
Nonlinear Least Squares

Until now we had linear in parameters functions to fit the data. This is
generally not the case for real problems.

Some examples of non-linear fitting functions would be exponential decay
function M(x , c1, c2) = c1e

−c2x or non-normalized Gaussian function

M(x , c) = c1e
−(x−c2)

2/c23

Nonlinear Least Squares: Example
Example: Suppose we have a radio transmitter at b̂ = (b̂1, b̂2)
somewhere in [0, 1]2 (×)

Suppose that we have 10 receivers at locations
(x11 , x

1
2), (x

2
1 , x

2
2), . . . , (x

10
1 , x102) ∈ [0, 1]2 (•)

Receiver i returns a measurement for the distance yi to the
transmitter, but there is some error/noise (ε)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x1

x
2

xi

yi + ε

b̂

Nonlinear Least Squares: Example

Let b be a candidate location for the transmitter

The distance from b to (x i1, x
i
2) is

di (b) ≡
√

(b1 − x i
1
)2 + (b2 − x i

2
)2

We want to choose b to match the data as well as possible, hence
minimize the residual r(b) ∈ R10 where ri (b) = yi − di (b)

Nonlinear Least Squares: Example

In this case, ri (α+ β) %= ri (α) + ri (β), hence nonlinear
least-squares!

Define the objective function φ(b) = 1

2
‖r(b)‖22, where r(b) ∈ R10

is the residual vector

The 1/2 factor in φ(b) has no effect on the minimizing b, but
leads to slightly cleaner formulae later on

Nonlinear Least Squares

As usually we will try to minimize the objective function by differentiating it
and setting to zero:

φ(b) =
1
2
||r(b)||2 =

1
2

k
∑

j=1

[rj(b)]
2

∂φ

∂bi
=

∂

∂bi

1
2

k
∑

j=1

r
2
j =

k
∑

j=1

rj
∂rj
∂bi

Nonlinear Least Squares

As usually we will try to minimize the objective function by differentiating it
and setting to zero:

φ(b) =
1
2
||r(b)||2 =

1
2

k
∑

j=1

[rj(b)]
2

∂φ

∂bi
=

∂

∂bi

1
2

k
∑

j=1

r
2
j =

k
∑

j=1

rj
∂rj
∂bi

Denoting Jr (b) = {
∂rj
∂bi

}ij the Jacobian matrix we have

∇φ = Jr (b)
T
r(b)

Nonlinear Least Squares

To find the minimum of objective function we need to solve the equation

Jr (b)
T
r(b) = 0

This system has n equations and n unknowns, but most likely is a nonlinear
system.

Such systems require iterative methods. We’ll discuss Newton’s method of
solving the system and it’s variations.

Newton’s method for nonlinear fitting

Recall Newton’s method for finding roots of equation f (x) = 0.

Let xn be our current guess for the root x∗ = xn +∆x . Then Taylor expansion
will be

0 = f (x∗) = f (xn +∆x) = f (xn) +∆xf
′(xn) + O((∆x)2)

It follows that f ′(xn)∆x ≈ −f (xn) which gives us update equation

xn+1 = xn −
f (xn)
f ′(xn)

Newton’s method for nonlinear fitting

Recall Newton’s method for finding roots of equation f (x) = 0.

Let xn be our current guess for the root x∗ = xn +∆x . Then Taylor expansion
will be

0 = f (x∗) = f (xn +∆x) = f (xn) +∆xf
′(xn) + O((∆x)2)

It follows that f ′(xn)∆x ≈ −f (xn) which gives us update equation

xn+1 = xn −
f (xn)
f ′(xn)

This argument generalizes directly to functions of several variables F (x) = 0

JF (xn)∆xn = −F (xn)

Newton’s method for nonlinear fitting

In the case of nonlinear Least Squares we have F (b) = Jr (b)
T
r(b). To apply

Newton’s method we need to find the Jacobian of the function F (b).

∂Fi

∂bj
=

∂

∂bj

(

Jr (b)
T
r(b)

)

i

=
∂

∂bj

k
∑

l=1

∂rl
∂bi

rl

=
k

∑

l=1

∂rl
∂bi

∂rl
∂bj

+
k

∑

l=1

∂2
rl

∂bi∂bj
rl

Newton’s method for nonlinear fitting

Second derivatives are messy and painful to deal with. But they are multiplied
by residuals which are small if function becomes a good fit. Therefore we can
neglect second order term in the equality.

∂Fi

∂bj
≈

k
∑

l=1

∂rl
∂bi

∂rl
∂bj

= Jr (b)
T
Jr (b)

Newton’s method for nonlinear fitting

Second derivatives are messy and painful to deal with. But they are multiplied
by residuals which are small if function becomes a good fit. Therefore we can
neglect second order term in the equality.

