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Exponential distribution

» Exponential RVs often model times at which events occur

= Or time elapsed between occurrence of random events
» RV T ~ exp(\) is exponential with parameter X if its pdf is
fr(t)=Xe *,  forallt>0

» Cdf, integral of the pdf, is = Fr(t)=P(T <t)=1-e M
= Complementary (c)cdfis = P(T >t)=1— Fr(t)=e **
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Expected value

» Expected value of time T ~ exp(}) is

o0

E[T] :/ the Mdt = —te” M
0

> 1
+/ e Mdt =04
o Jo A

= Integrated by parts with u = t, dv = \e " Mdt

» Mean time is inverse of parameter A
= \ is rate/frequency of events happening at intervals T
= Interpret: Average of A\t events by time t

» Bigger A = smaller expected times, larger frequency of events
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Second moment and variance

» For second moment also integrate by parts (u = t?, dv = \e *tdt)

oo (']
+ / 2te Mdt
0

E[T?] :/ t’Ae Mdt = —t?e M
0 0

» First term is 0, second is (2/A\)E[T]

E[T?] = ;/O the M = %

» The variance is computed from the mean and second moment

2 1 1
var[T] =E [T?] —1[-32[T]:p—p=p

=- Parameter \ controls mean and variance of exponential RV



Memoryless random times

» Def: Consider random time T. We say time T is memoryless if

P(T>s+t|T>t)=P(T>5)

» Probability of waiting s extra units of time (e.g., seconds) given that
we waited t seconds, is just the probability of waiting s seconds

= System does not remember it has already waited t seconds

=- Same probability irrespectively of time already elapsed

Ex: Chemical reaction A+ B — AB occurs when molecules A and B
“collide”. A, B move around randomly. Time T until reaction



Exponential RVs are memoryless

v

Write memoryless property in terms of joint pdf

P(T>s+t,T>t)
P(T >t)

P(T>s+t|T>t)= =P(T >5s)

v

Notice event {T > s+ t, T > t} is equivalent to {T > s + t}
= Replace P(T >s+t, T >t)=P(T > s+ t) and reorder

P(T>s+t)=P(T>t)P(T >5)

v

If T ~exp()\), ccdfis P(T > t) = e~*t so that

P(T>s+t)=e M) = Ma X = P(T > t)P(T >s)

v

If random time T is exponential = T is memoryless



Continuous memoryless RVs are exponential

v

Consider a function g(t) with the property g(t + s) = g(t)g(s)

v

Q: Functional form of g(t)? Take logarithms

log g(t + s) = log g(t) + log g(s)

= Only holds for all t and s if log g(t) = ct for some constant ¢
= Which in turn, can only hold if g(t) = e for some constant ¢

» Compare observation with statement of memoryless property
P(T>s+t)=P(T>t)P(T >5s)

= It must be P (T > t) = e for some constant ¢

v

T continuous: only true for exponential T ~ exp(—c)
T discrete: only geometric P (T > t) = (1 — p)* with (1 — p) = ¢

v

v

If continuous random time T is memoryless = T is exponential



Main memoryless property result

Theorem
A continuous random variable T is memoryless if and only if it is
exponentially distributed. That is

P(T>s+t|T>t)=P(T>5s)
if and only if fr(t) = Ae™*t for some A > 0

» Exponential RVs are memoryless. Do not remember elapsed time

= Only type of continuous memoryless RVs

» Discrete RV T is memoryless if and only of it is geometric
= Geometrics are discrete approximations of exponentials

= Exponentials are continuous limits of geometrics

» Exponential = time until success < Geometric = nr. trials until success



Exponential times example

v

First customer's arrival to a store takes T ~ exp(1/10) minutes
= Suppose 5 minutes have passed without an arrival

v

Q: How likely is it that the customer arrives within the next 3 mins.?

» Use memoryless property of exponential T

P(T<8|T>5=1-P(T>8|T>5)
=1-P(T>3)=1-e*=1-¢93

v

Q: How likely is it that the customer arrives after time T = 97

P(T>9[T>5)=P(T>4) ==

v

Q: What is the expected additional time until the first arrival?
Additional time is T — 5, and P(T—5 > t{ T > 5) =P(T >1t)

v

E[T-5|T>5=E[T]=1/A=10



Time to first event

v

Independent exponential RVs Ty, T, with parameters A1, A,

v

Q: Prob. distribution of time to first event, i.e., T := min(Ty, T5)?
= To have T >t we need both T; > tand T, >t

» Using independence of T; and T, we can write

P(T>t):P(T1>t,T2>t):P(T1>t)P(T2>t)

v

Substituting expressions of exponential ccdfs
P(T > t) = e Mtehet = g~ (A2t

» T :=min(Ty, T2) is exponentially distributed with parameter A; + A,

v

In general, for n independent RVs T; ~ exp()\;) define T := min; T;
= T is exponentially distributed with parameter 3" ; \;



First event to happen

> Q: Prob. P(Ty < T3) of T1 ~ exp(A1) happening before T, ~ exp(A2)?

