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Monte Carlo Methods
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 A recent survey places the Metropolis algorithm among the 

10 algorithms that have had the greatest influence on the 
development and practice of science and engineering in the 20th

century (Beichl&Sullivan, 2000). 

 The Metropolis algorithm is an instance of a large class of sampling 
algorithms, known as Markov chain Monte Carlo (MCMC).

The importance of MCMC
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 Bayesian inference and learning

 Normalization

 Marginalization

 Expectation

 Sampling from high-dimensional, complicated distributions

 Global optimization

MCMC Applications
MCMC plays significant role in statistics, econometrics, physics and 

computing science.  
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 Monte Carlo methods need sample from distribution p(x).

 When p(x) has standard form, e.g. Uniform or Gaussian, it is 
straightforward to sample from it using easily available routines.

 However, when this is not the case, we need to introduce more 
sophisticated sampling techniques. ⇒ MCMC sampling

The Monte Carlo principle

One “tiny” problem… 
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Sampling

 Rejection sampling

 Importance sampling
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Main Goal

Sample from distribution p(x) that is only known up 
to a proportionality constant 

For example,

p(x) ∝ 0.3 exp(−0.2x2) +0.7 exp(−0.2(x − 10)2) 
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Rejection Sampling
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Rejection Sampling Conditions

 p(x) is known up to a proportionality constant  

p(x) ∝ 0.3 exp(−0.2x2) +0.7 exp(−0.2(x − 10)2) 

 It is easy to sample from q(x) that satisfies p(x) ≤ M q(x), M < ∞

 M is known

Suppose that
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Rejection Sampling Algorithm
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Rejection Sampling

The accepted x(i ) can be shown to be sampled with probability p(x) 
(Robert & Casella, 1999, p. 49).

Theorem

Severe limitations:

 It is not always possible to bound p(x)/q(x) with a reasonable 
constant M over the whole space X. 

 If M is too large, the acceptance probability is too small.

 In high dimensional spaces it can be exponentially slow to sample 
points. (The points usually will be rejected)
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Importance Sampling
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Importance Sampling

 Importance sampling is an alternative “classical” solution that goes 
back to the 1940’s. 

 Let us introduce, again, an arbitrary importance proposal distribution 
q(x) such that its support includes the support of p(x). 

 Then we can rewrite I(f) as follows:

Goal: Sample from distribution p(x) that is only known up to a 
proportionality constant  
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Importance Sampling

Consequently, 
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Importance Sampling

 This estimator is unbiased 

 Under weak assumptions, the strong law of large numbers applies: 

Some proposal distributions q(x) will obviously be preferable to others. 

Theorem

Which one should we choose?
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Importance Sampling

 This estimator is unbiased 

 Under weak assumptions, the strong law of large numbers applies: 

Some proposal distributions q(x) will obviously be preferable to others. 

Theorem
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Importance Sampling

The variance is minimal when we adopt the following
optimal importance distribution:

Theorem

Find one that minimizes the variance of the estimator!
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 Importance sampling estimates can be super-efficient: 

For a given function f (x), it is possible to find a distribution q(x) 
that yields an estimate with a lower variance than when using 
q(x)= p(x)!

 In high dimensions it is not efficient either…

Importance Sampling
 The optimal proposal is not very useful in the sense that it is not easy to 

sample from  

 High sampling efficiency is achieved when we focus on sampling from p(x) 
in the important regions where |f (x)|p(x) is relatively large; hence the 
name importance sampling
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MCMC sampling - Main ideas

Create a Markov chain, which has the desired limiting distribution!
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Definition:

[stationary distribution, invariant distribution, steady state distributions]

Markov Chains, 
stationary distribution 

The stationary distribution might be not unique (e.g. T= identity matrix)
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Markov Chains, limit distributions

If the probability vector for the initial state is 

it follows that 

and, after several iterations (multiplications by T )

no matter what initial distribution µ(x1) was.

limit distribution

The chain has forgotten its past.

Some Markov chains have unique limit distribution:
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Our goal is to find conditions under which the Markov chain

converges to a unique limit distribution (independently from its 
starting state distribution)

Markov Chains

Observation: 

If this limiting distribution exists, it has to be the stationary distribution. 
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Limit Theorem of Markov Chains

If the Markov chain is Irreducible and Aperiodic, then:

Theorem:

That is, the chain will convergence to the unique stationary distribution
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For each pairs of states (i,j), there is a positive probability, starting in 
state i, that the process will ever enter state j. 

