ p, since πj = 0 for j > p.
In general, it is a good approximation if the πj converge quickly to 0.
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Example: Forecasting an ARMA(p,q) model

Consider an ARMA(p,q) model:

Xt −
p

∑

i=1

φiXt−i = Wt +
q

∑

i=1

θiWt−i.

Suppose we have X1, X2, . . . , Xn, and we wish to forecast Xn+m.

We could use the best linear prediction, Xn
n+m.

For an AR(p) model (that is, q = 0), we can write down the coefficients φn.

Otherwise, we must solve a linear system of size n.

If n is large, the truncated forecasts X̃n
n+m give a good approximation. To

compute them, we could compute πi and truncate.

There is also a recursive method, which takes time O((n + m)(p + q))...
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Recursive truncated forecasts for an ARMA(p,q) model

W̃ n
t = 0 for t ≤ 0. X̃n

t =

⎧

⎨

⎩

0 for t ≤ 0,

Xt for 1 ≤ t ≤ n.

W̃ n
t = X̃n

t − φ1X̃
n
t−1 − · · ·− φpX̃

n
t−p

− θ1W̃
n
t−1 − · · ·− θqW̃

n
t−q for t = 1, . . . , n.

W̃ n
t = 0 for t > n.

X̃n
t = φ1X̃

n
t−1 + · · · + φpX̃

n
t−p + θ1W̃

n
t−1 + · · · + θqW̃

n
t−q

for t = n + 1, . . . , n + m.
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Example: Forecasting an AR(2) model

Consider the following AR(2) model.

Xt +
1

1.21
Xt−2 = Wt.

The zeros of the characteristic polynomial z2 + 1.21 are at ±1.1i. We can
solve the linear difference equations ψ0 = 1, φ(B)ψt = 0 to compute the
MA(∞) representation:

ψt =
1

2
1.1−t cos(πt/2).

Thus, them-step-ahead estimates have mean squared error

E(Xn+m − X̃n+m)2 =
m−1
∑

j=0

ψ2
j .

26



Example: Forecasting an AR(2) model

0 5 10 15 20 25 30
−0.5

0

0.5

1

i
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i

AR(2): Xt + 0.8264 Xt−2 = Wt
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Example: Forecasting an AR(2) model

10 12 14 16 18 20 22 24 26 28 30
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AR(2): Xt + 0.8264 Xt−2 = Wt
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Example: Forecasting an AR(2) model

10 12 14 16 18 20 22 24 26 28 30
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AR(2): Xt + 0.8264 Xt−2 = Wt

Xt
one−step prediction
95% prediction interval
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Example: Forecasting an AR(2) model
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AR(2): Xt + 0.8264 Xt−2 = Wt

Xt
prediction
95% prediction interval
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Review (Lecture 1): Time series modelling and forecasting

1. Plot the time series.
Look for trends, seasonal components, step changes, outliers.

2. Transform data so that residuals are stationary.

(a) Remove trend and seasonal components.

(b) Differencing.

(c) Nonlinear transformations (log,
√
·).

3. Fit model to residuals.

4. Forecast time series by forecasting residuals and inverting any
transformations.
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Review: Time series modelling and forecasting

Stationary time series models: ARMA(p,q).
• p = 0: MA(q),
• q = 0: AR(p).

We have seen that any causal, invertible linear process has:
an MA(∞) representation (from causality), and
an AR(∞) representation (from invertibility).

Real data cannot be exactly modelled using a finite number of parameters.

We choose p, q to give a simple but accurate model.
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Review: Time series modelling and forecasting

How do we use data to decide on p, q?
1. Use sample ACF/PACF to make preliminary choices of model order.
2. Estimate parameters for each of these choices.
3. Compare predictive accuracy/complexity of each (using, e.g., AIC).

NB: We need to compute parameter estimates for several different model
orders.
Thus, recursive algorithms for parameter estimation are important.
We’ll see that some of these are identical to the recursive algorithms for
forecasting.
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Review: Time series modelling and forecasting

Model: ACF: PACF:

AR(p) decays zero for h > p

MA(q) zero for h > q decays

ARMA(p,q) decays decays

5



Parameter estimation

We want to estimate the parameters of an ARMA(p,q) model.
We will assume (for now) that:
1. The model order (p and q) is known, and
2. The data has zero mean.