» Condition on T, = t, integrate over the pdf of T, independence
(oo} (oo}
P(Ti< Th) :/ P(Ty<t|Ta=t)fr(t)dt :/ Fr,(t)fr,(t) dt
0 0

» Substitute expressions for exponential pdf and cdf

00 )\1
P(Ti< T2) = 1— e M)he M dt =
(Ti<T)= [ (1=e™)ne e
» Either T; comes before T or vice versa, hence
P(Ty< To)=1-P(Ty < Ty) = —22
2 1) = 1 2 RSV

= Probabilities are relative values of rates (parameters)
» Larger rate =- smaller average = higher prob. happening first



Additional properties of exponential RVs

v

Consider n independent RVs T; ~ exp(}\;). T; time to i-th event

v

Probability of j-th event happening first

P(Tj:m.inT;) :Zn)\j)\, J=1...,n
! j=1N

Time to first event and rank ordering of events are independent

v

P(mjnT,-zt,T,-l<...< T) :P(mjnT,-zt)P(T,- <...<T)

v

Suppose T ~ exp(}), independent of non-negative RV X

v

Strong memoryless property asserts
P(T>X+t|T>X)=P(T>t)

= Also forgets random but independent elapsed times



Strong memoryless property example

v

Independent customer arrival times T; ~ exp(X;), i=1,...,3

= Suppose customer 3 arrives first, i.e., min(Ty, Tp) > T3

v

Q: Probability that time between first and second arrival exceeds t?

v

We want to compute

P (min(Ty, T2) — T3 > t| min(Ty, T2) > T3)

» Denote T;, := min(Ty, T,) the time to second arrival
= Recall Tj, ~ exp(A1 + X2), Tj, independent of T;, = T3
> Apply the strong memoryless property

P(T,—Ts>t|T,>Ts3) =P (T, >t)=e (Mt



Probability of event in infinitesimal time

v

Q: Probability of an event happening in infinitesimal time h?

v

Want P (T < h) for small h
h
P(T < h) :/ e M dt ~ Ah
0

AP (T < t)

ot =A

t=0

= Equivalent to

» Sometimes also write P (T < h) = Ah+ o(h)

o)

= o(h) implies I|m

= Read as negllglble Wlth respect to h"

v

Q: Two independent events in infinitesimal time h?

P(Ty < h, Ta < h) =~ (Ah)(M2h) = M Aah? = o(h)



Counting processes

v

Random process N(t) in continuous time t € R

» Def: Counting process N(t) counts number of events by time ¢

» Nonnegative integer valued: N(0) =0, N(t) € {0,1,2,...}
» Nondecreasing: N(s) < N(t) fors <t
» Event counter: N(t) — N(s) = number of events in interval (s, t]

» N(t) continuous from the right
> N(Si) — N(S2) = 2, while N(Ss) — N(S2 — €) = 3 for small ¢ > 0

Ex.1: # text messages (SMS) typed N(t)

since beginning of class

Ex.2: # economic crises since 1900

HFNWSOoOo

Ex.3: # customers at Wegmans since

8 am this morning ‘ t
51 52 53 54 55 56




Independent increments

» Consider times s; < t; < 5, < tp and intervals (s1, t1] and (sz, t2]
= N(t1) — N(s1) events occur in (s1, t1]
= N(t2) — N(sz) events occur in (sp, t]

» Def: Independent increments implies latter two are independent
P(N(tl) — N(Sl) =k, N(tz) — N(Sg) = /)
=P (N(t1) = N(s1) = k) P(N(t2) — N(s2) = /)
» Number of events in disjoint time intervals are independent

Ex.1: Likely true for SMS, except for “have to send” messages
Ex.2: Most likely not true for economic crises (business cycle)

Ex.3: Likely true for Wegmans, except for unforeseen events (storms)

» Does not mean N(t) independent of N(s), say for t > s
= These events are clearly dependent, since N(t) is at least N(s)



Stationary increments

> Consider time intervals (0, t] and (s, s + t]
= N(t) events occur in (0, t]
= N(s+t) — N(s) events in (s,s + ]

» Def: Stationary increments implies latter two have same prob. dist.

P(N(s+t)— N(s) = k) =P(N(t) =k)

> Prob. dist. of number of events depends on length of interval only

Ex.1: Likely true if lecture is good and you keep interest in the class
Ex.2: Maybe true if you do not believe we become better at preventing crises

Ex.3: Most likely not true because of, e.g., rush hours and slow days



Poisson process

» Def: A counting process N(t) is a Poisson process if
(a) The process has stationary and independent increments
(b) The number of events in (0, t] has Poisson distribution with mean At
ac(At)"

P(N(t)=n)=¢e i

» An equivalent definition is the following
(i) The process has stationary and independent increments
(ii) Single event in infinitesimal time = P (N(h) = 1) = Ah+ o(h)
(iii) Multiple events in infinitesimal time = P (N(h) > 1) = o(h)
= A more intuitive definition
» Conditions (i) and (a) are the same
» That (b) implies (ii) and (iii) is obvious
> Substitute small h in Poisson pmf's expression for P (N(t) = n)
» To see that (ii) and (iii) imply (b) requires some work



What is a Poisson process?

