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Exponential distribution

I Exponential RVs often model times at which events occur

) Or time elapsed between occurrence of random events

I RV T ⇠ exp(�) is exponential with parameter � if its pdf is

fT (t) = �e��t , for all t � 0

I Cdf, integral of the pdf, is ) FT (t) = P (T  t) = 1� e��t

) Complementary (c)cdf is ) P(T � t) = 1� FT (t) = e��t

pdf (� = 1) cdf (� = 1)
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Expected value

I Expected value of time T ) exp(�) is

E [T ] =

Z �

0
t�e1�tdt = ⇠te1�t

����
�

0

+

Z �

0
e1�tdt = 0 +

1

�

� Integrated by parts with u = t, dv = �e1�tdt

I Mean time is inverse of parameter �

� � is rate/frequency of events happening at intervals T

� Interpret: Average of �t events by time t

I Bigger � � smaller expected times, larger frequency of events

��
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T2 ��
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T4 ��
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T5 ��
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T6 ��
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T7 ��
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T8 ��
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T9 ��
S10

T10

t
�����
t = 0

�����
t = 5/�

�����
t = 10/�
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Second moment and variance

I For second moment also integrate by parts (u = t2, dv = �e��tdt)

E
Z
T 2

�
=

⇥ 1

0
t2�e��tdt = )t2e��t

⇤⇤⇤⇤
1

0

+

⇥ 1

0
2te��tdt

I First term is 0, second is (2/�)E [T ]

E
Z
T 2

�
=

2

�

⇥ 1

0
t�e��t =

2

�2

I The variance is computed from the mean and second moment

var [T ] = E
Z
T 2

�
) E2[T ] =

2

�2
) 1

�2
=

1

�2

⇠ Parameter � controls mean and variance of exponential RV
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Memoryless random times

I Def: Consider random time T . We say time T is memoryless if

P
Z
T > s + t

��T > t
⇥
= P (T > s)

I Probability of waiting s extra units of time (e.g., seconds) given that
we waited t seconds, is just the probability of waiting s seconds

) System does not remember it has already waited t seconds

) Same probability irrespectively of time already elapsed

Ex: Chemical reaction A+ B ⇠ AB occurs when molecules A and B
“collide”. A, B move around randomly. Time T until reaction
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Exponential RVs are memoryless

I Write memoryless property in terms of joint pdf

P
Z
T > s + t

��T > t
⇥
=

P (T > s + t,T > t)

P (T > t)
= P (T > s)

I Notice event {T > s + t,T > t} is equivalent to {T > s + t}
) Replace P (T > s + t,T > t) = P (T > s + t) and reorder

P (T > s + t) = P (T > t)P (T > s)

I If T ⇠ exp(�), ccdf is P (T > t) = e��t so that

P (T > s + t) = e��(s+t) = e��te��s = P (T > t) P (T > s)

I If random time T is exponential ) T is memoryless
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Continuous memoryless RVs are exponential

I Consider a function g(t) with the property g(t + s) = g(t)g(s)

I Q: Functional form of g(t)? Take logarithms

log g(t + s) = log g(t) + log g(s)

) Only holds for all t and s if log g(t) = ct for some constant c

) Which in turn, can only hold if g(t) = ect for some constant c

I Compare observation with statement of memoryless property

P (T > s + t) = P (T > t) P (T > s)

) It must be P (T > t) = ect for some constant c

I T continuous: only true for exponential T ⇠ exp(�c)

I T discrete: only geometric P (T > t) = (1� p)t with (1� p) = ec

I If continuous random time T is memoryless ) T is exponential
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Main memoryless property result

Theorem
A continuous random variable T is memoryless if and only if it is
exponentially distributed. That is

P
Z
T > s + t

��T > t
⇥
= P (T > s)

if and only if fT (t) = �e��t for some � > 0

I Exponential RVs are memoryless. Do not remember elapsed time

) Only type of continuous memoryless RVs

I Discrete RV T is memoryless if and only of it is geometric

) Geometrics are discrete approximations of exponentials

) Exponentials are continuous limits of geometrics

I Exponential = time until success ⇠ Geometric = nr. trials until success
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Exponential times example

I First customer’s arrival to a store takes T ) exp(1/10) minutes
⇠ Suppose 5 minutes have passed without an arrival

I Q: How likely is it that the customer arrives within the next 3 mins.?

I Use memoryless property of exponential T

P
Z
T � 8

��T > 5
⇥
= 1 P

Z
T > 8

��T > 5
⇥

= 1 P (T > 3) = 1 e�3� = 1 e�0.3

I Q: How likely is it that the customer arrives after time T = 9?

P
Z
T > 9

��T > 5
⇥
= P (T > 4) = e�4� = e�0.4

I Q: What is the expected additional time until the first arrival?

I Additional time is T  5, and P
Z
T  5 > t

��T > 5
⇥
= P (T > t)

E
⇤
T  5

��T > 5
�
= E [T ] = 1/� = 10
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Time to first event

I Independent exponential RVs T1, T2 with parameters �1, �2

I Q: Prob. distribution of time to first event, i.e., T := min(T1,T2)?

) To have T > t we need both T1 > t and T2 > t

I Using independence of T1 and T2 we can write

P (T > t) = P (T1 > t,T2 > t) = P (T1 > t) P (T2 > t)

I Substituting expressions of exponential ccdfs

P (T > t) = e��1te��2t = e�(�1+�2)t

I T := min(T1,T2) is exponentially distributed with parameter �1+�2

I In general, for n independent RVs Ti ⇠ exp(�i ) define T := mini Ti

) T is exponentially distributed with parameter
Zn

i=1 �i

Introduction to Random Processes Continuous-time Markov Chains 11



First event to happen

I Q: Prob. P (T1 < T2) of T1 ) exp(�1) happening before T2 ) exp(�2)?

