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Problem statement

Discovering events in time series

I Time series are widely used for monitoring: finance, industry, healthcare,
meteorology…

I When recorded for hours, days, weeks… data is likely to be redundant
I Two fundamental questions:

I Were there significant changes in my data across time?
I Was there something new or unusual in my data?

I Two ill-posed problems: what is a significant change? What is new or unusual?
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Problem statement

Problem 1: Change-Point Detection

Change-Point Detection

Given a time series x, retrieve the times (t1, . . . , tK ) where a
significant change occurs

I Necessitates to estimate both the change-points but also the number of
changes K

I Highly depends on the meaning given to change
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Problem statement

Problem 2: Anomaly Detection

Anomaly Detection

Given a time series x, retrieve the set of samples T that corresponds
to unusual phenomenon

I May include isolated or contiguous samples (see Lecture 4 on outlier
detection/removal)

I Highly depends on the meaning given to usual/unusual
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Change-Point Detection
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Change-Point Detection Dealing with non-stationary time series

Importance of stationarity

I As seen in Lecture 2, stationarity (e.g. at the wide sense) is a fundamental
assumption when processing time series

I Necessity when using DFT, autocorrelation function or extracting features
I When observed during a long period of time, the system behaviour monitored

by time series is likely to change over time, either smoothly or abruptly
I Several strategies can be used to deal with non-stationary time series, either

simple or complex
I In some context, knowledge on these abrupt changes also carries relevant

information on the system
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Change-Point Detection Dealing with non-stationary time series

Example
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Smooth evolution vs. abrupt change
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Change-Point Detection Dealing with non-stationary time series

How to bypass the problem

In a first order approximation, several strategies can be used to bypass the problem:
I If changes are smooth, the task can be seen as a detrending task: remove the

slow phenomenon and only keep the seasonality that may be more stationary
I Divide the signal into small frames on which the signal is assumed to be

stationary (see Lecture 2 on spectrogram)
I Instead of working on the original signal x[n], we can work on the signal

derivative
x 0[n] = x[n] � x[n� 1]

which in general has nicer stationarity properties
Careful! This can imply to re-integrate the signal a�er processing, which can
be a source of errors!
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Change-Point Detection Dealing with non-stationary time series

Example
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Use of derivation to make the signal more stationary
Le� : original signal / Right : first order derivative
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Change-Point Detection Problem statement

Problem statement

Time (s)
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I When the changes are abrupt or
when the estimation of the
change-points is relevant in the
context, we can use change-point
detection methods

I Let assume that signal x[n]
undergoes abrupt changes at times

T
⇤ = (t⇤1 , . . . , t

⇤
K⇤)

I Goal: retrieve the number of
change-points K⇤ and their times
T

⇤

I One assumption: o�line
segmentation (but can easily be
adapted to online se�ing) [Truong et
al., 2020]
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Change-Point Detection Problem statement

Problem statement

�
t̂1, . . . , t̂K

�
= argmin

(t1,...,tK )

KX

k=0

c(x[tk : tk+1])

𝑦𝑡0..𝑡1 𝑦𝑡1..𝑡2 𝑦𝑡2..𝑡3 𝑦𝑡3..𝑡4

Cost function c(.)

I Measures the homogeneity of the
segments

I Choosing c(.) conditions the type of
change-points that we want to detect

I O�en based on a probabilistic model for
the data

Problem solving

I Optimal resolution with dynamic
programming

I Approximate resolution (sliding
windows…)

Original Signal

Discrepancy Curve

Peak Detection
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Change-Point Detection Cost functions

Cost function

�
t̂1, . . . , t̂K

�
= argmin

(t1,...,tK )

KX

k=0

c(x[tk : tk+1])

Convention : t0 = 0, tK+1 = N
a : b = [a, a + 1, . . . , b � 1]

I Function c(.) is characteristic of the notion of homogeneity
I The most common cost functions are linked to parametric probabilistic models:

in this case change-points are defined as changes in the parameters of a
probability density function [Basseville et al., 1993]

I Non-parametric cost functions can also be introduced when no model is
available
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Change-Point Detection Cost functions

