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Date Observation
2018-06-04 60

2018-06-05 64

2018-06-06 66

2018-06-07 65

2018-06-08 67

2018-06-09 68

2018-06-10 70

2018-06-11 69

2018-06-12 72

2018-06-13 ?

2018-06-14 ?

2018-06-15 ?
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Tao Hong, Pierre Pinson, Shu Fan, Hamidreza
Zareipour, Alberto Troccoli and Rob J. Hyndman, 
"Probabilistic energy forecasting: Global Energy 
Forecasting Competition 2014 and beyond", 
International Journal of Forecasting, vol.32, no.3, 
pp 896-913, July-September, 2016.
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- Deep learning model has been shown perform well in many scenarios
 2014 Global Energy Forecasting Competition (link)
 2016 CIF International Time Series Competition (link)
 2017 Web Traffic Time Series Forecasting (link)
 2018 Corporación Favorita Grocery Sales Forecasting (link)
 2018 M4-Competition (link)

- Non-parametric
- Flexible and expressive
- Easily inject exogenous features into the model
- Learn from large time series datasets
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https://crowdanalytix.com/contests/global-energy-forecasting-competition-2014-probabilistic-electricity-price-forecasting
http://irafm.osu.cz/cif/main.php
https://www.kaggle.com/c/web-traffic-time-series-forecasting#timeline
https://www.kaggle.com/c/favorita-grocery-sales-forecasting
https://forecasters.org/resources/time-series-data/m4-competition/
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Feed-Forward Neural Network and Deep Neural Network 
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learning rate
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𝑓𝑓1 𝑤𝑤

Computation of 

𝐿𝐿′ 𝑤𝑤 = 𝑔𝑔′ 𝑓𝑓1 ℎ(𝑤𝑤) � 𝑓𝑓1′ ℎ(𝑤𝑤) � ℎ′ 𝑤𝑤

𝐿𝐿′ 𝑤𝑤 = 𝑔𝑔′ 𝑓𝑓2 ℎ(𝑤𝑤) � 𝑓𝑓2′ ℎ(𝑤𝑤) � ℎ′ 𝑤𝑤

𝑓𝑓1 𝑤𝑤 𝑓𝑓2 𝑤𝑤
𝐿𝐿′ 𝑤𝑤 𝐿𝐿′ 𝑤𝑤
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Tutorial from deeplearning.ai

Regularization for deep learning

Dropout: A simple way to prevent neural networks from overfitting Zoneout: Regularizing RNNs by 
randomly preserving hidden activations

Batch normalization: Accelerating deep network training by reducing internal 
covariate shift Recurrent batch normalization

Learning rate schedules and adaptive learning rate methods for deep learning

An overview of gradient descent optimization algorithms

Deep Learning for Time Series Forecasting: aka.ms/dlts

https://www.coursera.org/lecture/deep-neural-network/weight-initialization-for-deep-networks-RwqYe
http://www.deeplearningbook.org/contents/regularization.html
http://jmlr.org/papers/v15/srivastava14a.html
https://arxiv.org/abs/1606.01305
https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1603.09025
https://towardsdatascience.com/learning-rate-schedules-and-adaptive-learning-rate-methods-for-deep-learning-2c8f433990d1
http://ruder.io/optimizing-gradient-descent/
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X =

Input: 1 x 6 Filter: 1 x 3 Output: 1 x 4

5 3 2 7 1 6 1 0 -1 3 -4 1 1

5 x 1 + 3 x 0 + 2 x -1 = 33 x 1 + 2 x 0 + 7 x -1 = -4
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X =

Input: 1 x 6 Filter: 1 x 3 Output: 1 x 4

5 3 2 7 1 6 w1 w2 w3 3 4 1 1
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X =

Input: 1 x 6

Filter: 1 x 3 Output: 1 x 4

X =

Output: 1 x 4 Output: 1 x 4 x 3

X =

Output: 1 x 4

Filter: 1 x 3

Filter: 1 x 3
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tt-4 t-3 t-2 t-1 t+1t-5
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t-6t-7t-8t-9
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X
=

Input: 1 x 6 x 3

Filter: 1 x 3 x 3 Output: 1 x 4 x 1

X
=

Filter: 1 x 3 x 3 Output: 1 x 4 x 1

Output: 1 x 4 x 2
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W
In Keras you will see “timesteps” when set data input shape
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In Keras, the parameter “units” is dimensions of hidden state.
(Think of it as feedforward neural network number of units in hidden layer.) 

model = Sequential()
model.add(RNN(4, input_shape=(timesteps, data_dim)))
model.add(Dense(3)) (timesteps, features)



Forward through entire sequence to compute loss

then backward through entire sequence to compute gradient

Y

RNN

X

Y1

RNN

X1

Y2

RNN

X2

Y3

RNN

X3
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tanh
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100 time steps is similar to 100 layers feedforward neural net
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tanh
1-

tanh
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Y1

GRU

X1

Y2

GRU

X2

Y3

GRU

X3

Uninterrupted 
gradient flow 
State runs straight 
through the entire chain 
with minor linear 
interactions which 
makes information very 
easy to pass.