If (2) is not a reasonable assumption, we can subtract the sample mean ȳ,
fit a zero-mean ARMA model,

φ(B)Xt = θ(B)Wt,

to the mean-corrected time series Xt = Yt − ȳ,
and then use Xt + ȳ as the model for Yt.
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Parameter estimation: Maximum likelihood estimator

One approach:

Assume that {Xt} is Gaussian, that is, φ(B)Xt = θ(B)Wt, whereWt is
i.i.d. Gaussian.
Choose φi, θj to maximize the likelihood:

L(φ, θ,σ2) = f(X1, . . . , Xn),

where f is the joint (Gaussian) density for the given ARMA model.
(c.f. choosing the parameters that maximize the probability of the data.)

8



Parameter estimation: Maximum likelihood estimator

Advantages of MLE:

Efficient (low variance estimates).
Often the Gaussian assumption is reasonable.
Even if {Xt} is not Gaussian, the asymptotic distribution of the estimates
(φ̂, θ̂, σ̂2) is the same as the Gaussian case.

Disadvantages of MLE:

Difficult optimization problem.
Need to choose a good starting point (often use other estimators for this).
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Preliminary parameter estimates

Yule-Walker for AR(p): Regress Xt onto Xt−1, . . . , Xt−p.
Durbin-Levinson algorithm with γ replaced by γ̂.

Yule-Walker for ARMA(p,q): Method of moments. Not efficient.

Innovations algorithm for MA(q): with γ replaced by γ̂.

Hannan-Rissanen algorithm for ARMA(p,q):
1. Estimate high-order AR.
2. Use to estimate (unobserved) noiseWt.
3. Regress Xt onto Xt−1, . . . , Xt−p, Ŵt−1, . . . , Ŵt−q.
4. Regress again with improved estimates ofWt.
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Yule-Walker estimation

For a causal AR(p) model φ(B)Xt = Wt, we have

E

⎛

⎝Xt−i

⎛

⎝Xt −
p

∑

j=1

φjXt−j

⎞

⎠

⎞

⎠ = E(Xt−iWt) for i = 0, . . . , p

⇔ γ(0) − φ′γp = σ2 and

γp − Γpφ = 0,

where φ = (φ1, . . . ,φp)′, and we’ve used the causal representation

Xt = Wt +
∞
∑

j=1

ψjWt−j .

11



Yule-Walker estimation

Method of moments: We choose parameters for which the moments are
equal to the empirical moments.

In this case, we choose φ so that γ = γ̂.

Yule-Walker equations for φ̂:

⎧

⎨

⎩

Γ̂pφ̂ = γ̂p,

σ̂2 = γ̂(0) − φ̂′γ̂p.

These are the forecasting equations.
We can use the Durbin-Levinson algorithm.
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Yule-Walker estimation: Confidence intervals

If {Xt} is an AR(p) process, and n is large,

•
√

n(φ̂p − φp) is approximately N(0, σ̂2Γ̂−1
p ),

• with probability ≈ 1 − α, φp is in the ellipsoid
{

φ ∈ R
p :

(

φ̂p − φ
)′

Γ̂p

(

φ̂p − φ
)

≤
σ̂2

n
χ2

1−α(p)

}

,

where χ2
1−α(p) is the (1−α) quantile of the chi-squared with p degrees of freedom.

• with probability ≈ 1 − α, φpj is in the interval

φ̂pj ± Φ1−α/2

σ̂√
n

(

Γ̂−1

p

)1/2

jj
,

where Φ1−α/2 is the 1 − α/2 quantile of the standard normal.
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Yule-Walker estimation: Confidence intervals

If {Xt} is an AR(p) process,

φ̂ ∼ AN

(

φ,
σ2

n
Γ−1

p

)

, σ̂2 P→ σ2.

φ̂hh ∼ AN

(

0,
1

n

)

for h > p.