Maximum likelihood estimation

Given a parametric family of distribution densities f (·|✓) parametrized with ✓ 2 ⇥,
a cost function can be derived:

cML(x[a : b]) = � sup
✓

bX

n=a+1

log f (x[n]|✓)

I Corresponds to the assumption that on a regime, samples are i.i.d. according
to a parametric distribution density

I On each regime, the parameters are estimated through maximum likelihood
estimation

I This model can be adapted to several situations: change in mean, change in
variance, change in both mean and variance…
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Change-Point Detection Cost functions

Change in mean

The most popular is indubitably the L2 norm [Page, 1955]

cL2(x[a : b]) =
bX

n=a+1

kx[n] � µa:bk
2
2

where µa:b is the empirical mean of the segment x[a : b].
I Particular case of cML with Gaussian model with fixed variance
I Allows to detect changes in mean
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Change-Point Detection Cost functions

Example
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Change-Point Detection Cost functions

Example: Change-Point Detection with cL2

K = 7
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Change-Point Detection Cost functions

Example: Change-Point Detection with cL2

K = 12
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Change-Point Detection Cost functions

Change in mean and variance

When the mean and variance change over time the cost function becomes

c⌃(x[a : b]) = (b � a) log �2
a:b +

1
�2
a:b

bX

n=a+1

kx[n] � µa:bk
2
2

where µa:b and �2
a:b are the empirical mean / variance of the segment x[a : b].

I Particular case of cML with Gaussian model with unknown mean and variance
I Can be adapted to multivariate time series by replacing the variance by the

covariance matrix: in this case, changes of correlations between dimensions
can also be detected [Lavielle, 1999]
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Change-Point Detection Cost functions

Example: Change-Point Detection with c⌃

K = 7
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Change-Point Detection Cost functions

Example: Change-Point Detection with c⌃

K = 12
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Change-Point Detection Cost functions

Change in slope and intercept

Change in slope and intercept can be handled in the general context of piecewise
linear regression

clinear(x[a : b]) = min
↵

bX

n=a+1

�����x[n] �
MX

i=1

↵i�i[n]

�����

2

2

I Functions �1[n], . . . ,�M[n] are covariate functions and we seek for changes in
the regression parameters

I Allows to detect changes in trend, seasonality, etc… [Bai et al., 1998]
I For slope and intercept, we choose �1[n] = 1 and �2[n] = n
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Change-Point Detection Cost functions

Example: Change-Point Detection with clinear

K = 7
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Change-Point Detection Cost functions

Example: Change-Point Detection with clinear

K = 12
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Change-Point Detection Cost functions

Rank-based cost functions
I In order to remove the need for a parametric probability model, one trick is to

work on the notion of rank instead of the whole signal

r[n] = number of i such that x[i] < x[n]

I Robust and invariant with respect to amplitude changes: r[n] corresponds to
the rank of sample x[n] in the time series x

I Cost functions can be derived by detecting changes in mean and/or variance in
the rank signal [Lung-Yut-Fong et al., 2015]

crank(x[a : b]) =
bX

n=a+1

kr[n] � µr
a:bk

2
2

where µr
a:b is the empirical mean of the rank signal r[a : b]
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Change-Point Detection Cost functions

Example: Change-Point Detection with crank

K = 7
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Change-Point Detection Cost functions

Example: Change-Point Detection with crank

K = 12
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Change-Point Detection Search method

Search method

�
t̂1, . . . , t̂K

�
= argmin

(t1,...,tK )

KX

k=0

c(x[tk : tk+1])

Convention : t0 = 0, tK+1 = N

I Several methods can be used to solve this problem with a fixed K
I Optimal resolution with dynamic programming: find the true solution of the

problem (but costly)
I Approximated resolution with windows: test for one unique change-point on a

window
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Change-Point Detection Search method

Optimal resolution

I By denoting

V(T , x) =
KX

k=0

c(x[tk : tk+1])

we can see that

min
|T |=K

V(T , x) = min
0=t0<t1<···<tK<tK+1=N

KX

k=0

c(x[tk : tk+1])

= min
tN�K


c(x[0 : t]) + min

t0=t<t1<···<tK�1<tK=N

K�1X

k=0

c(x[tk : tk+1])