» Fundamental defining properties of a Poisson process
> Events happen in small interval h with probability Ah proportional to h
» Whether event happens in an interval has no effect on other intervals
» Modeling questions

Q1: Expect probability of event proportional to length of interval?
Q2: Expect subsequent intervals to behave independently?

= If positive, then a Poisson process model is appropriate

» Typically arise in a large population of agents acting independently
= Larger interval, larger chance an agent takes an action
= Action of one agent has no effect on action of other agents
= Has therefore negligible effect on action of group



Examples of Poisson processes

Ex.1:

Ex.2:

Ex.3:

Number of people arriving at subway station. Number of cars
arriving at a highway entrance. Number of customers entering a
store ... Large number of agents (people, drivers, customers) acting
independently

SMS generated by all students in the class. Once you send an SMS
you are likely to stay silent for a while. But in a large population this
has a minimal effect in the probability of someone generating a SMS

Count of molecule reactions. Molecules are “removed” from pool of
reactants once they react. But effect is negligible in large
population. Eventually reactants are depleted, but in small time
scale process is approximately Poisson



Arrival times and interarrival times

N(t)
5
4
3
2
1
t
S S S3 Ss S5 Se
> Let 51, 5,,... be the sequence of absolute times of events (arrivals)

Def: S; is known as the j-th arrival time
= Notice that 5; = min(N(t) > i)

v

Let Ty, Tp,... be the sequence of times between events
Def: T; is known as the i-th interarrival time

vy

Useful identities: S; = 22:1 Teand T; =S; — S;_1, where 5o =0

v



Interarrival times are i.i.d. exponential RVs

» Ccdfof Ty = P(T1>t) =P(N(t) =0)=e

= T7 has exponential distribution with parameter A
» Since increments are stationary and independent, likely T; are i.i.d.

Theorem
Interarrival times T; of a Poisson process are independent identically
distributed exponential random variables with parameter ), i.e.,

P(T,‘ > t) = ei/\t

» Have already proved for T;. Let us see the rest



Interarrival times example

v

Let Nyi(t) and Ny(t) be Poisson processes with rates A\; and Ay
= Suppose Ni(t) and N(t) are independent

v

Q: What is the expected time till the first arrival from either process?

Denote as Sl(i) the first arrival time from process i = 1,2

= We are looking for E [min (51(1)» 51(2)”

v

v

Note that S = T and 5 = T®
= 51(1) ~ exp(A1) and 5§2) ~ exp(A2)

= Also, 51(1) and 51(2) are independent

v

Recall that min (51(1), 51(2)) ~ exp(A1 + A2), then

E [min (51(1),51(2))} = A i o




Alternative definition of Poisson process

» Start with sequence of independent random times Ty, T, ...
» Times T; ~ exp(\) have exponential distribution with parameter A
. . . N(t)
» Define i-th arrival time S; T, T - T
S=Ti+T+..+T 0
5
» Define counting process of 4
events occurred by time t 3
2
N(t) = miax(S,- <t) 1
: . t
» N(t) is a Poisson process s S S5 Si S5 S

v

If N(t) is a Poisson process interarrival times T; are i.i.d. exponential

To show that definition is equivalent have to show the converse

v

= If interarrival times are i.i.d. exponential, process is Poisson



Three

definitions of Poisson processes

Prob. of event proportional to interval width. Intervals independent
Physical model definition
Can a phenomenon be reasonably modeled as a Poisson process?

The other two definitions are used for analysis and/or simulation

. Prob. distribution of events in (0, t] is Poisson

Event centric definition. Nr. of events in given time intervals
Allows analysis and simulation

Used when information about nr. of events in given time is desired

. Prob. distribution of interarrival times is exponential

Time centric definition. Times at which events happen
Allows analysis and simulation
Used when information about event times is of interest



Number of visitors to a web page example

Ex: Count number of visits to a webpage between 6:00pm to 6:10pm

Def 1: Q: Poisson process? Yes, seems reasonable to have

» Probability of visit proportional to time interval duration
> Independent visits over disjoint time intervals

» Model as Poisson process with rate A visits/second (v/s)

Def 2: Arrivals in (s, s + t] are Poisson with parameter At
» Prob. of exactly 5 visits in 1 sec? = P (N(1) =5) = e *)\5/5!
» Expected nr. of visits in 10 minutes? = E[N(600)] = 600\
» On average, data shows N visits in 10 minutes. Estimate = N /600

Def 3: Interarrival times are i.i.d. T; ~ exp(})
> Expected time between visits? = E[T;] =1/A
» Expected arrival time S, of n-th visitor?
= Recall S, =" T;, hence E[S,] = >"7_ | E[T:] = n/X



