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Tutorial Introduction
This tutorial is about the intersection of DL and Time Series
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Time Series & Time Series Forecasting
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Questions to ask betore building fore

- Can it be forecast?

- How well we understand the factors that contribute to it?
-+ How much data are available and are we able to gather it?

- How far in future (horizon) we want to forecast?
- At what temporal frequency are forecasts required?

- What techniqgue/model should | use?

cast mode!

B® Microsoft Deep Lea

rning for Time Series Forecasting: aka.ms/dlts


https://aka.ms/dlts
https://aka.ms/dlts

Scenario: energy load forecasting

- Energy grid operators keep the supply and demand of
electricity on power grids in balance

- Data in this example was used in the Global Energy
Forecasting Competition in 2014 - GEFCom2014
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New England ISO data
- | - 26,000 hourly load values

- Annual, weekly and daily
seasonality

Zareipour, Alberto Troccoli and Rob J. Hyndman,
"Probabilistic energy forecasting: Global Energy

Tao Hong, Pierre Pinson, Shu Fan, Hamidreza f U J\

Forecasting Competition 2014 and beyond", U | U
International Journal of Forecasting, vol.32, no.3, U h
pp 896-913, July-September, 2016.
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Why deep learning models?

- Deep learning model has been shown perform well in many scenarios

- 2014 Global Energy Forecasting Competition (link)
- 2016 CIF International Time Series Competition (link)

- 2017 Web Traffic Time Series Forecasting (link)
- 2018 Corporacion Favorita Grocery Sales Forecasting (link)
- 2018 M4-Competition (link)

- Non-parametric

- Flexible and expressive

- Easily inject exogenous features into the model
- Learn from large time series datasets
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Multilayer Perceptron

output

output
layer

~ |1 if output > threshold
0 otherwise

hidden _ , .::';". © multilayer

Iayer : LN " perceptron
L e

Input =2

layer Input

also known as Feed-Forward Neural Network and Deep Neural Network
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Activation Functions

Applied over x" =w-x+b

Sigmoid f(x") =a(x') =

1+e‘x

I !
—e X

tanh (hyperbolic tangent) f(x") =

ex +e=x'

Oforx' <O

Rectifier linear unit (ReLU) f(x") = {x’ forx’ >0

a8 Microsoft https://en.wikipedia.org/wiki/Activation_function
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Iraining: overview

Use training examples to find good weights and biases of the network.

Main components:

« Loss function L(weights, biases) that measures discrepancy between
predicted and true values

« QOptimization algorithm that finds weights and biases minimizing the loss
function

L(wy,wy)

Picture credit: Andrew Ng, Coursera ML class
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Examples of loss function

Commonly used loss functions in time series forecasting:

1

* Mean-squared-error (MSE): ~ %L, (y; — 9:)°

100 -y

* Mean Absolute Percentage Error (MAPE)

yi—?i‘
Yi

. Symmetric MAPE (sMAPE;: 1905 | bt
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Optimization algorithm: (Batch) gradient descent

oL(w) 9L(w) dL(w)

Gradient VL(w) = ( ) - direction of the maximal increase of L(w)

ow;  ow, ' dwy
dL(w) o :
1D example: VL(w) = (W) Optimization algorithm
L(V‘f‘) Initialization: w = wy
Initial weight While stopping criterion not met:
w=w — a-VL(w)

\Ieaming rate
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Computation of gradients in NN: Backpropagation

loss value L(w) Computation of L' (w)
9(fi(h(w)), f2(h(w)))

Chain rule

Lw) = g(fi(w))
L'(w) = g'(fr(h(w))) - fi (h(w)) - h' (W)

L'(w) = g'(fo(h(w))) - fz(h(w)) - K’ (W)

Total derivative

L(w) = g(f1(W)»f2(W))
L'(w)=Lw) + L (w)
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Training tricks

- Early stopping

- Tuning hyperparameters

INitialization futorial from deeplearning ai

Weight reqgularization reguiarization for deep learning

Dro pOUt Dropout: A simple way to prevent neural networks from overfitting, Zoneout: Regularizing RNNs by
randomly preserving hidden activations

Batch normalization gaich normalization: Accelerating deep network training by reducing internal
covariate shift, Recurrent batch normalization

Leaming rate decay Learning rate schedules and adaptive learning rate methods for deep learning
Advanced OptimizatiOﬂ a|gOritth An overview of gradient descent optimization algorithms
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Fully connected vs convolution layer

Output: Y

Output of hidden layer

Input: X

Fully connectea:
- units in hidden layer are

connected to every unit in
previous layer
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Fully connected vs convolution layer