�

= min
tN�K


c(x[0 : t]) + min

|T |=K�1
V(T , x[t : N])

�

I Recursive problem (just like DTW in Lecture 1): resolution with dynamic
programming [Bai et al., 2003]

I Two steps: computation of the cumulative costs + determination of the
change-points
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Change-Point Detection Search method

Optimal resolution

Complexity of O(KN2)
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Change-Point Detection Search method

Approximated resolution

I Main limitation of optimal resolution: high complexity. Prohibitive for long
time series…

I Approximated resolution methods exist, which are based on the single
change-point detection, which is way easier to perform

I Idea: consider a sliding window of length 2w and for each position, determine
if there is a change or not

I How to detect a single change by using the cost functions?
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Change-Point Detection Search method

Discrepancy function

Given a window of length 2w centered on sample n, we compute the discrepancy
function

d[n] = c(x[n� w : n + w]) � c(x[n : n + w]) � c(x[n� w : n])

I The discrepancy function d[n] allows to compare
I The homogeneity of the whole window c(x[n� w : n + w])
I The homogenities of the right/le� windows c(x[n : n + w]), c(x[n� w : n])

I Intuitively, if a change-point occurs at time n and if the window length w is
well adapted, both subsegments x[n� w : n] and x[n : n + w] will be
homogeneous (i.e. small values) and the whole segment x[n� w : n + w] will
be heterogeneous (i.e. large values)

I Large values for d[n] suggests that a change-point is likely to appear at time n
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Change-Point Detection Search method

Discrepancy function
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Change-Point Detection Search method

Sliding window approximated resolution

I Computation of the discrepancy function + peak search procedure to detect
the K largest peaks

I Complexity of O(N)
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Change-Point Detection Search method

Example: Sliding window CPD with cL2

K = 7,w = 20
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Change-Point Detection Search method

Example: Sliding window CPD with cL2

K = 7,w = 40

Laurent Oudre Machine Learning for Time Series 2023-2024 37 / 91



Change-Point Detection Search method

How to set w

I Parameter w should correspond to the smallest length of stationarity: the
discrepancy function makes sense if the two subsegments (right and le�) are
homogeneous

I Window length is also necessarily smaller than the smallest regime length
I But careful! In order to be relevant, the window length should be large enough

so that there is enough samples to properly estimate the homogeneity
I Other vision: statistical tests between two sets of samples, each containing w

samples. Good estimation requires a su�icient number of samples.
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Change-Point Detection Finding the number of change points

Finding the number of change points

I In all previously described algorithms, the number of change-point K was
supposed to be known

I In practice, this parameter is di�icult to set: as such, the total cost V(T , x) will
always decrease when K increases…

I Three solutions
I Use heuristics by testing several values of K
I Use a penalized formulation of the CPD problem to seek for a compromise

between reconstruction error and complexity
I Use supervised approaches from annotated signals
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Change-Point Detection Finding the number of change points

Heuristics for finding the number of change-points

I One easy solution is to test a set of change-points number K from 1 to Kmax
and to compute the sum of costs V(T , x)

I The optimal number of change-points can be estimated by searching for an
elbow on the curve of V(T , x) as a function of K
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Change-Point Detection Finding the number of change points

Penalized Change-Point Detection

I Intuitively, the optimal number of change-points is the one that allows the best
compromise between the sum of costs V(T , x) and the number of ruptures |T |

I We actually had the same problem in various tasks: order estimation in AR
models (Lecture 3), number of atoms in dictionary learning (Lecture 3 & 4),
etc… In all cases the higher the order (and the number of parameters), the
be�er the reconstruction

I Model selection problem: find the best model among a class of models
I Penalized change-point detection

�
t̂1, . . . , t̂K̂

�
= argmin

(t1,...,tK ),K

KX

k=0

c(x[tk : tk+1]) + �K
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Change-Point Detection Finding the number of change points