Superposition of Poisson processes

> Let Ny(t), N2(t) be Poisson processes with rates A; and A,
= Suppose Ni(t) and Ny(t) are independent

Nq(®) Na(®)

3

2 2

1 T—T— 1 -
s, 5, t 5,5, 5, !
> Then N(t):= Ny(t) + Na(t) is a Poisson process with rate \; + Az

N
5
4
3
2
1

5, 5,5, S, S,



Thinning of a Poisson process

» Let By = By, B, ... be an i.i.d. sequence of Bernoulli(p) RVs

> Let N(t) be a Poisson process with rate A, independent of By

» Then M(t) = {V:(t) B; is a Poisson process with rate \p
i=1

B: 011 0 1

Nt Mm@ |

“NwWwhO
=N W

v
~

v
~

S/ S,S; S, S, SIS Ss



Splitting of a Poisson process

> let Iy = 241, 2,

N()

“Nwh O

S W

. be an i.i.d. sequence of RVs, Z; € {1,..., m}
> Let N(t) be a Poisson process with rate A, independent of Zy

> Define N (t) = Z,I-V:(I)H{Z,- =k}, foreach k=1,...,m
» Then each N,(t) is a Poisson process with rate AP (Z; = k)

< N

55,5, S,

Ss

N, (0
1
[
S, t
Nt
3
2
1 T_]
SIS
E Ny
! t




M/M/1 queue example

» An M/M/1 queue is a BD process with A\; = X and p; = p constant

» State Q(t) is the number of customers in the system at time ¢
= Customers arrive for service at a rate of A per unit time

= They are serviced at a rate of p customers per unit time

A A A A
13 H I

» The M/M is for Markov arrivals/Markov departures
= Implies a Poisson arrival process, exponential services times

= The 1 is because there is only one server



Definition

» Continuous-time positive variable t € [0, c0)

» Time-dependent random state X(t) takes values on a countable set

> In general denote states as /i = 0,1,2,..., i.e., here the state space is N
> If X(t) = i we say “the process is in state i at time t”

v

Def: Process X(t) is a continuous-time Markov chain (CTMC) if

P(X(t+s)=j|X(s)=1i,X(u)=x(u),u<5s)
=P (X(t+s)=j|X(s)=1)
» Markov property = Given the present state X(s)
= Future X(t + s) is independent of the past X(u) = x(u),u <'s

v

In principle need to specify functions P (X(t 4+ s) = j | X(s) = i)
= For all times t and s, for all pairs of states (/, )



Notation and homogeneity

> Notation
> X|s : t] state values for all times s < u < t, includes borders
» X(s: t) values for all times s < u < t, borders excluded
> X(s: t] values for all times s < u < t, exclude left, include right
> X[s: t) values for all times s < u < t, include left, exclude right
>

Homogeneous CTMC if P (X(t +s) = j | X(s) = i) invariant for all s
= We restrict consideration to homogeneous CTMCs

v

Still need Py(t) := P (X(t+s) =j|X(s) =) for all t and pairs (i,})
= Pji(t) is known as the transition probability function.

v

Markov property and homogeneity make description somewhat simpler



Transition times

» T; = time until transition out of state / into any other state j

» Def: T; is a random variable called transition time with ccdf

p(T’.>t):P(X(O:t]Zi‘X(O):i)

v

Probability of T; > t + s given that T; > s? Use cdf expression

P(T>t+s|T>s)—P( (0:t+s]=i|X[0:s]=1i)
P(X(s:t+s]=i|X[0:s]=1i)
P(X(s:t+s]=i|X(s)=1)
P(X(0: ¢ =i|X(0)=1i)

v

Used that X[0: s] = i given, Markov property, and homogeneity

v

From definition of T, = P (T; > t+s|T;>s) =P(T; > 1)

= Transition times are exponential random variables



Alternative definition

» Exponential transition times is a fundamental property of CTMCs
= Can be used as “algorithmic” definition of CTMCs

» Continuous-time random process X(t) is a CTMC if

(a) Transition times T; are exponential random variables with mean 1/v;
(b) When they occur, transition from state i to j with probability P;

ip,-j =1, P;=0
j=1

(c) Transition times T; and transitioned state j are independent
» Define matrix P grouping transition probabilities Pj

» CTMC states evolve as in a discrete-time Markov chain
= State transitions occur at exponential intervals T; ~ exp(v;)

= As opposed to occurring at fixed intervals



Embedded discrete-time Markov chain

» Consider a CTMC with transition matrix P and rates v;
» Def: CTMC's embedded discrete-time MC has transition matrix P

» Transition probabilities P describe a discrete-time MC
= No self-transitions (P; = 0, P's diagonal null)
= Can use underlying discrete-time MCs to study CTMCs

» Def: State j accessible from i if accessible in the embedded MC
> Def: States i and j communicate if they do so in the embedded MC

= Communication is a class property

» Recurrence, transience, ergodicity. Class properties ...