I Condition on T2 = t, integrate over the pdf of T2, independence

P (T1 < T2) =

Z �

0
P
�
T1 < t

⇥⇥T2 = t
⇤
fT2(t) dt =

Z �

0
FT1(t)fT2(t) dt

I Substitute expressions for exponential pdf and cdf

P (T1 < T2) =

Z �

0
(1⇠ e1�1t)�2e

1�2t dt =
�1

�1 + �2

I Either T1 comes before T2 or vice versa, hence

P (T2 < T1) = 1⇠ P (T1 < T2) =
�2

�1 + �2

� Probabilities are relative values of rates (parameters)

I Larger rate � smaller average � higher prob. happening first
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Additional properties of exponential RVs

I Consider n independent RVs Ti ) exp(�i ). Ti time to i-th event

I Probability of j-th event happening first

P
Z
Tj = min

i
Ti

�
=

�j⇥n
i=1 �i

, j = 1, . . . , n

I Time to first event and rank ordering of events are independent

P
Z
min
i

Ti ⇠ t,T i1 < . . . < Tin

�
= P

Z
min
i

Ti ⇠ t
�
P (Ti1 < . . . < Tin)

I Suppose T ) exp(�), independent of non-negative RV X

I Strong memoryless property asserts

P
⇤
T > X + t

��T > X
�
= P (T > t)

� Also forgets random but independent elapsed times
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Strong memoryless property example

I Independent customer arrival times Ti ) exp(�i ), i = 1, . . . , 3

⇠ Suppose customer 3 arrives first, i.e., min(T1,T2) > T3

I Q: Probability that time between first and second arrival exceeds t?

I We want to compute

P
Z
min(T1,T2)� T3 > t

�� min(T1,T2) > T3

⇥

I Denote Ti2 := min(T1,T2) the time to second arrival

⇠ Recall Ti2 ) exp(�1 + �2), Ti2 independent of Ti1 = T3

I Apply the strong memoryless property

P
Z
Ti2 � T3 > t

��Ti2 > T3

⇥
= P (Ti2 > t) = e�(�1+�2)t
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Probability of event in infinitesimal time

I Q: Probability of an event happening in infinitesimal time h?

I Want P (T < h) for small h

P (T < h) =

Z h

0
�e��t dt ) �h

⇠ Equivalent to
@P (T < t)

@t

����
t=0

= �

I Sometimes also write P (T < h) = �h + o(h)

⇠ o(h) implies lim
h10

o(h)

h
= 0

⇠ Read as “negligible with respect to h”

I Q: Two independent events in infinitesimal time h?

P (T1 � h,T2 � h) ) (�1h)(�2h) = �1�2h
2 = o(h)
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Counting processes

I Random process N(t) in continuous time t ) R+

I Def: Counting process N(t) counts number of events by time t

I Nonnegative integer valued: N(0) = 0, N(t) ) {0, 1, 2, . . .}
I Nondecreasing: N(s) ⇠ N(t) for s < t
I Event counter: N(t)� N(s) = number of events in interval (s, t]

I N(t) continuous from the right
I N(S4)� N(S2) = 2, while N(S4)� N(S2 � �) = 3 for small � > 0

Ex.1: # text messages (SMS) typed
since beginning of class

Ex.2: # economic crises since 1900

Ex.3: # customers at Wegmans since
8 am this morning t

N(t)

1
2
3
4
5
6

S1 S2 S3 S4 S5 S6
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Independent increments

I Consider times s1 < t1 < s2 < t2 and intervals (s1, t1] and (s2, t2]

) N(t1)⇠ N(s1) events occur in (s1, t1]

) N(t2)⇠ N(s2) events occur in (s2, t2]

I Def: Independent increments implies latter two are independent

P (N(t1)⇠ N(s1) = k ,N(t2)⇠ N(s2) = l)

= P (N(t1)⇠ N(s1) = k) P (N(t2)⇠ N(s2) = l)

I Number of events in disjoint time intervals are independent

Ex.1: Likely true for SMS, except for “have to send” messages

Ex.2: Most likely not true for economic crises (business cycle)

Ex.3: Likely true for Wegmans, except for unforeseen events (storms)

I Does not mean N(t) independent of N(s), say for t > s

) These events are clearly dependent, since N(t) is at least N(s)
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Stationary increments

I Consider time intervals (0, t] and (s, s + t]

) N(t) events occur in (0, t]

) N(s + t)⇠ N(s) events in (s, s + t]

I Def: Stationary increments implies latter two have same prob. dist.

P (N(s + t)⇠ N(s) = k) = P (N(t) = k)

I Prob. dist. of number of events depends on length of interval only

Ex.1: Likely true if lecture is good and you keep interest in the class

Ex.2: Maybe true if you do not believe we become better at preventing crises

Ex.3: Most likely not true because of, e.g., rush hours and slow days
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Poisson process

I Def: A counting process N(t) is a Poisson process if
(a) The process has stationary and independent increments
(b) The number of events in (0, t] has Poisson distribution with mean �t

P (N(t) = n) = e��t (�t)
n

n!

I An equivalent definition is the following
(i) The process has stationary and independent increments
(ii) Single event in infinitesimal time � P (N(h) = 1) = �h + o(h)
(iii) Multiple events in infinitesimal time � P (N(h) > 1) = o(h)

) A more intuitive definition (even hard to grasp now)

I Conditions (i) and (a) are the same
I That (b) implies (ii) and (iii) is obvious

I Substitute small h in Poisson pmf’s expression for P (N(t) = n)

I To see that (ii) and (iii) imply (b) requires some work

Introduction to Random Processes Continuous-time Markov Chains 20



What is a Poisson process?