Thus, we can use the sample PACF to test for AR order, and we can
calculate approximate confidence intervals for the parameters φ.
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Yule-Walker estimation

It is also possible to define analogous estimators for ARMA(p,q) models
with q > 0:

γ̂(j) − φ1γ̂(j − 1) − · · ·− φpγ̂(j − p) = σ2
q

∑

i=j

θiψi−j ,

where ψ(B) = θ(B)/φ(B).
Because of the dependence on the ψi, these equations are nonlinear in φi, θi.
There might be no solution, or nonunique solutions.
Also, the asymptotic efficiency of this estimator is poor: it has unnecessarily
high variance.
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Efficiency of estimators

Let φ̂(1) and φ̂(2) be two estimators. Suppose that

φ̂(1) ∼ AN(φ,σ2
1), φ̂(2) ∼ AN(φ,σ2

2).

The asymptotic efficiency of φ̂(1) relative to φ̂(2) is

e
(

φ, φ̂(1), φ̂(2)
)

=
σ2

2

σ2
1

.

If e
(

φ, φ̂(1), φ̂(2)
)

≤ 1 for all φ, we say that φ̂(2) is a more efficient

estimator of φ than φ̂(1).

For example, for an AR(p) process, the moment estimator and the
maximum likelihood estimator are as efficient as each other.

For an MA(q) process, the moment estimator is less efficient than the
innovations estimator, which is less efficient than the MLE.
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Yule Walker estimation: Example

AR(1): γ(0) =
σ2

1 − φ2
1

φ̂1 ∼ AN

(

φ1,
σ2

n
Γ−1

1

)

= AN

(

φ1,
1 − φ2

1

n

)

.

AR(2):

⎛

⎝

φ̂1

φ̂2

⎞

⎠ ∼ AN

⎛

⎝

⎛

⎝

φ1

φ2

⎞

⎠ ,
σ2

n
Γ−1

2

⎞

⎠

and
σ2

n
Γ−1

2 =
1

n

⎛

⎝

1 − φ2
2 −φ1(1 + φ2)

−φ1(1 + φ2) 1 − φ2
2

⎞

⎠ .
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Yule Walker estimation: Example

Suppose {Xt} is an AR(1) process and the sample size n is large.

If we estimate φ, we have

Var(φ̂1) ≈
1 − φ2

1

n
.

If we fit a larger model, say an AR(2), to this AR(1) process,

Var(φ̂1) ≈
1 − φ2

2

n
=

1

n
>

1 − φ2
1

n
.

We have lost efficiency.
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Yule Walker estimation: Example
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Yule Walker estimation: Example
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Maximum likelihood estimation

Suppose that X1, X2, . . . , Xn is drawn from a zero mean Gaussian
ARMA(p,q) process. The likelihood of parameters φ ∈ Rp, θ ∈ Rq,
σ2

w ∈ R+ is defined as the density of X = (X1, X2, . . . , Xn)′ under the
Gaussian model with those parameters:

L(φ, θ, σ2
w) =

1

(2π)n/2 |Γn|
1/2

exp

(

−
1

2
X ′Γ−1

n X

)

,

where |A| denotes the determinant of a matrix A, and Γn is the
variance/covariance matrix of X with the given parameter values.

The maximum likelihood estimator (MLE) of φ, θ, σ2
w maximizes this

quantity.

2



Maximum likelihood estimation

We can simplify the likelihood by expressing it in terms of the innovations.

Since the innovations are linear in previous and current values, we can write
⎛

⎜
⎜
⎜
⎝

X1

...

Xn

⎞

⎟
⎟
⎟
⎠

︸ ︷︷ ︸

X

= C

⎛

⎜
⎜
⎜
⎝

X1 − X0
1

...

Xn − Xn−1
n

⎞

⎟
⎟
⎟
⎠

︸ ︷︷ ︸

U

where C is a lower triangular matrix with ones on the diagonal.
Take the variance of both sides to see that

Γn = CDC ′ where D = diag(P 0
1 , . . . , P n−1

n ).
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Maximum likelihood estimation

Thus, |Γn| = |C|2P 0
1 · · ·P n−1

n = P 0
1 · · ·P n−1

n and

X ′Γ−1
n X = U ′C′Γ−1

n CU = U ′C′C−T D−1C−1CU = U ′D−1U.