1-

tanh

1-

tanh

1-

tanh
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Update gates:

Reset gates:

Candidate gates/states:

(0,1) (-1, 1)

Hidden state:

GRU [Learning phrase representations using rnn encoderdecoder
for statistical machine translation, Cho et al. 2014]

tanh

1-
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Hidden cell state:

Forget gates:

Input gates:

Output gates:

Candidate gates/states:

Hidden state:

1-

tanh tanh

× +

× tanh
×

Update gates:

Reset gates:

Candidate gates/states:

Hidden state:

LSTM: A Search Space Odyssey, Greff et al., 2015

GRU LSTM

Long Short-Term Memory, Hochreiter & Schmidhuber (1997) Deep Learning for Time Series Forecasting: aka.ms/dlts

https://arxiv.org/pdf/1503.04069.pdf
http://www.bioinf.jku.at/publications/older/2604.pdf
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RNN

X3

RNN RNN RNN RNN

model = Sequential()
model.add(RNN(4, return_sequences=True, input_shape=(timesteps, data_dim)))
model.add(RNN(4))
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t+1 t+2 t+3

3

Deep Learning for Time Series Forecasting: aka.ms/dlts

https://aka.ms/dlts
https://aka.ms/dlts








Deep Learning for Time Series Forecasting: aka.ms/dlts

https://aka.ms/dlts
https://aka.ms/dlts


t+1 t+2 t+3

Deep Learning for Time Series Forecasting: aka.ms/dlts

https://aka.ms/dlts
https://aka.ms/dlts








Deep Learning for Time Series Forecasting: aka.ms/dlts

https://aka.ms/dlts
https://aka.ms/dlts


Deep Learning for Time Series Forecasting: aka.ms/dlts

https://aka.ms/dlts
https://aka.ms/dlts


t+1 t+2 t+3

Deep Learning for Time Series Forecasting: aka.ms/dlts

https://aka.ms/dlts
https://aka.ms/dlts


t+1 t+2 t+3

Deep Learning for Time Series Forecasting: aka.ms/dlts

https://aka.ms/dlts
https://aka.ms/dlts











Deep Learning for Time Series Forecasting: aka.ms/dlts

https://aka.ms/dlts
https://aka.ms/dlts


github.com/Arturus/kaggle-web-traffic
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𝛼𝛼 1− 𝛼𝛼

𝛼𝛼 𝛼𝛼 1− 𝛼𝛼 𝛼𝛼(1 − 𝛼𝛼)2

𝛼𝛼 1− 𝛼𝛼

𝛼𝛼 𝛼𝛼 1− 𝛼𝛼 𝛼𝛼(1 − 𝛼𝛼)2

Hyndman, R.J., & Athanasopoulos, G. (2018) Forecasting: principles and practice
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� 𝑠𝑠𝑡𝑡+1
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𝑠𝑠𝑡𝑡+𝑚𝑚 = 𝛾𝛾
𝑦𝑦𝑡𝑡
𝑙𝑙𝑡𝑡
+ 1− 𝛾𝛾 𝑠𝑠𝑡𝑡

𝑙𝑙𝑡𝑡 = 𝛼𝛼
𝑦𝑦𝑡𝑡
𝑠𝑠𝑡𝑡
+ 1− 𝛼𝛼 𝑙𝑙𝑡𝑡−1

� 𝑠𝑠𝑡𝑡+1 � 𝑅𝑅𝑅𝑅𝑅𝑅(𝑥𝑥𝑡𝑡)

𝑥𝑥𝑡𝑡 =
𝑦𝑦𝑡𝑡
𝑙𝑙𝑡𝑡𝑠𝑠𝑡𝑡

S. Smyl, 2018, Introducing a New Hybrid ES-RNN Model
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Dilated Recurrent Neural Networks

Dual-Stage Attention-Based Recurrent 
Neural Network

Residual LSTM

� 𝑠𝑠𝑡𝑡+1 � 𝑅𝑅𝑅𝑅𝑅𝑅(𝑥𝑥𝑡𝑡)
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𝑙𝑙𝑡𝑡 = 𝛼𝛼
𝑦𝑦𝑡𝑡
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+ 1 − 𝛼𝛼 𝑙𝑙𝑡𝑡−1

𝑥𝑥𝑡𝑡 =
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𝑙𝑙𝑡𝑡𝑠𝑠𝑡𝑡

t+1

GRUGRUGRUGRU GRU GRU

t+2 t+3

Dense

Exponential Smoothing + Normalization + De-seasonalization

Denormalization + Seasonalization

𝑅𝑅𝑅𝑅𝑅𝑅(𝑥𝑥𝑡𝑡)
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t+1

GRUGRUGRUGRU GRU GRU

t+2 t+3

Dense

Exponential Smoothing + Normalization + De-seasonalization

Denormalization + Seasonalization

Fast ES-RNN: A GPU Implementation of the ES-RNN Algorithm
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https://github.com/damitkwr/ESRNN-GPU


Number of 
hidden layers

Input layer

Hidden layer 1 Hidden layer 2

Output layer

Number of nodes 
in layers

Learning rate

Batch size

Regularization 
parameter
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Challenges
• Huge search space to explore
• Sparsity of good configurations
• Expensive evaluation
• Limited time and resources

Hyper-parameter tuning
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