Penalized change-point detection

�
t̂1, . . . , t̂K̂

�
= argmin

(t1,...,tK ),K

KX

k=0

c(x[tk : tk+1]) + �K

I Joint estimation of the change-point times and the number of change-points
I Parameter � penalizes the introduction of a new change-point in the model: an

additional change-point should decrease the sum of costs V(T , x) by at least �
I Luckily, this problem is even easier to solve than the original one with fixed K !
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Change-Point Detection Finding the number of change points

Pruning strategy

I Given two times s and t such that t < s < N , remark that if

min
T


V (T , x[0 : t]) + �|T |

�
+ c(x[t : s]) � min

T


V (T , x[0 : s]) + �|T |

�

then t cannot be the last change point prior to N (demo in the last slides).
I Considerable speed-up since most times will not satisfy this criterion
I Pruned Exact Linear Time (PELT) algorithm: under the assumption that

regime lengths are randomly drawn from a uniform distribution, the
complexity of PELT is O(N) [Killick et al., 2012]

I Optimal algorithm: exact solution
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Change-Point Detection Finding the number of change points

PELT algorithm
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Change-Point Detection Finding the number of change points

How to choose �?

� can be di�icult to set: no explicit formula between � and K
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Change-Point Detection Finding the number of change points

Model selection criterion

Two popular criteria can be used to estimate the relevance of a model
I Bayesian information criterion (BIC) [Schwarz, 1978]

BIC = k logN � 2 log L̂

I Akaike information criterion (AIC) [Akaike, 1974]

AIC = 2k � 2 log L̂

where
I k is the number of parameters
I N is the number of samples
I L̂ is the maximum value of the likelihood function for the model
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Change-Point Detection Finding the number of change points

Standard criterion

In the context of change-point detection with L2 cost function, these criteria
provide estimates for the � parameter:
I Bayesian information criterion (BIC) for L2 change-point detection

� = 4�2 logN

I Akaike information criterion (AIC) for L2 change-point detection

� = 4�2
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Change-Point Detection Finding the number of change points

Example

Results obtained with the BIC criterion
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Change-Point Detection Finding the number of change points

Supervised Change-Point Detection

I Parameter � can also be learned from a collection of annotated signals
x(1), . . . , x(M) with annotations T (1)

⇤ , . . . , T (M)
⇤ [Truong et al., 2017]

I By denoting

V�(T , x) =
KX

k=0

c(x[tk : tk+1]) + �K

the relevance of a value of � can be assessed by computing the excess
penalized risk

E(x(`),�) = V�(T (`)
⇤ , x(`)) � min

T
V�(T , x(`))

I This quantity reflects how well we can approach the annotated segmentation
with a given value of �
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Change-Point Detection Finding the number of change points

Supervised Change-Point Detection

I The function � 7! E(x(`),�) is a convex function of �, which can be easily
optimized with o�-the-shelf solvers

I The final optimization problem writes

�opt = argmin�>0
1
M

MX

`=1

E(x(`),�)

I Experimental results show that with only a few annotated examples, it is
possible to find an adequate range for �
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Change-Point Detection Finding the number of change points

Example
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Anomaly Detection
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Anomaly Detection

Introductory example

Easy: an anomaly is a too small or too large value (outlier)
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Anomaly Detection

Introductory example

More complex: some small/large values are anomalies
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Anomaly Detection

Introductory example

Anomalies depend in the previous values
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Anomaly Detection

Introductory example

Anomalies correspond to unusual events
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Anomaly Detection

Anomaly Detection

Anomalies can take various forms and have di�erent meanings [Chandola et al.,
2009]:
I Outliers, i.e. isolated samples with exceptionally large/low values
I Bursts of outliers, i.e. segments that do not coincide with what is observed

usually in the time series (in terms of values)
I Unusual events that breaks the regularity within the time series
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Anomaly Detection Outlier detection

Outlier detection

Simple anomalies (isolated samples or contiguous samples) can be detected with
techniques already described in Lecture 4:
I Statistical methods:

I Global: Histogram visualization to detect aberrant values (see Lecture 4)
I Adaptive: Threshold-based methods on sliding windows (mean/standard deviation

or median)
I Model-based methods:

I Residual and prediction error (trend+seasonality, sinusoidal or AR model)
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Anomaly Detection Statistical methods

Example
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Anomaly Detection Statistical methods

Example: Histogram

One outlier can be considered as an anomaly
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Anomaly Detection Statistical methods

Example: Histogram

Only one detected anomaly
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Anomaly Detection Statistical methods

Adaptive statistical methods
I The main idea is to use sliding window and to perform a statistical test for

outlier detection
I Contrary to histogram, these methods allow to take into account the local

context but careful, time information is lost! Only the distribution of values is
used for detection.