Convolution layer:

. . . Output: Y
- units in hidden layer operate
on a field of the input
- weights are shared across
iInput . »
Input: X
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1D Convolutions

- Apply a 1D filter to all elements of a 1D input vector

- Result is the sum of the element-wise product

8x1+23x0+2Zx-1=3A4

s13]2|7]1]6 X 1] 0 | - - 3 a1+

Input: 1x 6 Filter: 1x 3 Output: 1x 4
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1D Convolutions

- Filters are trained to detect features in the input sequence

- Features can be detected regardless of where they appear in the
INput sequence

Input: 1x 6 Filter: 1x 3 Output: 1x 4
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1D Convolutions

- Apply multiple filters to the input data to detect multiple features

X - |

Filter: 1x 3 Output: 1x 4

OO0 - O

Filter: 1x 3 Output: 1x 4 Output: 1x 4 x 3

Input: 1x 6 X =

Filter: 1x 3 Output: 1x 4
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Application to forecasting

- Assuming we are attime t ...
- ... predict the value at time t+7 ...
- ... conditional on the previous T values of the time series

s BEGH BeZa Reol BESE ez RS Rt R t e

=10 - __ find T through
experimentation!

=. Microsoft Deep Learning for Time Series Forecasting: aka.ms/dlts


https://aka.ms/dlts
https://aka.ms/dlts

CNNSs for forecasting

- Causal convolutions: the output at each time step

do not depend on future time steps Fully-connected layer
with one unit to

Stacked
convolution layers
to detect feature
combinations

1D convolution

layers, kernel
width 2

Inputs from t-9 to t
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Dilated convolutions

- Skip outputs from previous layers

Dilation rate 4 %

llation rate ////
o e //////

Dilation rate 1

i3]
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Why dilated convolutions?

- Normal convolutions = more connections = more weights to train
- Reach information from more distant values in the time series

e
/ /
| /|

=. Microsoft Deep Learning for Time Series Forecasting: aka.ms/dlts


https://aka.ms/dlts
https://aka.ms/dlts

Causal padding

- Padding is necessary to preserve output dimension
- Allows all filter weights to apply to all inputs
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Multivariate time series

- Multiple time series in the input sequence

energy load .
erpearre [l [ B B
t-5 t-4 t-3 t-2 t-1 t

t+1
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Multivariate time series

- Example: for 3 input time series use 3 channels

| . i i
x| Uj - |
Filter: Tx 3 x 3 Output: 1x 4 x 1

lI II II/I/F II II JJ i : |

| -
Input: 1x 6 x 3 — 'J 7 7 Output: Tx 4 x 2
== - | |

Filter: 1x 3 x 3 Output: Tx 4 x 1
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What are RNNs?

/ Feedforward Neural Network \

Output: Y

Output
Layer

Hidden
Layer

Input
Layer

Input: X

Y
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What are RNNs?

RNN has internal hidden state which can be fed back to network

/ Feedforward Neural Network \ ﬁ Recurrent Neural Network ﬂ

Detailed Simplified

Output: Y
Y Y
Output I
Layer |
e H e
Output of hidden layer | ! NN RNN —(memory) ?
Hidden :
Layer I I
Input X X
Layer | |
Input: X
Simplified Detailed
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Unrolled RNN

The same weight and bias shared across all the steps

Y Y1 Y2 Y3

H
(Rl'\lD = Ho,lgNN T . RNN 2 L RNN

| | | |

X Xi X2 X3

In Keras you will see “timesteps”’ when set data imput shape
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JUnrolleo YT YT YT
NN B
= —Ho, pyN —H! - RNN —H JRNN —H:
o
-
S | | |
Xi X2 X3
H
RNN =] A Time step | [N ||| Stc ) S| o) 3 [
Y Y2 Y3
X - fu(H)
=
D Hi — Ho — Hs
3
O
fw(X1, Ho)
X4 Ho X2 Hj X3 H>
B® Microsoft t |




J M I’O‘ ‘ed In Keras, the parameter “units” is dimensions of hidden state.
% N N (Think of 1t as feedforward neural network number of units in hidden layer.)

model = Sequential()
model.add(RNN(4, input _shape=(timesteps, data _dim)))
Y model.add(Dense(3)) (timesteps, features)

[ Y Y2 Y3
X - fu(H)
=
D Hi — Ho — Hs
3]
O
fw(X1, Ho)
X Ho X H: X3 Ho
B® Microsoft t |




Backpropagation through time (BPTT)

e

Y Y1 Yo Y3

H
d\lp = Ho,fpyN T L RNN 2 L RNN B

| | | |

X X1 X2 X3

Forward through entire sequence to compute loss

then backward through entire sequence to compute gradient
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Vanilla RNN

v, Vanilla RNN:

Ht — tanh(Wth_l + VVX'Xt)
= tanh(W - [H;_4, X¢])

fw(Ht1, Xi)

X

some function
with parameter W

|
— fW(I_IIt—l')I(t)

old
state

Hy

new
state

Input vector at
some time step

L L
4 -2

sk

-10F
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Vanilla RNN BPTT

s e

Y Y1 Y> Y3

A A A
ﬁ i - Ho H; H2 Hs
RNN = - > tanh~— > tanh"—, > tanh~——

X X X2 X3

Computing gradient of he involves repeated tanh and many factors of W
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Vanilla RNN Gradient Problems

Computing gradient of ho involves repeated tanh and many factors of
W which causes:

- Exploding gradient (e.g. 5*5*5*5*5*5*, ..
- Vanishing gradients (e.g. 0.7*0.7*0.7*0.7*0.7*0.7*......)

100 time steps is similar to 100 layers feedforward neural net
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Exploding Gradient

- Exploding gradients are obvious. Your gradients will
become NaN (not a number) and your program will crash

- Solution: Gradient clipping
Clip the gradient when it goes higher than a threshold
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Vanishing Gradient

- Vanishing gradients are more problematic because it's not
obvious when they occur or how to deal with them

- Solutions:

- Change activation function to Rel.U

- Proper initialization

- Reqularization

- Change architecture to LSTM or GRU
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Gated Recurrent Unit (GRU)

Vanilla RNN: ~ GRU:
H; = tanh(W - [H;_4, X¢]) - Hi =1 —2z)XH_1+2 X H,

Hy_q
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GRU

Ho‘ H: R

Uninterrupted }

. H H H
gradient flow ° : ; 3
State runs straight
through the entire chain
with minor linear
interactions which
makes information very
easy to pass.

X1 XZ X3
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Gated Recurrent Unit (GRU)

Hy_4 X + - H, Hidden state: Hy = (1-— Zt) X Hy_1 +H z¢ [X|Hy
v 1_ ‘
x  b—x , — ( W,-[H X )
r | Update gates: Z¢ = o Z [ t—1> t]
o o tanh . 7
L 1 T I Candidate gates/states: Ht - tanh( W - [Tt X Ht—l’ Xt])
/
/ > Reset gates: 13 = O'( M/;‘ . [Ht—li Xt] )
Xt ) o
c ./ tamh__ |
GRU [Learning phrase representations using rnn encoderdecoder (()11) )/ (-1, 1) J
for statistical machine translation, Cho et al. 2074] P S N S S

=. Microsoft Deep Learning for Time Series Forecasting: aka.ms/dlts


https://arxiv.org/pdf/1406.1078v3.pdf
https://aka.ms/dlts
https://aka.ms/dlts

GRU vs LSTM (Long Short Term Memory)

He 4 >T< + » H; Cr-1 ~ -'T' g i't > G
v 1- 1 X tanh I
GRU 19 —6€ LSTM r N
—
o o tanh ? ? tailh ?
- § ! | He-y He
4
X Xy
‘ = Hidden cell state:  Cp = fp X Ci_q + [ X C~t
Hidden state: Ht = (1 — Zt) X Ht—l + Z; X Ht Hidden state: . = 0. X tanh(C )
' t — Yt t
Forget gates: =o( We-[HiZq, X
-t — | e-1 At
Reset gates: 13 = 0'( W, - [Ht—1» Xt] ) l

't Candidate gates/states: Ct = tanh( % : [Ht_1, Xt])
Candidate gates/states: Ht = tanh( w - [Tt X Ht—ll Xt])

Output gates: 0y = O'( w, - [Ht—l: Xt] )
Long Short-Term Memory, Hochreiter & Schmidhuber (1997)

=. Microsoft LSTM: A Search Space Odyssey, Greff et al., 2015
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RNN Stacking

To learn more complex relationships, we can go deep by stacking the cells.