Transition rates

v

Expected value of transition time T; is E[T;] = 1/v;
= Can interpret v; as the rate of transition out of state f

= Of these transitions, a fraction Pj; are into state j

v

Def: Transition rate from / to j is g := v; P}

v

Transition rates offer yet another specification of CTMCs

v

If gjj are given can recover v; as

oo oo o0
Vi = Vj E P,J = E V,'P,'j = E q,'j
j=1 j=1 j=1

v

e -1
Can also recover Pjj as = Pjj = q;j/v; = qu(z qU)

Jj=1



Birth and death process example

» State X(t) =0,1,... Interpret as number of individuals

» Birth and deaths occur at state-dependent rates. When X(t) =i

» Births = Individuals added at exponential times with mean 1/\;
= Birth or arrival rate = )\; births per unit of time

» Deaths = Individuals removed at exponential times with rate 1/p;
= Death or departure rate = p; deaths per unit of time

» Birth and death times are independent

» Birth and death (BD) processes are then CTMCs



Transition times and probabilities

Q: Transition times T;? Leave state i # 0 when birth or death occur

v

If Tg and Tp are times to next birth and death, T; = min(Tg, Tp)
= Since Tg and Tp are exponential, so is T; with rate

v

vi = A\ + i
» When leaving state / can go to i+ 1 (birth first) or i — 1 (death first)
= Birth occurs before death with probability — =P
= Death occurs before birth with probability )\i'iiui =P i

v

Leave state 0 only if a birth occurs, then
Vo = Ao, Popr=1

= If CTMC leaves 0, goes to 1 with probability 1
= Might not leave 0 if \g = 0 (e.g., to model extinction)



Transition rates

> Rate of transition from i to i 4 1 is (recall definition g; = v;iPj;)
Giiv1 = ViPiiv1 = (N + Mi))\i Jrl 0 = A
» Likewise, rate of transition from j to i — 1 is
ii-1 = ViPii—1= (i + ) B i
Ai + i
» Fori=0 = qo1 = 1Po1 = Xo
Ao Ai—1 A Aig1
0 @ 0o
M1 i Hit+1

v

Somewhat more natural representation. Similar to discrete-time MCs



Poisson process example

» A Poisson process is a BD process with A; = A and u; = 0 constant

» State N(t) counts the total number of events (arrivals) by time t
= Arrivals occur a rate of A per unit time

= Transition times are the i.i.d. exponential interarrival times

A A A A
o @ o O

» The Poisson process is a CTMC



M/M/1 queue example

» An M/M/1 queue is a BD process with A\; = X and p; = p constant

» State Q(t) is the number of customers in the system at time ¢
= Customers arrive for service at a rate of A per unit time

= They are serviced at a rate of p customers per unit time

A A A A
13 H I

» The M/M is for Markov arrivals/Markov departures
= Implies a Poisson arrival process, exponential services times

= The 1 is because there is only one server



Transition probability function

» Two equivalent ways of specifying a CTMC

1) Transition time averages 1/v; + transition probabilities Pj;
= Easier description
= Typical starting point for CTMC modeling

2) Transition probability function Pj(t) := P (X(t +s)=j | X(s) = i)
= More complete description for all t > 0

= Similar in spirit to P; for discrete-time Markov chains

» Goal: compute Pj(t) from transition times and probabilities
= Notice two obvious properties Pj;(0) =0, P;(0) =1



Roadmap to determine Pj(t)

» Goal is to obtain a differential equation whose solution is Pj(t)

= Study change in P;(t) when time changes slightly

» Separate in two subproblems
= Transition probabilities for small time h, P;(h)
= Transition probabilities in t + h as function of those in t and h

» We can combine both results in two different ways

1) Jump from O to t then to t + h = Process runs a little longer

=- Changes where the process is going to = Forward equations

2) Jump from 0 to h then to t + h = Process starts a little later
= Changes where the process comes from = Backward equations



Transition probability in infinitesimal time

Theorem
The transition probability functions P;i(t) and Pjj(t) satisfy the following
limits as t approaches 0

P;i(t .1 —Py(t
lim Pi(t) = gjj, lim 1= Pilt) =V
t—0 t t—0 t

» Since P;(0) =0, P;;(0) =1 above limits are derivatives at t =0

aPU(t) o 8P,-,-(t)
ot r:oiqw It [

= —]/,-

» Limits also imply that for small h (recall Taylor series)
PU(h) = q,jh—l—o(h), P,,(h) = 177/;h—|—0(h)

» Transition rates g are “instantaneous transition probabilities”

= Transition probability coefficient for small time h



Chapman-Kolmogorov equations

Theorem
For all times s and t the transition probability functions Pj(t + s) are
obtained from Py(t) and Pyj(s) as

Pi(t+s)= Z Pi(t) Pij(s)
k=0

» As for discrete-time MCs, to go from j to j in time t + s
= Go from i to some state k in time t = Pu(t)
= In the remaining time s go from k to j = Py(s)

= Sum over all possible intermediate states k



Chapman-Kolmogorov equations (proof)

Proof.