I Fundamental defining properties of a Poisson process
I Events happen in small interval h with probability �h proportional to h
I Whether event happens in an interval has no e↵ect on other intervals

I Modeling questions
Q1: Expect probability of event proportional to length of interval?
Q2: Expect subsequent intervals to behave independently?

) If positive, then a Poisson process model is appropriate

I Typically arise in a large population of agents acting independently

) Larger interval, larger chance an agent takes an action

) Action of one agent has no e↵ect on action of other agents

) Has therefore negligible e↵ect on action of group
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Examples of Poisson processes

Ex.1: Number of people arriving at subway station. Number of cars
arriving at a highway entrance. Number of customers entering a
store ... Large number of agents (people, drivers, customers) acting
independently

Ex.2: SMS generated by all students in the class. Once you send an SMS
you are likely to stay silent for a while. But in a large population this
has a minimal e↵ect in the probability of someone generating a SMS

Ex.3: Count of molecule reactions. Molecules are “removed” from pool of
reactants once they react. But e↵ect is negligible in large
population. Eventually reactants are depleted, but in small time
scale process is approximately Poisson

Introduction to Random Processes Continuous-time Markov Chains 25



Arrival times and interarrival times

t

N(t)

1

2

3

4

5

6

S1 S2 S3 S4 S5 S6

T1T2 T3 T4 T5T6

I Let S1, S2, . . . be the sequence of absolute times of events (arrivals)
I Def: Si is known as the i-th arrival time

) Notice that Si = mint(N(t) ⇠ i)

I Let T1,T2, . . . be the sequence of times between events
I Def: Ti is known as the i-th interarrival time

I Useful identities: Si =
Zi

k=1 Tk and Ti = Si � Si�1, where S0 = 0
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Interarrival times are i.i.d. exponential RVs

I Ccdf of T1 ) P (T1 > t) = P (N(t) = 0) = e��t

) T1 has exponential distribution with parameter �

I Since increments are stationary and independent, likely Ti are i.i.d.

Theorem
Interarrival times Ti of a Poisson process are independent identically
distributed exponential random variables with parameter �, i.e.,

P (Ti > t) = e��t

I Have already proved for T1. Let us see the rest
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Interarrival times example

I Let N1(t) and N2(t) be Poisson processes with rates �1 and �2

) Suppose N1(t) and N2(t) are independent

I Q: What is the expected time till the first arrival from either process?

I Denote as S (i)
1 the first arrival time from process i = 1, 2

) We are looking for E
Z
min

�
S (1)
1 , S (2)

1

⇥⇤

I Note that S (1)
1 = T (1)

1 and S (2)
1 = T (2)

1

) S (1)
1 ⇠ exp(�1) and S (2)

1 ⇠ exp(�2)

) Also, S (1)
1 and S (2)

1 are independent

I Recall that min
�
S (1)
1 , S (2)

1

⇥
⇠ exp(�1 + �2), then

E
Z
min

�
S (1)
1 , S (2)

1

⇥⇤
=

1

�1 + �2
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Alternative definition of Poisson process

I Start with sequence of independent random times T1,T2, . . .

I Times Ti ) exp(�) have exponential distribution with parameter �

I Define i-th arrival time Si

Si = T1 + T2 + . . .+ Ti

I Define counting process of
events occurred by time t

N(t) = max
i
(Si ⇠ t)

I N(t) is a Poisson process
t

N(t)

1

2

3

4

5

6

S1 S2 S3 S4 S5 S6

T1T2 T3 T4 T5T6

I If N(t) is a Poisson process interarrival times Ti are i.i.d. exponential

I To show that definition is equivalent have to show the converse

� If interarrival times are i.i.d. exponential, process is Poisson
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Three definitions of Poisson processes

Def. 1: Prob. of event proportional to interval width. Intervals independent

I Physical model definition

I Can a phenomenon be reasonably modeled as a Poisson process?

I The other two definitions are used for analysis and/or simulation

Def. 2: Prob. distribution of events in (0, t] is Poisson

I Event centric definition. Nr. of events in given time intervals

I Allows analysis and simulation

I Used when information about nr. of events in given time is desired

Def. 3: Prob. distribution of interarrival times is exponential

I Time centric definition. Times at which events happen

I Allows analysis and simulation

I Used when information about event times is of interest
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Number of visitors to a web page example

Ex: Count number of visits to a webpage between 6:00pm to 6:10pm

Def 1: Q: Poisson process? Yes, seems reasonable to have
I Probability of visit proportional to time interval duration
I Independent visits over disjoint time intervals

I Model as Poisson process with rate � visits/second (v/s)

Def 2: Arrivals in (s, s + t] are Poisson with parameter �t

I Prob. of exactly 5 visits in 1 sec? ) P (N(1) = 5) = e���5/5!

I Expected nr. of visits in 10 minutes? ) E [N(600)] = 600�

I On average, data shows N visits in 10 minutes. Estimate �̂ = N/600

Def 3: Interarrival times are i.i.d. Ti ⇠ exp(�)

I Expected time between visits? ) E [Ti ] = 1/�

I Expected arrival time Sn of n-th visitor?