I Multitude tests can be used but the most common are
I Mu/sigma [Roberts, 2000]:

|x[n] � µn| > ��n

where µn and �n are respectively the local mean/standard deviation around
sample n and � a threshold.
Under i.i.d. Gaussian assumption, � = 1 ! 68%, � = 2 ! 95%, � = 3 ! 99.7%

I Median/median absolute deviation [Leys et al., 2013]:

|x[n] � medn | > �madn

where medn and madn are respectively the local median/median absolute
deviation around sample n and � a threshold.
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Anomaly Detection Statistical methods

Example: Mu-Sigma

Mu-Sigma, � = 1.5, window length of 12 samples
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Anomaly Detection Statistical methods

Example: Med-Mad

Med-Mad, � = 1.5, window length of 12 samples
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Anomaly Detection Model-based methods

Model-based anomaly detection

I Idea: use a time series model to detect anomaly [Yamanishi et al., 2002; Hill et
al., 2010]

I Advantage: truly takes into account the temporal aspects
I Three steps:

1. Choose an adequate model and learn the parameters
2. Compute the prediction/signal reconstruction
3. Anomalies are samples that diverge from the model
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Anomaly Detection Model-based methods

Example: trend+seasonality

I Trend: polynomial of degree 4
I Seasonality: cosine/sine functions with fundamental frequencies multiples of

1
12
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Anomaly Detection Model-based methods

Example: trend+seasonality

Not only large/small values but also temporal progression
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Anomaly Detection Model-based methods

Example: AR model

AR model with p = 12
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Anomaly Detection Model-based methods

Example: AR model

Anomaly also changes the prediction of the next p samples
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Anomaly Detection Distance-based methods

Distance-based methods

I Some anomalies may be more complex to detect as they are not characterized
by aberrant values but by a new behavior that was not previously seen in the
time series

I In this case, anomalies can only be defined as a divergence from a normal
behavior

I This task is the dual of the task already seen in Lecture 1 (Pa�ern
Detection/Extraction), and the same techniques can therefore be used

I Instead of searching for repetitive pa�erns, we are searching for non-repetitive
events!
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Anomaly Detection Distance-based methods

Unsupervised anomaly detection

I Reminder : Matrix profile [Yeh et al., 2016] : given a pa�ern length L, compute

m[n] = min
i>n+L or i<n�L

d(x[n : n + L� 1], x[i : i + L� 1])

I Small matrix profiles values indicate that the subsequence has been found
elsewhere in the time series, suggesting that it could be a pa�ern

I E�icient computation with normalized Euclidean distance (see Lecture 1)

What about large values in the matrix profile?
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Anomaly Detection Distance-based methods

Example: matrix profile

Matrix profile with window of length L = 12 months
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Anomaly Detection Distance-based methods

Matrix profile

I By examining large values on the matrix profile, anomalies can be detected
I Subsequences that are far from all subsequences in the signal: likely to

correspond to new behaviors
I Advantages: no need for a parametric model
I Necessitates to have a rough idea of the scale of the anomaly (parameter L)
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Anomaly Detection Distance-based methods

Other distance-based approaches

Clustering approaches can be used for detecting anomalies:
1. Divide the signal into (possibly) overlapping subsequences
2. Perform clustering on the subsequences (k-Means, spectral clustering etc…)
3. Subsequences that are far from their centroids/medoids are likely to be outliers

More details in [Schmidl et al., 2022; Boniol et al., 2022]
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A word on supervised approaches

I Semi-supervised approaches: use knowledge on normality
I Learn a model on normality and detect anomalies in the residual or as a

derivation from normality
I Example : use annotated templates representing normal behavior, retrieve them in

the signal up to a measure of fit (see Lecture 1), and detect all segments in the
time series that do not correspond to a known pa�ern as anomalies