Y Y Y2 Y3
H | | | |
RNN — Ho,fpyN H- L RNN 2 L RNN _H :
i H Hy H, H
RNN = — Ho ,fpNN - RNN . RNN _H :
X X1 X2 X3

model = Sequential()
model.add(RNN(4, return_sequences=True, input shape=(timesteps, data _dim)))
model.add(RNN(4))
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One-step forecast

- Assuming we are attime t ...
- ... predict the value at time t+7 ...
- ... conditional on the previous T values of the time series

t-5 t4 t-3 t-2 t-] t T

T=0 < find T through
experimentation!
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Multi-step forecast

- Assuming we are attime t ...
- ... predict the values at times (t+7, ..., t+HORIZON) ...
- ... conditional on the previous T values of the time series
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Multi-step forecast

t+1 [ t+2 | t+3 .t+1 .t+2 .t+3

L O = encoder RNN cell . . ’
:,—_9,\[./’ Hy A\ HY 2\ HY,
\\ ’l 777777777777777777

A = decoder RNN cell : : :

—————————————————————————————————————————————————

Heo ; He, ; He, ; He;z Heaz He, :’ """""""""""""""""""

load
t-5 t-4 t-3 t-2 t-1 t t-5 t-4 t-3 t-2 t-1 t

Simple encoder-decoder

load

t+3
A

22 | Recursive encoder-decoder
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Vector output approach

t+1 [ t+2 [ t+3
) 7 7
number of units = HORIZON = 3 \ P
3
A
He
Ho H, H> Hs H, He
------- > ——--o-> ——-----> —m-m-e> ——ee- > ——-ee>
N N N /:\ N N
load
t-5 t-4 t-3 t-2 t-1 t
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Vector output approach ol

-------------------------------------------------

load

&Simplest to implement S
oFastest to train
$Does not model dependencies between predicted outputs

Reference notebook: multi_step_RNN_vector_output.ipynb
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Simple encoder-decoder 1203

O = encoder RNN cell A A A

-------------------------------------

t-5 t-4 t-3 t-2 t-1 t
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Simple encoder-decoder

O = encoder RNN cell . .
Hd, — Hd,
O = decoder RNN cell Q ---- >Q ----- >Q
He6 H66 H
H : : H : H : Hes He4 ----------------- LR —
load

SFairly simple to implement

&Tries to capture dependencies between forecasted time
steps through decoder hidden state

¢Slower to train with stacked RNN layers
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Simple encoder-decoder

model = Sequential() t+1t+2 [ t+3
model.add[GRU(LATENT_DIM, input_shape=(6, 2)) AN
model.add[RepeatVector(3))
model.addlGRU(LATENT_DIM, return_sequences=True)) A A A
model.add{TimeDistributed((Dense(1))) : :

model.add{Flatten())

t-5 t-4 t-3 t-2 t-1 t
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Recursive encoder-decoder i

QQQQQQ

load @ t-5 t-4 t
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Recursive encoder-decoder
(training with teacher forcing)

Heo

t+1

t+2

t+3

: He1 : He2 : He3 : He4: He5 ::
t-4 t=3 t-2 t-1 t

load t-5

t+1

t+2
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Recursive encoder-decoder

A A A
Heg () 4 [) dz)Q

Heo ; He, : He, ; Hes ; He, : He, :’
t5  t4 3 t2 t

&Tries to capture dependencies between forecasted time
steps through recursive decoder

SVariable length output (can generate forecasts of
variable horizons)

sMore difficult to implement
sSlower to train and slower to generate forecasts
sError propagation due to recursive decoder
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Web traffic forecasting competition

Forecast traffic of 145K Wikipedia pages
Winning solution:  github.com/Arturus/kaggle-web-traffic

Predictions
Encoder T T T T
I Y ¥ Y1 Yn
| - [ |
{ GRU | [ GRU | ( GRU | ( GRU \‘ g r GRU W GRU W GRU ] GRU ]
J M MM J J J
1 1 i s
X1 X2 Xn-1 Xn I | I
Historical data Decoder

- Feature engineering: transform univariate to multivariate time series by adding seasonality features:
Xt - (Xt/Xt—quarter/Xt—year)
- COCOB optimizer that doesn't require learning rate tuning and converges considerably faster, custom

implementation
+ Sophisticated technique for building ensemble of RNN models, mainly for reducing model variance

=. Microsoft Deep Learning for Time Series Forecasting: aka.ms/dlts


https://aka.ms/dlts
https://aka.ms/dlts

Simple Exponential Smoothing (SES)

Time-series. vi,¥V2, ., V¢

learned parameter

|

yt+1|t = ay: + a(l - a)yt_l + a(l — a)zyt_z + ...

Weighted average, where weight decrease exponentially as observations get older.

Weighted average form:

Vere = aye + (1 — @) Pe-1

T T T

forecast of  actual forecast of
next value current value current value

Component form:

Forecast: g = I¢

Smoothing: | l; F ay; + (1 — a)l;—4

evel

In Simple Exponential Smoothing, level is
the only component.