) Recall Sn =
Zn

i=1 Ti , hence E [Sn] =
Zn

i=1 E [Ti ] = n/�
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Superposition of Poisson processes

I Let N1(t),N2(t) be Poisson processes with rates �1 and �2

) Suppose N1(t) and N2(t) are independent

t t 

N1(t) N2(t) 

S2 S1 S1 S2 S3 
1 
2 

1 
2 
3 

I Then N(t) := N1(t) + N2(t) is a Poisson process with rate �1 + �2

t 

N(t) 

5 

S5 

4 

1 
2 

S2 S3 

3 

S4 S1 
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Thinning of a Poisson process

I Let BN = B1,B2, . . . be an i.i.d. sequence of Bernoulli(p) RVs

I Let N(t) be a Poisson process with rate �, independent of BN

I Then M(t) :=
ZN(t)

i=1 Bi is a Poisson process with rate �p

t 

N(t) 

5 

S5 

4 

1 
2 

S2 S3 

3 

S4 S1 
t 

M(t) 

S1 S2 S3 
1 
2 
3 

Bi : 0 1 0 1 1 
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Splitting of a Poisson process

I Let ZN = Z1,Z2, . . . be an i.i.d. sequence of RVs, Zi ) {1, . . . ,m}
I Let N(t) be a Poisson process with rate �, independent of ZN

I Define Nk(t) =
ZN(t)

i=1 I {Zi = k}, for each k = 1, . . . ,m

I Then each Nk(t) is a Poisson process with rate �P (Z1 = k)

t 

N(t) 

5 

S5 

4 

1 
2 

S2 S3 

3 

S4 S1 

Zi : 1 2 3 2 2 t 

t 

N1(t) 

N2(t) 

S1 

S1 S2 S3 

1 

1 
2 
3 

t 

N3(t) 
1 

S1 
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M/M/1 queue example

I An M/M/1 queue is a BD process with �i = � and µi = µ constant

I State Q(t) is the number of customers in the system at time t

) Customers arrive for service at a rate of � per unit time

) They are serviced at a rate of µ customers per unit time

i i+1i�10

�

µ µ

�� �

µ

. . . . . .

I The M/M is for Markov arrivals/Markov departures

) Implies a Poisson arrival process, exponential services times

) The 1 is because there is only one server

Introduction to Random Processes Continuous-time Markov Chains 13



Definition

I Continuous-time positive variable t 2 [0,1)

I Time-dependent random state X (t) takes values on a countable set
I In general denote states as i = 0, 1, 2, . . ., i.e., here the state space is N
I If X (t) = i we say “the process is in state i at time t”

I Def: Process X (t) is a continuous-time Markov chain (CTMC) if

P
�
X (t + s) = j

��X (s) = i ,X (u) = x(u), u < s
�

= P
�
X (t + s) = j

��X (s) = i
�

I Markov property ) Given the present state X (s)

) Future X (t + s) is independent of the past X (u) = x(u), u < s

I In principle need to specify functions P
�
X (t + s) = j

��X (s) = i
�

) For all times t and s, for all pairs of states (i , j)

Introduction to Random Processes Continuous-time Markov Chains 3



Notation and homogeneity

I Notation
I X [s : t] state values for all times s  u  t, includes borders
I X (s : t) values for all times s < u < t, borders excluded
I X (s : t] values for all times s < u  t, exclude left, include right
I X [s : t) values for all times s  u < t, include left, exclude right

I Homogeneous CTMC if P
�
X (t + s) = j

��X (s) = i
�
invariant for all s

) We restrict consideration to homogeneous CTMCs

I Still need Pij(t) := P
�
X (t + s) = j

��X (s) = i
�
for all t and pairs (i , j)

) Pij(t) is known as the transition probability function. More later

I Markov property and homogeneity make description somewhat simpler
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Transition times

I Ti = time until transition out of state i into any other state j

I Def: Ti is a random variable called transition time with ccdf

P (Ti > t) = P
�
X (0 : t] = i

��X (0) = i
�

I Probability of Ti > t + s given that Ti > s? Use cdf expression

P
�
Ti > t + s

��Ti > s
�
= P

�
X (0 : t + s] = i

��X [0 : s] = i
�

= P
�
X (s : t + s] = i

��X [0 : s] = i
�

= P
�
X (s : t + s] = i

��X (s) = i
�

= P
�
X (0 : t] = i

��X (0) = i
�

I Used that X [0 : s] = i given, Markov property, and homogeneity

I From definition of Ti ) P
�
Ti > t + s

��Ti > s
�
= P (Ti > t)

) Transition times are exponential random variables

Introduction to Random Processes Continuous-time Markov Chains 5



Alternative definition

I Exponential transition times is a fundamental property of CTMCs

) Can be used as “algorithmic” definition of CTMCs

I Continuous-time random process X (t) is a CTMC if
(a) Transition times Ti are exponential random variables with mean 1/⌫i
(b) When they occur, transition from state i to j with probability Pij

1X

j=1

Pij = 1, Pii = 0

(c) Transition times Ti and transitioned state j are independent

I Define matrix P grouping transition probabilities Pij

I CTMC states evolve as in a discrete-time Markov chain

) State transitions occur at exponential intervals Ti ⇠ exp(⌫i )

) As opposed to occurring at fixed intervals

Introduction to Random Processes Continuous-time Markov Chains 6



Embedded discrete-time Markov chain

I Consider a CTMC with transition matrix P and rates ⌫i

I Def: CTMC’s embedded discrete-time MC has transition matrix P

I Transition probabilities P describe a discrete-time MC

) No self-transitions (Pii = 0, P’s diagonal null)

) Can use underlying discrete-time MCs to study CTMCs

I Def: State j accessible from i if accessible in the embedded MC

I Def: States i and j communicate if they do so in the embedded MC

) Communication is a class property

I Recurrence, transience, ergodicity. Class properties . . .More later
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Transition rates