∂Fi

∂bj
≈

k
∑

l=1

∂rl
∂bi

∂rl
∂bj

= Jr (b)
T
Jr (b)

Putting all pieces together we obtain the update formula:

Jr (bn)
T
Jr (bn)∆bn = −Jr (bn)

T
r(bn)

bn+1 = bn +∆bn

This is known as Gauss-Newton Algorithm for nonlinear Least Squares.

Every iteration requires solving a linear least squares problem
Jr (bn)∆bn ≈ −r(bn)

Computing the Jacobian

To use Gauss–Newton in practice, we need to be able to compute
the Jacobian matrix Jr (bk) for any bk ∈ Rn

We can do this “by hand”, e.g. in our transmitter/receiver
problem we would have:

[Jr (b)]ij = −
∂

∂bj

√

(b1 − x i
1
)2 + (b2 − x i

2
)2

Differentiating by hand is feasible in this case, but it can become
impractical if r(b) is more complicated

Or perhaps our mapping b → y is a “black box” — no closed form
equations hence not possible to differentiate the residual!

Computing the Jacobian

So, what is the alternative to “differentiation by hand”?
Finite difference approximation: for h $ 1 we have

[Jr (bk)]ij ≈
ri (bk + ejh)− ri (bk)

h

Avoids tedious, error prone differentiation of r by hand!

Also, can be used for differentiating “black box” mappings since
we only need to be able to evaluate r(b)

Gauss-Newton with line search

Implementation of Gauss-Newton method often uses line search in the
proposed direction of change:

bn+1 = bn + αn∆bn

Step length is chosen to satisfy Armijo condition

φ(bn + αn∆bn) < φ(bn) + cαnr(bn)
T
Jr (bn)

T∆bn

for some constant c ∈ (0, 1).

This provides ”good enough” step in the descent direction. usual choice for αn

is the largest power on 1/2 that satisfies the condition.

The Levenberg-Marquardt method

Levenberg-Marquardt methos is similar to Gauss-Newton method but line
search is substituted with trust region strategy.

min ||Jr (bn)∆bn + r(bn)||2 subject to ||∆bn|| ≤ bound

The Levenberg-Marquardt method

Levenberg-Marquardt methos is similar to Gauss-Newton method but line
search is substituted with trust region strategy.

min ||Jr (bn)∆bn + r(bn)||2 subject to ||∆bn|| ≤ bound

To solve this constrained optimization problem we need to optimize the
following objective:

min
∆bn

||Jr (bn)∆bn + r(bn)||2 + λn||∆bn||2

where λn is a Lagrange parameter for the constraint on n-th iteration.

The Levenberg-Marquardt method

The update step is computed as a solution to a Linear Least Squares problem

min
∆bn

∥

∥

∥

∥

(

Jr (bn)√
λnI

)

∆bn −
(

−r(bn)
0

)
∥

∥

∥

∥

2

Parameter λn influences both the direction and the length of the step. If λn is
close to 0, we have Gauss-Newton method, for large λn we have a short step in
the direction of steepest descent.

Common strategy for chosing λn is following:

1. The initial value is λ0 ≈ ||Jr (b0)TJr (b0)||
2. For subsequent steps improvement ratio ρn is defined as

ρn =
actual reduction

predicted reduction
=

φ(bn)− φ(bn+1)
1
2∆bT

n (Jr (bn)T r(bn)− λn∆bn)

The Levenberg-Marquardt method

Parameter λn influences both the direction and the length of the step.
Common strategy for chosing λn is following:

1. The initial value is λ0 ≈ ||Jr (b0)TJr (b0)||
2. For subsequent steps improvement ratio ρn is defined as

ρn =
actual reduction

predicted reduction
=

φ(bn)− φ(bn+1)
1
2∆bT

n (Jr (bn)T r(bn)− λn∆bn)

! If ρn > 0.75 then λn+1 =
λn

3

! If ρn < 0.25 then λn+1 = 2λn

! Otherwise λn+1 = λn

! If ρn > 0 perform the update.

Both Gauss-Newton and Levenberg-Marquardt algorithms are often globally
convergent with quadratic convergence if neglected second-order terms are
small and linear otherwise.

The Levenberg-Marquardt method

Figure: Gauss-Newton (top) and Levenberg-Marquardt (bottom) convergence

Nonlinear Least Squares: Example

Python example: Using lsqnonlin.py we provide an initial guess
(•), and converge to the solution (×)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Nonlinear Least Squares: Example
Levenberg–Marquardt minimizes φ(b), as we see from the contour
plot of φ(b) below

Recall × is the true transmitter location, × is our best-fit to the
data; φ(×) = 0.0248 < 0.0386 = φ(×).