So we can rewrite the likelihood as

L(φ, θ, σ2
w) =

1
(

(2π)nP 0
1 · · ·P n−1

n
)1/2

exp

(

−
1

2

n
∑

i=1

(Xi − Xi−1
i )2/P i−1

i

)

=
1

(

(2πσ2
w)nr0

1 · · · r
n−1
n

)1/2
exp

(

−
S(φ, θ)

2σ2
w

)

,

where ri−1
i = P i−1

i /σ2
w and

S(φ, θ) =
n
∑

i=1

(

Xi − Xi−1
i

)2

ri−1
i

.

4



Maximum likelihood estimation

The log likelihood of φ, θ, σ2
w is

l(φ, θ, σ2
w) = log(L(φ, θ, σ2

w))

= −
n

2
log(2πσ2

w) −
1

2

n
∑

i=1

log ri−1
i −

S(φ, θ)

2σ2
w

.

Differentiating with respect to σ2
w shows that the MLE (φ̂, θ̂, σ̂2

w) satisfies

n

2σ̂2
w

=
S(φ̂, θ̂)

2σ̂4
w

⇔ σ̂2
w =

S(φ̂, θ̂)

n
,

and φ̂, θ̂ minimize log

(

S(φ̂, θ̂)

n

)

+
1

n

n
∑

i=1

log ri−1
i .
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Maximum likelihood estimation

Minimization is done numerically (e.g., Newton-Raphson).

Computational simplifications:
• Unconditional least squares. Drop the log ri−1

i terms.
• Conditional least squares. Also approximate the computation of xi−1

i by
dropping initial terms in S. e.g., for AR(2), all but the first two terms in S

depend linearly on φ1, φ2, so we have a least squares problem.

The differences diminish as sample size increases. For example,
P t−1

t → σ2
w so rt−1

t → 1, and thus n−1
∑

i log ri−1
i → 0.
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Maximum likelihood estimation: Confidence intervals

For an ARMA(p,q) process, the MLE and un/conditional least
squares estimators satisfy

⎛

⎝
φ̂

θ̂

⎞

⎠−

⎛

⎝
φ

θ

⎞

⎠ ∼ AN

⎛

⎜
⎝0,

σ2
w

n

⎛

⎝
Γφφ Γφθ

Γθφ Γθθ,

⎞

⎠

−1
⎞

⎟
⎠ ,

where

⎛

⎝
Γφφ Γφθ

Γθφ Γθθ,

⎞

⎠ = Cov((X, Y ), (X, Y )),

X = (X1, . . . , Xp)
′ φ(B)Xt = Wt,

Y = (Y1, . . . , Yp)
′ θ(B)Yt = Wt.
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Integrated ARMAModels: ARIMA(p,d,q)

For p, d, q ≥ 0, we say that a time series {Xt} is an
ARIMA (p,d,q) process if Yt = ∇dXt = (1 − B)dXt is
ARMA(p,q). We can write

φ(B)(1 − B)dXt = θ(B)Wt.

Recall the random walk: Xt = Xt−1 + Wt.
Xt is not stationary, but Yt = (1 − B)Xt = Wt is a stationary process.
In this case, it is white, so {Xt} is an ARIMA(0,1,0).

Also, ifXt contains a trend component plus a stationary process, its first
difference is stationary.

2



ARIMA models example

Suppose {Xt} is an ARIMA(0,1,1): Xt = Xt−1 + Wt − θ1Wt−1.
If |θ1| < 1, we can show

Xt =
∞
∑

j=1

(1 − θ1)θ
j−1

1 Xt−j + Wt,

and so X̃n+1 =
∞
∑

j=1

(1 − θ1)θ
j−1

1 Xn+1−j

= (1 − θ1)Xn +
∞
∑

j=2

(1 − θ1)θ
j−1

1 Xn+1−j

= (1 − θ1)Xn + θ1X̃n.

Exponentially weighted moving average.
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Identifying preliminary values of d: Sample ACF

Trends lead to slowly decaying sample ACF:
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0.2

0.4

0.6

0.8

1

1.2
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Identifying preliminary values of d, p, and q

For identifying preliminary values of d, a time plot can also help.

Too little differencing: not stationary.
Too much differencing: extra dependence introduced.

For identifying p, q, look at sample ACF, PACF of (1 − B)dXt:

Model: ACF: PACF:

AR(p) decays zero for h > p

MA(q) zero for h > q decays

ARMA(p,q) decays decays
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Diagnostics

How do we check that a model fits well?

The residuals (innovations, xt − xt−1
t ) should be white.