I Expected value of transition time Ti is E [Ti ] = 1/⌫i

) Can interpret ⌫i as the rate of transition out of state i

) Of these transitions, a fraction Pij are into state j

I Def: Transition rate from i to j is qij := ⌫iPij

I Transition rates o↵er yet another specification of CTMCs

I If qij are given can recover ⌫i as

⌫i = ⌫i

1X

j=1

Pij =
1X

j=1

⌫iPij =
1X

j=1

qij

I Can also recover Pij as ) Pij = qij/⌫i = qij

✓ 1X

j=1

qij

◆�1
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Birth and death process example

I State X (t) = 0, 1, . . . Interpret as number of individuals

I Birth and deaths occur at state-dependent rates. When X (t) = i

I Births ) Individuals added at exponential times with mean 1/�i

) Birth or arrival rate = �i births per unit of time

I Deaths ) Individuals removed at exponential times with rate 1/µi

) Death or departure rate = µi deaths per unit of time

I Birth and death times are independent

I Birth and death (BD) processes are then CTMCs
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Transition times and probabilities

I Q: Transition times Ti? Leave state i 6= 0 when birth or death occur

I If TB and TD are times to next birth and death, Ti = min(TB ,TD)

) Since TB and TD are exponential, so is Ti with rate

⌫i = �i + µi

I When leaving state i can go to i +1 (birth first) or i � 1 (death first)

) Birth occurs before death with probability
�i

�i + µi
= Pi,i+1

) Death occurs before birth with probability
µi

�i + µi
= Pi,i�1

I Leave state 0 only if a birth occurs, then

⌫0 = �0, P01 = 1

) If CTMC leaves 0, goes to 1 with probability 1

) Might not leave 0 if �0 = 0 (e.g., to model extinction)
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Transition rates

I Rate of transition from i to i + 1 is (recall definition qij = ⌫iPij)

qi,i+1 = ⌫iPi,i+1 = (�i + µi )
�i

�i + µi
= �i

I Likewise, rate of transition from i to i � 1 is

qi,i�1 = ⌫iPi,i�1 = (�i + µi )
µi

�i + µi
= µi

I For i = 0 ) q01 = ⌫0P01 = �0

i i+1i�10

�i

µi µi+1

�i�1�0 �i+1

µ1

. . . . . .

I Somewhat more natural representation. Similar to discrete-time MCs
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Poisson process example

I A Poisson process is a BD process with �i = � and µi = 0 constant

I State N(t) counts the total number of events (arrivals) by time t

) Arrivals occur a rate of � per unit time

) Transition times are the i.i.d. exponential interarrival times

i i+1i�10

��� �

. . . . . .

I The Poisson process is a CTMC
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M/M/1 queue example

I An M/M/1 queue is a BD process with �i = � and µi = µ constant

I State Q(t) is the number of customers in the system at time t

) Customers arrive for service at a rate of � per unit time

) They are serviced at a rate of µ customers per unit time

i i+1i�10

�

µ µ

�� �

µ

. . . . . .

I The M/M is for Markov arrivals/Markov departures

) Implies a Poisson arrival process, exponential services times

) The 1 is because there is only one server
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Transition probability function

I Two equivalent ways of specifying a CTMC

1) Transition time averages 1/⌫i + transition probabilities Pij

) Easier description

) Typical starting point for CTMC modeling

2) Transition probability function Pij(t) := P
�
X (t + s) = j

��X (s) = i
�

) More complete description for all t � 0

) Similar in spirit to Pn
ij for discrete-time Markov chains

I Goal: compute Pij(t) from transition times and probabilities

) Notice two obvious properties Pij(0) = 0, Pii (0) = 1
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Roadmap to determine Pij(t)

I Goal is to obtain a di↵erential equation whose solution is Pij(t)

) Study change in Pij(t) when time changes slightly

I Separate in two subproblems (divide and conquer)

) Transition probabilities for small time h, Pij(h)

) Transition probabilities in t + h as function of those in t and h

I We can combine both results in two di↵erent ways

1) Jump from 0 to t then to t + h ) Process runs a little longer

) Changes where the process is going to ) Forward equations

2) Jump from 0 to h then to t + h ) Process starts a little later

) Changes where the process comes from ) Backward equations
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Transition probability in infinitesimal time

Theorem
The transition probability functions Pii (t) and Pij(t) satisfy the following
limits as t approaches 0

lim
t!0

Pij(t)

t
= qij , lim

t!0

1� Pii (t)

t
= ⌫i

I Since Pij(0) = 0, Pii (0) = 1 above limits are derivatives at t = 0

@Pij(t)

@t

����
t=0

= qij ,
@Pii (t)

@t

����
t=0

= �⌫i

I Limits also imply that for small h (recall Taylor series)

Pij(h) = qijh + o(h), Pii (h) = 1� ⌫ih + o(h)

I Transition rates qij are “instantaneous transition probabilities”

) Transition probability coe�cient for small time h
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Chapman-Kolmogorov equations

Theorem
For all times s and t the transition probability functions Pij(t + s) are
obtained from Pik(t) and Pkj(s) as

Pij(t + s) =
1X

k=0

Pik(t)Pkj(s)

I As for discrete-time MCs, to go from i to j in time t + s

) Go from i to some state k in time t ) Pik(t)

) In the remaining time s go from k to j ) Pkj(s)

) Sum over all possible intermediate states k
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Chapman-Kolmogorov equations (proof)

Proof.