P(f )

(X(t+5s)=j|X(0) =) Definition of Pj(t + s)

1j+

UL

P (X(t+5) = J| X(t) = k. X(0) = )P (X(£) = k| X(0) = )

x

o

Law of total probability

M

P (X(t+s) =j|X(t) = k)Pw(t) Markov property of CTMC

x
Il
IS)

and definition of Pi(t)

Pyi(s)Pi(t) Definition of Py;(s)

M
O

»
Il
o



Combining both results

v

Let us combine the last two results to express Pjj(t + h)

v

Use Chapman-Kolmogorov's equations for 0 — t — h

Pi(t+h) = ZP:k t)Pg(h) = Pi(t)Pi(h) + > Pu(t)Pi(h)

k=0,k#j
> Substitute infinitesimal time expressions for Pj(h) and Py;(h)
Pyi(t + h) = P;(t)(1 )+ > Pult)agh+ o(h)
k=0,kj
» Subtract Pjj(t) from both sides and divide by h
Pii(t+ h) — Py(t = o(h
it ,), ) —vPi(t)+ D Pu(t)ay + 7(,7)
k=0,k#j

v

Right-hand side equals a “derivative” ratio. Let h — 0 to prove ...



Kolmogorov's forward equations

Theorem
The transition probability functions Pjj(t) of a CTMC satisfy the system
of differential equations (for all pairs i, j)

P S~ auPult) — vPi(t)
k=0,k#j

> Interpret each summand in Kolmogorov's forward equations
» OPj(t)/0t = rate of change of P;(t)
> qiPi(t) = (transition into k in 0 — t) X
(rate of moving into j in next instant)
» vjPjj(t) = (transition into j in 0 — t) X
(rate of leaving j in next instant)

» Change in Pj(t) = ), (moving into j from k) — (leaving j)

» Kolmogorov's forward equations valid in most cases, but not always



Kolmogorov's backward equations

v

For forward equations used Chapman-Kolmogorov's for 0 — t — h

v

For backward equations we use 0 — h — t to express Pj(t + h) as

,J t+ h Z P,k PkJ = P,,(h)PU(t) —+ i P,'k(h)ij(t)

k=0, ki
» Substitute infinitesimal time expression for P;(h) and Py(h)
Pi(t+h) = (1 —wvih)Pi(t)+ > quhPyg(t) + o(h)
k=0,ksi

v

Subtract Pj(t) from both sides and divide by h

Pi(t + h) — Py(t = o(h
i /)7 i) _ —viPy(t) + Z ik P (t) + %
k=0, ki

v

Right-hand side equals a “derivative” ratio. Let h — 0 to prove ...



Kolmogorov's backward equations

Theorem
The transition probability functions Pj(t) of a CTMC satisfy the system
of differential equations (for all pairs i, j)

alglft) = Y quPy(t) — viPy(t)
k=0,ki

> Interpret each summand in Kolmogorov's backward equations
» OP;i(t)/0t = rate of change of Pj(t)
> qikPij(t) = (transition into j in h — t) X
(rate of transition into k in initial instant)
» v;Pj(t) = (transition into j in h — t) X
(rate of leaving i in initial instant)

» Forward equations = change in Pj(t) if finish h later
» Backward equations =- change in Pj(t) if start h earlier

» Where process goes (forward) vs. where process comes from (backward)



A CTMC with two states

Ex: Simplest possible CTMC has only two states. Say 0 and 1

» Transition rates are go; and g

do1
» Given go; and gig can find e/\c
rates of transitions out of {0,1
iti u {0,1} s,
dio0
VOZZCIOJ':QOL Vlzquj:qlo
J J
» Use Kolmogorov's equations to find transition probability functions
Poo(t), Poi(t), Puo(t), Pu(t)
» Transition probabilities out of each state sum up to one

Poo(t) + Poi(t) =1, Pio(t) + P1i(t) =1



Kolmogorov's forward equations

» Kolmogorov's forward equations (process runs a little longer)

Pit)= > awPult) — vPy(t)
k=0, k]

For the two state CTMC

v

Poo(t) = GioPor(t) — voPoo(t),  Poy(t) = gorPoo(t) — 11 Poi(t)
Pro(t) = quoPui(t) — 1o Pio(t), P11 (t) = qoi1Pio(t) — 1 Pra(t)

v

Probabilities out of 0 sum up to 1 =- egs. in first row are equivalent

v

Probabilities out of 1 sum up to 1 = egs. in second row are equivalent
= Pick the equations for Py (t) and Py, (t)



Solution of forward equations

v

Use = Relation between transition rates: vy9 = go1 and v1 = g9
= Probs. sum 1: Pol(t) =1- Poo(t) and Plo(t) =1- Pll(t)

P(/JO(t) = q10[1 — Poo(t)] — qo1Poo(t) = 10 — (q10 + Go1)Poo(t)
Pil(t) = QOl[l — P11(t)] — qioP11(t) = go1 — (g10 + go1) P11 (1)

v

Can obtain exact same pair of equations from backward equations

v

First-order linear differential equations = Solutions are exponential

v

For Pyo(t) propose candidate solution (just differentiate to check)