Wl \licrosoft Hyndman, R.J., & Athanasopoulos, G. (2018) Forecasting: principles and practice
B
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Exponential Smoothing (ES)

Forecasting: yt+1|t =1+ Sp1q seasonality term
(multiplicative method)
. YVt
Smoothing: =a—+0-a)l,
t
YVt
Seasonal: Se+m =V T~ (1—-y)s;
t

forecast of the
next seasonality term

forecast of the
current seasonality term

actual value of the
current seasonality term

- length of seasonality
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ES-RNN

Forecasting:  Ye+1jt = le * St+1 - RNN(x)
. YVt

Smoothing: [, = - +(1—a)l;_4

t

Yt
Seasonal: St+m = VE + (1 —vy)s
De-seasonalized _ Yt
and normalized Xt = LS,
time-series:

B® Microsoft S. Smyl, 2018, Introducing a New Hybrid ES-RNN Model Deep Learning for Time Series Forecasting: aka.ms/dlts
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FS-RNN Neural Architectures

}7t+1|t = l; * St41 |RNN(x;)

» Stack of dilated LSTM-based blocks Lincar adaptor
] Linear adaptor

connected with shortcuts.

Non-linear layer

LSTM, dilation=8 LSTM Resid, dilation=12
* ES-RNN uses 3 types of dilated LSTMs: LSTM, dilation=4 ’ LSTM Resid, dilation=6 "y

O Dllated Recu rrent Neu ral Networks LSTM, dilation=2 LSTM Resid, dilation=3 » LSTM Att, dilation=6
o Dual-Stage Attention-Based Recurrent e — STV Resic, dilationea
Neural Network
(1,2)-(4,8) Std (1-3-6-12) Residual a la Kim (1,6),NL
@) ReS|d Ual I_STM Quarterly Monthly Yearly, Pred. Intervals

In the example notebook of this tutorial, we simplify it to standard GRU.
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Simplified ES-RNN

t+1 t+2 t+3

N

—-e>
--->

Denormalization + Seasonalization

/N /N /;\ N\

Xt+1i XHZE Xt+3i E St+1r
i 1 Seo
---- Dense --- ! t+2
A E St+3
He ! ',
Ho H, Ho Hs H H-
------- > GRU -------> GRU -------> GRU -------> GRU ------> GRU ----=-> GRU :
A A A A A A
Xt-5! Xt X¢-3! Xio! X1 Xi
Exponential Smoothing + Normalization + De-seasonalization
» » ’." » » »
load
t-5 t-4 t-3 t-2 t-1 t

57t+1|t = l; * St41 - RNN(x¢)

RNN(x,)
. YVt
Smoothing: l; = o + (1 —a)l;_4
t
YVt

Seasonal: Si4m = Y5

De-seasonalized and . _ 't
normalized time-series:
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Simplified ES-RNN

t+1 t+2 t+3

—-e>
—-e>
—-e>

Denormalization + Seasonalization

) N
Xe+1i X+ 21 Xer3l 1 Stens
;---- Dense ---; i St+2,
A i St+3
He ! ',
Ho H, H2 Hs H, H- | i
------- > GRU ------> GRU ------> GRU ------> GRU ------> GRU ----=-> GRU :
A A A A A A |
Xe-s! Xt-a. thi thi X1 X1 |

N N N N N
1 1 1
1 1
1 1
1 1

—---3>

load

t-5 t-4 t-3 t-2 t-1 t

Exponential Smoothing + Normalization + De-seasonalization

-

ES-RNN can be used to
forecast multiple time-series

o Local parameters for each
time series:

a,V,So0,S1) - Sm-1

o Global parameters,
shared by all time series:
weights of connections
inside RNN

Cost function depends on all
local and global parameters
which are learned by
minimizing cost function
(using BPTT)
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What are hyperparameters?

- Adjustable parameters that govern model training

- Architecture: number of layers, number of cells in each layer, connections
- Optimization: learning rate, mini-batch size, stopping criterion, initialization

- Loss function: weight of regularization term

- Chosen prior to training, stay constant during training, e.g.

Hidden layer 1

O OO0

Number of
hidden layers

@)

e] Number of nodes

0 in layers
Input layer

V.
|

Hidden layer 2

Output layer

Learning rate

Batch size

Regularization
parameter

a8 Microsoft
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Hyper-parameter tuning

- Search across various hyperparameter configurations
- Find the configuration that results in best performance

Challenges

* Huge search space to explore

* Sparsity of good configurations
* Expensive evaluation

* Limited time and resources
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Key Takeaways

- Deep learning models are very powertul models,
sometimes are the most accurate models.

- Neural network models share many techniques/tricks

- Tuning hyperparameters and other tricks are important for
creating an accurate model
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