= The matrix T cannot be reduced to separate smaller matrices

= Transition graph is connected.

Markov Chains
Definition

Irreducibility:

It is possible to get to any state from any state.
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Markov Chains
Definition

The chain cannot get trapped in cycles.Aperiodicity:

A state i has period k if any return to state i, must occur in multiples of 
k time steps. Formally, the period of a state i is defined as

For example, suppose it is possible to return to the state in 
{6,8,10,12,...} time steps. Then k=2

(where "gcd" is the greatest common divisor)

Definition
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Markov Chains

In other words, 

a state i is aperiodic if there exists n such that for all n' ≥ n,

A Markov chain is aperiodic if every state is aperiodic. 

Definition

Definition

The chain cannot get trapped in cycles.Aperiodicity:
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Let

If we start the chain from (1,0), or (0,1), then the chain get 
traps into a cycle, it doesn’t forget its past. 

Markov Chains

Example for periodic Markov chain:

In this case

It has stationary distribution, but no limiting distribution!
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A sufficient, but not necessary, condition to ensure that a particular π is 
the desired invariant distribution of the Markov chain is the detailed 
balance condition.

Reversible Markov chains
(Detailed Balance Property)

Definition: reversibility /detailed balance condition:

Theorem:

How can we find the limiting distribution of an irreducible and aperiodic 
Markov chain? 
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How fast can Markov chains forget 
the past?

 irreducible and aperiodic Markov chains 

 have the target distribution as the invariant distribution. 

 the detailed balance condition is satisfied. 

It is also important to design samplers that converge quickly.  

MCMC samplers are 
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The Hastings-Metropolis Algorithm
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The Hastings-Metropolis Algorithm

Our goal:

The main idea is to construct a time-reversible Markov chain 
with (π,…,πm) limit distributions

We don’t know B ! 

Generate samples from the following discrete distribution:

Later we will discuss what to do when the distribution is continuous
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The Hastings-Metropolis Algorithm
Let {1,2,…,m} be the state space of a Markov chain that we 
can simulate.

No rejection: we use all X1, X2,… Xn, …
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Example for Large State Space
Let {1,2,…,m} be the state space of a Markov chain that we 
can simulate.

d-dimensional grid:

 Max 2d possible movements at each grid point (linear in d)

 Exponentially large state space in dimension d  
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The Hastings-Metropolis Algorithm

Theorem

Proof
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The Hastings-Metropolis Algorithm

Observation

Corollary

Theorem

Proof:
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The Hastings-Metropolis Algorithm

Proof:

Theorem

Note:
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The Hastings-Metropolis Algorithm

It is not rejection sampling, we use all the samples!
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Continuous Distributions

 The same algorithm can be used for 
continuous distributions as well.

 In this case, the state space is continuous.



47q(x | x(i )) = N(x(i), 100), 5000 iterations

Bimodal target distribution: p(x) ∝ 0.3 exp(−0.2x2) +0.7 exp(−0.2(x − 10)2) 

Experiment with HM 
An application for continuous distributions 
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Good proposal distrib. is important
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HM on Combinatorial Sets

Generate uniformly distributed samples from the set of permutations 

{1,2,3}: 1+4+9=14

{1,3,2}: 1+6+6=13

{2,3,1}: 2+6+3=11

{2,1,3}: 2+2+9=13

{3,1,2}: 3+2+6=11

{3,2,1}: 3+4+3=10

Let n=3, and a=12:
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To define a simple Markov chain on , we need the concept of

neighboring elements (permutations):

Definition: Two permutations are neighbors, if one results from 
the interchange of two of the positions of the other:

(1,2,3,4) and (1,2,4,3) are neighbors. 

(1,2,3,4) and (1,3,4,2) are not neighbors.

HM on Combinatorial Sets
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HM on Combinatorial Sets

That is what we wanted!
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Gibbs Sampling: The Problem

Our goal is to generate samples from

Suppose that we can generate samples from
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Gibbs Sampling: Pseudo Code
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Gibbs Sampling: Theory

Let

and let

Observation: By construction, this HM sampler would sample from

Consider the following HM sampler:

We will prove that this HM sampler = Gibbs sampler.  
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Gibbs Sampling is a Special HM

Proof:
By definition:

Theorem: The Gibbs sampling is a special case of HM with
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Gibbs Sampling is a Special HM

Proof:
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Gibbs Sampling in Practice