_ q10 —(qi0+q01)t
POO t) = + ce q10+qo1
o g10 + qo1

= To determine ¢ use initial condition Py(0) =1



Solution of forward equations (continued)

v

Evaluation of candidate solution at initial condition Pyo(0) = 1 yields

1= 30 o= 9
g10 + qo1 gi0 + qo1

v

Finally transition probability function Poo(t)

POO(t) — 410 + o1 e*(‘?10+q01)f
gio +go1  Gio + Qo1

> Repeat for P11(t). Same exponent, different constants

Pii(t) = dor_ 90 —(awtan)t
g0 +qo1  Gio + qo1

v

As time goes to infinity, Poo(t) and P1(t) converge exponentially
= Convergence rate depends on magnitude of g10 + go1



Convergence of transition probabilities

» Recall POl(t) =1- Poo(t) and PlO(t) =1- 'Dll(t)

» Limiting (steady-state) probabilities are

. dio . do1
lim Pyo(t) = ————, lim Pyi(t) = ————
t—o0 (&) q10 + qo1 t—oo (&) gi0 + qo1

. do1 . dio
lim Pyi(t) = ——— lim Py(t) = ——
t—o0 (t) g0 + Go1’ t—o0 (&) g10 + qo1

» Limit distribution exists and is independent of initial condition

=- Compare across diagonals



Kolmogorov's forward equations in matrix form

» Restrict attention to finite CTMCs with N states
= Define matrix R € RV*N with elements rij = qij, i = —Vv;

» Rewrite Kolmogorov's forward eqgs. as (process runs a little longer)

Pi(t) =3 auPu(t) = uPi(t) = > rPu(t)

k=1,k#j

» Right-hand side defines elements of a matrix product

M1 rnj o+ onn
I’UP,‘l(t) Ce
Tkt g Tkn =
) R

i Pu(t) T\ TV N T

i(t) - Pu(t) - P‘ﬁt) s - sy - s

P(t) = Pa(t) - Pu(t) - Pin(t) sho- Sj - S IP(t)R:P,(t)

Pni(t) - Puk(t) - Pun(t) SN1 * SNk " SNN



Kolmogorov's backward equations in matrix form

» Similarly, Kolmogorov's backward egs. (process starts a little later)

N N
D awPu(t) —viPy(t) =Y rkPy(t)
k=1

k=1,ki

» Right-hand side also defines a matrix product

/?L_PF(?)_N Pij(t) - Pin(t)
2 Piy(t) S
e T Pa® T Pylt) - Pw(t) | =P(2)
ri Py (t) . . .
rin PN] i} wi(t ’ PNj(t) ’ PNN(t)
( S11 . S1j . SIN
R= sio- s - sw | =RP(t)=P(t)
Nyt vk TN Sn1 . SNk SNN




Kolmogorov's equations in matrix form

» Matrix form of Kolmogorov's forward equation = P'(t) = P(t)R

> Matrix form of Kolmogorov's backward equation = P’(t) = RP(t)
= More similar than apparent
= But not equivalent because matrix product not commutative

» Notwithstanding both equations have to accept the same solution



Matrix exponential

v

Kolmogorov's equations are first-order linear differential equations
= They are coupled, P;(t) depends on Py(t) for all k

= Accepts exponential solution = Define matrix exponential

v

Def: The matrix exponential e®t of matrix At is the series

At (AD)" (At)* | (At)?
€ ; nl TALE s T

v

Derivative of matrix exponential with respect to t

o At 3,2 2
dgt :0+A+A2t+A2t +...:A(I+At+(A2t) +”.):AeAt

A
0e™ oAt
ot

v

Putting A on right side of product shows that =



Solution of Kolmogorov's equations

» Propose solution of the form P(t) = eR¢
> P(t) solves backward equations, since derivative is
oP(t) oeRt R
= = Re™" = RP(t
o ot C ®)
» |t also solves forward equations
oP(t) oeRt Rt
= — = R=P(t)R
ot ot © (&)

v

Notice that P(0) = I, as it should (P;;(0) = 1, and P;;(0) = 0)



Computing the matrix exponential

» Suppose A € R"™*" is diagonalizable, i.e., A = UDU™!
= Diagonal matrix D = diag(\1, ..., An) collects eigenvalues )\;
= Matrix U has the corresponding eigenvectors as columns

» We have the following neat identity

At = (UDU~!¢)" - — (Dt)" ~1_ yy.Dtyy—1
e _ZT_U Z - U !=uUeliu

n=0

» But since D is diagonal, then

At O

[}

Dt_oo(Dt)n_
€ _Z nl
n=0



Two state CTMC example

Ex: Simplest CTMC with two states 0 and 1 e/\e

» Transition rates are gg; =3 and g9 =1

» Recall transition time rates are g = go1 = 3, ¥1 = g190 = 1, hence

=1y Qo1 -3 3
R: =
(o %)-(3 %)