Pij(t + s)

= P
�
X (t + s) = j

��X (0) = i
�

Definition of Pij(t + s)

=
1X

k=0

P
�
X (t + s) = j

��X (t) = k,X (0) = i
�
P
�
X (t) = k

��X (0) = i
�

Law of total probability

=
1X

k=0

P
�
X (t + s) = j

��X (t) = k
�
Pik(t) Markov property of CTMC

and definition of Pik(t)

=
1X

k=0

Pkj(s)Pik(t) Definition of Pkj(s)
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Combining both results

I Let us combine the last two results to express Pij(t + h)

I Use Chapman-Kolmogorov’s equations for 0 ! t ! h

Pij(t + h) =
1X

k=0

Pik(t)Pkj(h) = Pij(t)Pjj(h) +
1X

k=0,k 6=j

Pik(t)Pkj(h)

I Substitute infinitesimal time expressions for Pjj(h) and Pkj(h)

Pij(t + h) = Pij(t)(1� ⌫jh) +
1X

k=0,k 6=j

Pik(t)qkjh + o(h)

I Subtract Pij(t) from both sides and divide by h

Pij(t + h)� Pij(t)

h
= �⌫jPij(t) +

1X

k=0,k 6=j

Pik(t)qkj +
o(h)

h

I Right-hand side equals a “derivative” ratio. Let h ! 0 to prove . . .
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Kolmogorov’s forward equations

Theorem
The transition probability functions Pij(t) of a CTMC satisfy the system
of di↵erential equations (for all pairs i , j)

@Pij(t)

@t
=

1X

k=0,k 6=j

qkjPik(t)� ⌫jPij(t)

I Interpret each summand in Kolmogorov’s forward equations
I @Pij(t)/@t = rate of change of Pij(t)
I qkjPik(t) = (transition into k in 0 ! t) ⇥

(rate of moving into j in next instant)
I ⌫jPij(t) = (transition into j in 0 ! t) ⇥

(rate of leaving j in next instant)

I Change in Pij(t) =
P

k (moving into j from k)� (leaving j)

I Kolmogorov’s forward equations valid in most cases, but not always
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Kolmogorov’s backward equations

I For forward equations used Chapman-Kolmogorov’s for 0 ! t ! h

I For backward equations we use 0 ! h ! t to express Pij(t + h) as

Pij(t + h) =
1X

k=0

Pik(h)Pkj(t) = Pii (h)Pij(t) +
1X

k=0,k 6=i

Pik(h)Pkj(t)

I Substitute infinitesimal time expression for Pii (h) and Pik(h)

Pij(t + h) = (1� ⌫ih)Pij(t) +
1X

k=0,k 6=i

qikhPkj(t) + o(h)

I Subtract Pij(t) from both sides and divide by h

Pij(t + h)� Pij(t)

h
= �⌫iPij(t) +

1X

k=0,k 6=i

qikPkj(t) +
o(h)

h

I Right-hand side equals a “derivative” ratio. Let h ! 0 to prove . . .
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Kolmogorov’s backward equations

Theorem
The transition probability functions Pij(t) of a CTMC satisfy the system
of di↵erential equations (for all pairs i , j)

@Pij(t)

@t
=

1X

k=0,k 6=i

qikPkj(t)� ⌫iPij(t)

I Interpret each summand in Kolmogorov’s backward equations
I @Pij(t)/@t = rate of change of Pij(t)
I qikPkj(t) = (transition into j in h ! t) ⇥

(rate of transition into k in initial instant)
I ⌫iPij(t) = (transition into j in h ! t) ⇥

(rate of leaving i in initial instant)

I Forward equations ) change in Pij(t) if finish h later

I Backward equations ) change in Pij(t) if start h earlier

I Where process goes (forward) vs. where process comes from (backward)
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A CTMC with two states

Ex: Simplest possible CTMC has only two states. Say 0 and 1

I Transition rates are q01 and q10
I Given q01 and q10 can find

rates of transitions out of {0, 1}

⌫0 =
X

j

q0j = q01, ⌫1 =
X

j

q1j = q10

0 1

q01

q10

I Use Kolmogorov’s equations to find transition probability functions

P00(t), P01(t), P10(t), P11(t)

I Transition probabilities out of each state sum up to one

P00(t) + P01(t) = 1, P10(t) + P11(t) = 1
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Kolmogorov’s forward equations

I Kolmogorov’s forward equations (process runs a little longer)

P
0

i j(t) =
1X

k=0,k 6=j

qkjPik(t)� ⌫jPi j(t)

I For the two state CTMC

P
0

00(t) = q10P01(t)� ⌫0P00(t), P
0

01(t) = q01P00(t)� ⌫1P01(t)

P
0

10(t) = q10P11(t)� ⌫0P10(t), P
0

11(t) = q01P10(t)� ⌫1P11(t)

I Probabilities out of 0 sum up to 1 ) eqs. in first row are equivalent

I Probabilities out of 1 sum up to 1 ) eqs. in second row are equivalent

) Pick the equations for P
0

00(t) and P
0

11(t)
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Solution of forward equations

I Use ) Relation between transition rates: ⌫0 = q01 and ⌫1 = q10
) Probs. sum 1: P01(t) = 1� P00(t) and P10(t) = 1� P11(t)

P
0

00(t) = q10
⇥
1� P00(t)

⇤
� q01P00(t) = q10 � (q10 + q01)P00(t)

P
0

11(t) = q01
⇥
1� P11(t)

⇤
� q10P11(t) = q01 � (q10 + q01)P11(t)

I Can obtain exact same pair of equations from backward equations

I First-order linear di↵erential equations ) Solutions are exponential

I For P00(t) propose candidate solution (just di↵erentiate to check)

P00(t) =
q10

q10 + q01
+ ce�(q10+q01)t

) To determine c use initial condition P00(0) = 1
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Solution of forward equations (continued)

I Evaluation of candidate solution at initial condition P00(0) = 1 yields

1 =
q10

q10 + q01
+ c ) c =

q01
q10 + q01

I Finally transition probability function P00(t)