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

These contours are quite different from what we get in linear
problems

Linear Least-Squares Contours

Two examples of linear least squares contours for
φ(b) = ‖y − Ab‖2

2
, b ∈ R2

−10 −5 0 5 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

−10 −5 0 5 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

In linear least squares φ(b) is quadratic, hence contours are
“hyperellipses”

Newton method for unconstrained minimization

minimize f(x)

f convex, twice continously differentiable

Newton method

x+ = x− t∇2f(x)−1∇f(x)

• advantages: fast convergence, affine invariance

• disadvantages: requires second derivatives, solution of linear equation

can be too expensive for large scale applications

Quasi-Newton methods 2-2

Variable metric methods

x+ = x− tH−1∇f(x)

H # 0 is approximation of the Hessian at x, chosen to:

• avoid calculation of second derivatives

• simplify computation of search direction

‘Variable metric’ interpretation (EE236B, lecture 10, page 11)

∆x = −H−1∇f(x)

is steepest descent direction at x for quadratic norm

‖z‖H =
(

zTHz
)1/2

Quasi-Newton methods 2-3

Quasi-Newton methods

given starting point x(0) ∈ dom f , H0 # 0

1. compute quasi-Newton direction ∆x = −H−1
k−1∇f(x(k−1))

2. determine step size t (e.g., by backtracking line search)

3. compute x(k) = x(k−1) + t∆x

4. compute Hk

• different methods use different rules for updating H in step 4

• can also propagate H−1
k to simplify calculation of ∆x

Quasi-Newton methods 2-4

Broyden-Fletcher-Goldfarb-Shanno (BFGS) update

BFGS update

Hk = Hk−1 +
yyT

yTs
−

Hk−1ss
THk−1

sTHk−1s

where

s = x(k) − x(k−1), y = ∇f(x(k))−∇f(x(k−1))

Inverse update

H−1
k =

(

I −
syT

yTs

)

H−1
k−1

(

I −
ysT

yTs

)

+
ssT

yTs

• note that yTs > 0 for strictly convex f ; see page 1-9

• cost of update or inverse update is O(n2) operations

Quasi-Newton methods 2-5

Positive definiteness

if yTs > 0, BFGS update preserves positive definitess of Hk

Proof: from inverse update formula,

vTH−1
k v =

(

v −
sTv

sTy
y

)T

H−1
k−1

(

v −
sTv

sTy
y

)

+
(sTv)2

yTs

• if Hk−1 # 0, both terms are nonnegative for all v

• second term is zero only if sTv = 0; then first term is zero only if v = 0

this ensures that ∆x = −H−1
k ∇f(xk) is a descent direction

Quasi-Newton methods 2-6

Secant condition

the BFGS update satisfies the secant condition Hks = y, i.e.,

Hk(x
(k) − x(k−1)) = ∇f(x(k))−∇f(x(k−1))

Interpretation: define second-order approximation at x(k)

fquad(z) = f(x(k)) +∇f(x(k))T (z − x(k)) +
1

2
(z − x(k))THk(z − x(k))

secant condition implies that gradient of fquad agrees with f at x(k−1):

∇fquad(x
(k−1)) = ∇f(x(k)) +Hk(x

(k−1) − x(k))

= ∇f(x(k−1))

Quasi-Newton methods 2-7

Secant method

for f : R → R, BFGS with unit step size gives the secant method

x(k+1) = x(k) −
f ′(x(k))

Hk
, Hk =

f ′(x(k))− f ′(x(k−1))

x(k) − x(k−1)

x(k−1) x(k) x(k+1)

f ′(z)

f ′

quad(z)

Quasi-Newton methods 2-8

Convergence

Global result

if f is strongly convex, BFGS with backtracking line search (EE236B, lecture 10-6)

converges from any x(0), H0 # 0

Local convergence

if f is strongly convex and ∇2f(x) is Lipschitz continuous, local convergence is

superlinear: for sufficiently large k,

‖x(k+1) − x!‖2 ≤ ck‖x
(k) − x!‖2 → 0

where ck → 0

(cf., quadratic local convergence of Newton method)

Quasi-Newton methods 2-9

Example

minimize cTx−
m
∑

i=1

log(bi − aTi x)

n = 100, m = 500

0 2 4 6 8 10 1210−12

10−9

10−6

10−3

100

103

k

f
(x

k
)
−

f
!

Newton

0 50 100 15010−12

10−9

10−6

10−3

100

103

k

f
(x

k
)
−

f
!

BFGS

• cost per Newton iteration: O(n3) plus computing ∇2f(x)

• cost per BFGS iteration: O(n2)

Quasi-Newton methods 2-10

Limited memory quasi-Newton methods

main disadvantage of quasi-Newton method is need to store Hk or H−1
k

Limited-memory BFGS (L-BFGS): do not store H−1
k explicitly

• instead we store the m (e.g., m = 30) most recent values of

sj = x(j)
− x(j−1), yj = ∇f(x(j))−∇f(x(j−1))

• we evaluate ∆x = H−1
k ∇f(x(k)) recursively, using

H−1
j =

(

I −
sjy

T
j

yTj sj

)

H−1
j−1

(

I −
yjs

T
j

yTj sj

)

+
sjs

T
j

yTj sj

for j = k, k − 1, . . . , k −m+ 1, assuming, for example, H−1
k−m = I

• cost per iteration is O(nm); storage is O(nm)

Quasi-Newton methods 2-14