» Eigenvalues of R are 0, —4, eigenvectors [1,1]7 and [-3,1]". Thus

o= (1) v () e (0 )

» The solution to the forward equations is

¢ ty- 1/4+ (3/4)e " 3/4—(3/4)e "
P(t) = e® = UePU! = ( 1/4— (1/4)e* 3/4+ (1/4)e >



Recurrent and transient states

> Recall the embedded discrete-time MC associated with any CTMC
= Transition probs. of MC form the matrix P of the CTMC
= No self transitions (P; = 0, P's diagonal null)

v

States i <» j communicate in the CTMC if j > j in the MC
= Communication partitions MC in classes
= Induces CTMC partition as well

v

Def: CTMC is irreducible if embedded MC contains a single class

v

State 7 is recurrent if it is recurrent in the embedded MC

= Likewise, define transience and positive recurrence for CTMCs

v

Transience and recurrence shared by elements of a MC class

= Transience and recurrence are class properties of CTMCs

v

Periodicity not possible in CTMCs



Limiting probabilities

Theorem
Consider irreducible, positive recurrent CTMC with transition rates v; and
gij. Then, Pji(t) exists and is independent of the initial state i, i.e.,

lim
t—00
Py = lim Py(t) exists for all (i, ])

Furthermore, steady-state probabilities P; > 0 are the unique nonnegative
solution of the system of linear equations

yPi= Y P Y Pi=1
j=0

k=0,k#j

» Limit distribution exists and is independent of initial condition
= Obtained as solution of system of linear equations
= Like discrete-time MCs, but equations slightly different



Algebraic relation to determine limit probabilities

» As with MCs difficult part is to prove that P; = tlim Pji(t) exists
—00

> Algebraic relations obtained from Kolmogorov's forward equations
oP;(
U Z qk_j lk 'D (t)
k=0,k#j
» If limit distribution exists we have, independent of initial state /
. OPy(t)
t|l>oo ot 0, tll[go Pi(t) =P
» Considering the limit of Kolomogorov's forward equations yields
o0
Z qijk — I/jPJ
k=0,k#j
> Reordering terms the limit distribution equations follow



Two state CTMC example

qo1
Ex: Simplest CTMC with two states 0 and 1 o/\)
» Transition rates are go1 and gio
qio

» From transition rates find mean transition times vy = qo1, 1 = q10

» Stationary distribution equations
wPo = qP1, nP1 = qukFo, Po+ P1 =1,
qo1Po = qioP1,  qioP1 = qo1FPo
» Solution yields = Py = &, P = _ G
qio + qo1 qi0 + go1
» Larger rate gio of entering 0 = Larger prob. Py of being at 0
> Larger rate qo; of entering 1 =- Larger prob. P; of being at 1



Ergodicity

» Def: Fraction of time T;(t) spent in state / by time t

Ti(t) == %/0 I{X(r)=i}dr

= T;(t) a time/ergodic average, Ti(t) is an ergodic limit

lim
t—oo

» If CTMC is irreducible, positive recurrent, the ergodic theorem holds

P; = lim T;(t) = lim l/ot]I{X(T) =itdr a.s.

t—o0 t—oo t

» Ergodic limit coincides with limit probabilities (almost surely)



Function's ergodic limit

v

Consider function (i) associated with state i. Can write f(X(t)) as

FX(D) = S FOE{X(0) = 1}

i=1

v

Consider the time average of f(X(t))

t'L”So%/O f(X(7) dr_tmof/ z;f(i)H{X(T):i}dT

» Interchange summation with integral and limit to say
1 e’} t 0o
Jin g [ P9 = e i [ 1) = =X e
i—
» Function’s ergodic limit = Function’s expectation under limiting dist.



Limit distribution equations as balance equations

o0
> Recall limit distribution equations = 1;P; = > qiPx

k=0,k#j
» P; = fraction of time spent in state j
> v; = rate of transition out of state j given CTMC is in state j

= v;P; = rate of transition out of state j (unconditional)
> G

= rate of transition from k to j given CTMC is in state k
= qijPx = rate of transition from k to j (unconditional)
oo

= Z qij P = rate of transition into j, from all states
k=0,k#j

» Rate of transition out of state j = Rate of transition into state j

» Balance equations = Balance nr. of transitions in and out of state j



Limit distribution for birth and death process

» Birth/deaths occur at state-dependent rates. When X(t) =i

» Births = Individuals added at exponential times with mean 1/);
= Birth rate = upward transition rate = gj jiy1 = A;
» Deaths = Individuals removed at exponential times with mean 1/u;

= Death rate = downward transition rate = q; ;1 = y;

» Transition time rates = v; = A\j + pj, 1 >0 and vg = Ag

Ao Ai—1 A Aig1
O @& o0 o
M1 i Hit+1

v

Limit distribution/balance equations: Rate out of j = Rate into j

(N 4+ pi)Pi = Ni—1iPio1 + piv1Pisa
XoPo =P
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