Consider the standardized innovations,

et =
xt − x̂t−1

t
√

P̂ t−1
t

.

This should behave like a mean-zero, unit variance, iid sequence.

• Check a time plot
• Turning point test
• Difference sign test
• Rank test
• Q-Q plot, histogram, to assess normality
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Model Selection

We have used the data x to estimate parameters of several models. They all
fit well (the innovations are white). We need to choose a single model to
retain for forecasting. How do we do it?

If we had access to independent data y from the same process, we could
compare the likelihood on the new data, Ly(φ̂, θ̂, σ̂2

w).

We could obtain y by leaving out some of the data from our model-building,
and reserving it for model selection. This is called cross-validation. It
suffers from the drawback that we are not using all of the data for parameter
estimation.
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Model Selection: AIC

We can approximate the likelihood defined using independent data:
asymptotically

− lnLy(φ̂, θ̂, σ̂2
w) ≈ − lnLx(φ̂, θ̂, σ̂2

w) +
(p + q + 1)n

n − p − q − 2
.

AICc: corrected Akaike information criterion.

Notice that:
•More parameters incur a bigger penalty.
•Minimizing the criterion over all values of p, q, φ̂, θ̂, σ̂2

w corresponds to
choosing the optimal φ̂, θ̂, σ̂2

w for each p, q, and then comparing the
penalized likelihoods.

There are also other criteria: BIC.
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Pure seasonal ARMAModels

For P, Q ≥ 0 and s > 0, we say that a time series {Xt} is an
ARMA(P,Q)s process if Φ(Bs)Xt = Θ(Bs)Wt, where

Φ(Bs) = 1 −
P

∑

j=1

ΦjB
js,

Θ(Bs) = 1 +
Q

∑

j=1

ΘjB
js.

It is causal iff the roots of Φ(zs) are outside the unit circle.
It is invertible iff the roots of Θ(zs) are outside the unit circle.
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Pure seasonal ARMAModels

Example: P = 0, Q = 1, s = 12. Xt = Wt + Θ1Wt−12.

γ(0) = (1 + Θ2
1)σ

2
w,

γ(12) = Θ1σ
2
w,

γ(h) = 0 for h = 1, 2, . . . , 11, 13, 14, . . ..

Example: P = 1, Q = 0, s = 12. Xt = Φ1Xt−12 + Wt.

γ(0) =
σ2

w

1 − Φ2
1

,

γ(12i) =
σ2

wΦi
1

1 − Φ2
1

,

γ(h) = 0 for other h.
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Pure seasonal ARMAModels

The ACF and PACF for a seasonal ARMA(P,Q)s are zero for h ̸= si. For
h = si, they are analogous to the patterns for ARMA(p,q):

Model: ACF: PACF:

AR(P)s decays zero for i > P

MA(Q)s zero for i > Q decays

ARMA(P,Q)s decays decays

4



Multiplicative seasonal ARMAModels

For p, q, P, Q ≥ 0 and s > 0, we say that a time series {Xt} is a
multiplicative seasonal ARMA model (ARMA(p,q)×(P,Q)s)
if Φ(Bs)φ(B)Xt = Θ(Bs)θ(B)Wt.

If, in addition, d, D > 0, we define themultiplicative seasonal
ARIMA model (ARIMA(p,d,q)×(P,D,Q)s)

Φ(Bs)φ(B)∇D
s ∇dXt = Θ(Bs)θ(B)Wt,

where the seasonal difference operator of orderD is defined by

∇D
s Xt = (1 − Bs)DXt.
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Multiplicative seasonal ARMAModels

Notice that these can all be represented by polynomials

Φ(Bs)φ(B)∇D
s ∇d = Ξ(B), Θ(Bs)θ(B) = Λ(B).

But the difference operators imply that Ξ(B)Xt = Λ(B)Wt does not define
a stationary ARMA process (the AR polynomial has roots on the unit
circle). And representing Φ(Bs)φ(B) and Θ(Bs)θ(B) as arbitrary
polynomials is not as compact.

How do we choose p, q, P, Q, d, D?

First difference sufficiently to get to stationarity. Then find suitable orders
for ARMA or seasonal ARMA models for the differenced time series. The
ACF and PACF is again a useful tool here.
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