I Supervised approaches: supervised classification techniques can also be used:
SVM, random forests, neural networks…
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Evaluation of event detection methods

I Several time series ML tasks are event detection tasks: pa�ern recognition
(Lecture 1), change-point detection, anomaly detection…

I In order to benchmark the tested methods, one need to use
I An annotated dataset where the events of interested have been highlighted
I Some relevant metrics of evaluation

I What does a good detection mean ?
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Evaluation of event detection methods

Point-based vs. range-based

I When the events consist of single points, the method
can be assessed with the standard precision/recall
metric:

precision =
TP

TP + FP

recall =
TP

TP + FN

where TP is the number of true positive, FP the number
of false positive and FN the number of false negative

I These metrics are comprised between 0 and 1, and we
can plot the precision/recall curve to benchmark the
methods

What if the events are range-based?

Laurent Oudre Machine Learning for Time Series 2023-2024 78 / 91



Evaluation of event detection methods

Range-based detection: example

Time

Predicted

Annotated

I Event is correctly detected
I BUT the detection is a bit delayed: would not be suitable for e.g. anomaly

detection in industrial monitoring
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Range-based detection: example

Time

Predicted

Annotated

I Event is correctly detected
I BUT the duration of the event is poorly estimated
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Range-based detection: example

Time

Predicted

Annotated

I Event is correctly detected
I BUT the two annotated events are detected as one single event
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Metrics for event detection

Several principles can be taken into account [Tatbul et al., 2018]:
I Existence: Catching the existence of the event (even by predicting only a single

point), by itself, might be valuable for the application.
I Size: The larger the size of the correctly predicted portion of the event, the

higher the recall score.
I Position: In some cases, not only size, but also the relative position of the

correctly predicted portion of the event might ma�er to the application.
I Cardinality: Detecting the event with a single prediction range may be more

valuable than doing so with multiple di�erent ranges in a fragmented manner.
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Formulation

I We consider a set of predicted intervals P = {P1, . . . , PNP} and a set of real
intervals R = {R1, . . . ,RNR}, the recall can be computed as:

recall =
1
NR

NRX

i=1

recall(Ri, P)

I The term recall(Ri, P) will be defined as a weighted sum of several terms that
will assess how well event Ri has been detected

I The same definition can be computed for the precision, but this time as

precision =
1
NP

NPX

i=1

precision(R, Pi)
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Formulation
I Existence (only used for recall):

existence(Ri , P) =

(
1 if

PNp
j=1 |Ri \ Pj | � 1

0 elsewhere

I Size/position (used for precision and recall):

size position(Ri , P) =
NpX

j=1

w(Ri , Ri \ Pj)

where w(A,B) is an overlap score (between 0 and 1) between Ri \ Pj and the desirable portion of
Ri (can voluntary introduce a bias if e.g. we wish to detect the event Ri in advance, or the middle
part of Ri , etc…)

I Cardinality (used for position and recall):

cardinality(Ri , P) =

(
1 if Ri overlaps with at most one Pj
�(Ri , P) elsewhere

where � is a penalty function
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Formulation

I Recall:

recall(Ri , P) = ↵ existence(Ri , P) + (1� ↵) cardinality(Ri , P)⇥ size position(Ri , P)

I Precision:

precision(R, Pi) = cardinality(R, Pi)⇥ size position(R, Pi)

I Note that di�erent functions w and � can be used for precision and recall, and several choices can
be used (see [Tatbul et al., 2018] and associated mini-project for details)

I If all events in R and P are single-point, ↵ = 0, �(., .) = 1 and w(., .) is the percentage of common
points, then this definition is compliant with the regular precision/recall definition
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How to choose the parameters

I Several possible parametrizations are provided in the original article: depends
on the usecases

I One simpler solution is to compute the Intersection Over Union (IoU) metric
between the detected segment and the true segment

IoU =
|Pi \ Rj|

|Pi [ Rj|

and use a threshold value (e.g. 25%, 50%, 75%…) as a detection criteria
I Performances can be provided with di�erent threshold values so as to give a

be�er idea of the accuracy of the detection method
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