P00(t) =
q10

q10 + q01
+

q01
q10 + q01

e�(q10+q01)t

I Repeat for P11(t). Same exponent, di↵erent constants

P11(t) =
q01

q10 + q01
+

q10
q10 + q01

e�(q10+q01)t

I As time goes to infinity, P00(t) and P11(t) converge exponentially

) Convergence rate depends on magnitude of q10 + q01
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Convergence of transition probabilities

I Recall P01(t) = 1� P00(t) and P10(t) = 1� P11(t)

I Limiting (steady-state) probabilities are

lim
t!1

P00(t) =
q10

q10 + q01
, lim

t!1
P01(t) =

q01
q10 + q01

lim
t!1

P11(t) =
q01

q10 + q01
, lim

t!1
P10(t) =

q10
q10 + q01

I Limit distribution exists and is independent of initial condition

) Compare across diagonals
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Kolmogorov’s forward equations in matrix form

I Restrict attention to finite CTMCs with N states

) Define matrix R 2 RN⇥N with elements rij = qij , rii = �⌫i

I Rewrite Kolmogorov’s forward eqs. as (process runs a little longer)

P
0
ij(t) =

NX

k=1,k 6=j

qkjPik(t)� ⌫jPij(t) =
NX

k=1

rkjPik(t)

I Right-hand side defines elements of a matrix product

P11(t) · P1k (t) · P1N (t)

· · · · ·
Pi1(t) · Pik (t) · PiN (t)

· · · · ·
PN1(t) · PNk (t) · PJN (t)

0

BBBBBBB@

1

CCCCCCCA

r11 · r1j · r1N
· · · · ·
rk1 · rkj · rkN
· · · · ·

rN1 · rNj · rNN

0

BBBBBB@

1

CCCCCCA

s11 · s1j · s1N
· · · · ·
si1 · sij · siN
· · · · ·

sN1 · sNk · sNN

0

BBBBBB@

1

CCCCCCA
P(t) =

= R

= P(t)R = P
0
(t)

r1j Pi1(t)

rkjPik (t)

rNjPiN (t)
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Kolmogorov’s backward equations in matrix form

I Similarly, Kolmogorov’s backward eqs. (process starts a little later)

P
0

ij(t) =
NX

k=1,k 6=i

qikPkj(t)� ⌫iPij(t) =
NX

k=1

rikPkj(t)

I Right-hand side also defines a matrix product

r11 · r1k · r1N
· · · · ·
ri1 · rik · riN
· · · · ·

rN1 · rNk · rJN

0

BBBBB@

1

CCCCCA

P11(t) · P1j (t) · P1N (t)

· · · · ·
Pk1(t) · Pkj (t) · PkN (t)

· · · · ·
PN1(t) · PNj (t) · PNN (t)

0

BBBBBBB@

1

CCCCCCCA

s11 · s1j · s1N
· · · · ·
si1 · sij · siN
· · · · ·

sN1 · sNk · sNN

0

BBBBBB@

1

CCCCCCA
R =

= P(t)

= RP(t) = P
0
(t)

ri1P1j (t)

rikPkj (t)

riNPNj (t)
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Kolmogorov’s equations in matrix form

I Matrix form of Kolmogorov’s forward equation ) P
0
(t) = P(t)R

I Matrix form of Kolmogorov’s backward equation ) P
0
(t) = RP(t)

) More similar than apparent

) But not equivalent because matrix product not commutative

I Notwithstanding both equations have to accept the same solution
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Matrix exponential

I Kolmogorov’s equations are first-order linear di↵erential equations

) They are coupled, P 0
ij(t) depends on Pkj(t) for all k

) Accepts exponential solution ) Define matrix exponential

I Def: The matrix exponential eAt of matrix At is the series

eAt =
1X

n=0

(At)n

n!
= I+ At +

(At)2

2
+

(At)3

2⇥ 3
+ . . .

I Derivative of matrix exponential with respect to t

@eAt

@t
= 0+ A+ A2t +

A3t2

2
+ . . . = A

✓
I+ At +

(At)2

2
+ . . .

◆
= AeAt

I Putting A on right side of product shows that ) @eAt

@t
= eAtA

Introduction to Random Processes Continuous-time Markov Chains 35



Solution of Kolmogorov’s equations

I Propose solution of the form P(t) = eRt

I P(t) solves backward equations, since derivative is

@P(t)
@t

=
@eRt

@t
= ReRt = RP(t)

I It also solves forward equations

@P(t)
@t

=
@eRt

@t
= eRtR = P(t)R

I Notice that P(0) = I, as it should (Pii (0) = 1, and Pij(0) = 0)
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Computing the matrix exponential

I Suppose A 2 Rn⇥n is diagonalizable, i.e., A = UDU�1

) Diagonal matrix D = diag(�1, . . . ,�n) collects eigenvalues �i

) Matrix U has the corresponding eigenvectors as columns

I We have the following neat identity

eAt =
1X

n=0

(UDU�1t)n

n!
= U

 1X

n=0

(Dt)n

n!

!
U�1 = UeDtU�1

I But since D is diagonal, then

eDt =
1X

n=0

(Dt)n

n!
=

0

B@
e�1t . . . 0
...

. . .
...

0 . . . e�nt

1

CA
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Two state CTMC example

Ex: Simplest CTMC with two states 0 and 1

I Transition rates are q01 = 3 and q10 = 1
0 1

q01

q10

I Recall transition time rates are ⌫0 = q01 = 3, ⌫1 = q10 = 1, hence

R =

✓
�⌫0 q01
q10 �⌫1

◆
=

✓
�3 3
1 �1

◆

I Eigenvalues of R are 0,�4, eigenvectors [1, 1]T and [�3, 1]T . Thus

U =

✓
1 �3
1 1

◆
, U�1 =

✓
1/4 3/4
�1/4 1/1

◆
, eDt =

✓
1 0
0 e�4t

◆

I The solution to the forward equations is

P(t) = eRt = UeDtU�1 =

✓
1/4 + (3/4)e�4t 3/4� (3/4)e�4t

1/4� (1/4)e�4t 3/4 + (1/4)e�4t

◆
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Recurrent and transient states

I Recall the embedded discrete-time MC associated with any CTMC

) Transition probs. of MC form the matrix P of the CTMC

) No self transitions (Pii = 0, P’s diagonal null)

I States i $ j communicate in the CTMC if i $ j in the MC

) Communication partitions MC in classes

) Induces CTMC partition as well

I Def: CTMC is irreducible if embedded MC contains a single class

I State i is recurrent if it is recurrent in the embedded MC

) Likewise, define transience and positive recurrence for CTMCs

I Transience and recurrence shared by elements of a MC class

) Transience and recurrence are class properties of CTMCs

I Periodicity not possible in CTMCs
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Limiting probabilities

Theorem
Consider irreducible, positive recurrent CTMC with transition rates ⌫i and
qij . Then, lim

t!1
Pij(t) exists and is independent of the initial state i , i.e.,

Pj = lim
t!1

Pij(t) exists for all (i , j)

Furthermore, steady-state probabilities Pj � 0 are the unique nonnegative
solution of the system of linear equations

⌫jPj =
1X

k=0,k 6=j

qkjPk ,
1X

j=0

Pj = 1

I Limit distribution exists and is independent of initial condition

) Obtained as solution of system of linear equations

) Like discrete-time MCs, but equations slightly di↵erent
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Algebraic relation to determine limit probabilities

I As with MCs di�cult part is to prove that Pj = lim
t!1

Pij(t) exists

I Algebraic relations obtained from Kolmogorov’s forward equations

@Pij(t)

@t
=

1X

k=0,k 6=j

qkjPik(t)� ⌫jPij(t)

I If limit distribution exists we have, independent of initial state i

lim
t!1

@Pij(t)

@t
= 0, lim

t!1
Pij(t) = Pj

I Considering the limit of Kolomogorov’s forward equations yields

0 =
1X

k=0,k 6=j

qkjPk � ⌫jPj

I Reordering terms the limit distribution equations follow
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Two state CTMC example

Ex: Simplest CTMC with two states 0 and 1

I Transition rates are q01 and q10
0 1

q01

q10

I From transition rates find mean transition times ⌫0 = q01, ⌫1 = q10

I Stationary distribution equations

⌫0P0 = q10P1, ⌫1P1 = q01P0, P0 + P1 = 1,

q01P0 = q10P1, q10P1 = q01P0

I Solution yields ) P0 =
q10

q10 + q01
, P1 =

q01
q10 + q01

I Larger rate q10 of entering 0 ) Larger prob. P0 of being at 0

I Larger rate q01 of entering 1 ) Larger prob. P1 of being at 1
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Ergodicity

I Def: Fraction of time Ti (t) spent in state i by time t

Ti (t) :=
1

t

Z t

0
I {X (⌧) = i}d⌧

) Ti (t) a time/ergodic average, lim
t!1

Ti (t) is an ergodic limit

I If CTMC is irreducible, positive recurrent, the ergodic theorem holds

Pi = lim
t!1

Ti (t) = lim
t!1

1

t

Z t

0
I {X (⌧) = i}d⌧ a.s.

I Ergodic limit coincides with limit probabilities (almost surely)
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Function’s ergodic limit

I Consider function f (i) associated with state i . Can write f
�
X (t)

�
as

f
�
X (t)

�
=

1X

i=1

f (i)I {X (t) = i}

I Consider the time average of f
�
X (t)

�

lim
t!1

1

t

Z t

0
f
�
X (⌧)

�
d⌧ = lim

t!1

1

t

Z t

0

1X

i=1

f (i)I {X (⌧) = i}d⌧

I Interchange summation with integral and limit to say

lim
t!1

1

t

Z t

0
f
�
X (⌧)

�
d⌧ =

1X

i=1

f (i) lim
t!1

1

t

Z t

0
I {X (⌧) = i}d⌧ =

1X

i=1

f (i)Pi

I Function’s ergodic limit = Function’s expectation under limiting dist.
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Limit distribution equations as balance equations

I Recall limit distribution equations ) ⌫jPj =
1X

k=0,k 6=j

qkjPk

I Pj = fraction of time spent in state j

I ⌫j = rate of transition out of state j given CTMC is in state j

) ⌫jPj = rate of transition out of state j (unconditional)

I qkj = rate of transition from k to j given CTMC is in state k

) qkjPk = rate of transition from k to j (unconditional)

)
1X

k=0,k 6=j

qkjPk = rate of transition into j , from all states

I Rate of transition out of state j = Rate of transition into state j

I Balance equations ) Balance nr. of transitions in and out of state j
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Limit distribution for birth and death process

I Birth/deaths occur at state-dependent rates. When X (t) = i

I Births ) Individuals added at exponential times with mean 1/�i

) Birth rate = upward transition rate = qi,i+1 = �i

I Deaths ) Individuals removed at exponential times with mean 1/µi

) Death rate = downward transition rate = qi,i�1 = µi

I Transition time rates ) ⌫i = �i + µi , i > 0 and ⌫0 = �0

i i+1i�10

�i

µi µi+1

�i�1�0 �i+1

µ1

. . . . . .

I Limit distribution/balance equations: Rate out of j = Rate into j

(�i + µi )Pi = �i�1Pi�1 + µi+1Pi+1

�0P0 = µ1P1
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