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Monte Carlo Methods
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 A recent survey places the Metropolis algorithm among the 

10 algorithms that have had the greatest influence on the 
development and practice of science and engineering in the 20th

century (Beichl&Sullivan, 2000). 

 The Metropolis algorithm is an instance of a large class of sampling 
algorithms, known as Markov chain Monte Carlo (MCMC).

The importance of MCMC
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 Bayesian inference and learning

 Normalization

 Marginalization

 Expectation

 Sampling from high-dimensional, complicated distributions

 Global optimization

MCMC Applications
MCMC plays significant role in statistics, econometrics, physics and 

computing science.  
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 Monte Carlo methods need sample from distribution p(x).

 When p(x) has standard form, e.g. Uniform or Gaussian, it is 
straightforward to sample from it using easily available routines.

 However, when this is not the case, we need to introduce more 
sophisticated sampling techniques. ⇒ MCMC sampling

The Monte Carlo principle

One “tiny” problem… 
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Sampling

 Rejection sampling

 Importance sampling
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Main Goal

Sample from distribution p(x) that is only known up 
to a proportionality constant 

For example,

p(x) ∝ 0.3 exp(−0.2x2) +0.7 exp(−0.2(x − 10)2) 
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Rejection Sampling
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Rejection Sampling Conditions

 p(x) is known up to a proportionality constant  

p(x) ∝ 0.3 exp(−0.2x2) +0.7 exp(−0.2(x − 10)2) 

 It is easy to sample from q(x) that satisfies p(x) ≤ M q(x), M < ∞

 M is known

Suppose that
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Rejection Sampling Algorithm
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Rejection Sampling

The accepted x(i ) can be shown to be sampled with probability p(x) 
(Robert & Casella, 1999, p. 49).

Theorem

Severe limitations:

 It is not always possible to bound p(x)/q(x) with a reasonable 
constant M over the whole space X. 

 If M is too large, the acceptance probability is too small.

 In high dimensional spaces it can be exponentially slow to sample 
points. (The points usually will be rejected)
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Importance Sampling
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Importance Sampling

 Importance sampling is an alternative “classical” solution that goes 
back to the 1940’s. 

 Let us introduce, again, an arbitrary importance proposal distribution 
q(x) such that its support includes the support of p(x). 

 Then we can rewrite I(f) as follows:

Goal: Sample from distribution p(x) that is only known up to a 
proportionality constant  
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Importance Sampling

Consequently, 
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Importance Sampling

 This estimator is unbiased 

 Under weak assumptions, the strong law of large numbers applies: 

Some proposal distributions q(x) will obviously be preferable to others. 

Theorem

Which one should we choose?
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Importance Sampling

 This estimator is unbiased 

 Under weak assumptions, the strong law of large numbers applies: 

Some proposal distributions q(x) will obviously be preferable to others. 

Theorem
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Importance Sampling

The variance is minimal when we adopt the following
optimal importance distribution:

Theorem

Find one that minimizes the variance of the estimator!
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 Importance sampling estimates can be super-efficient: 

For a given function f (x), it is possible to find a distribution q(x) 
that yields an estimate with a lower variance than when using 
q(x)= p(x)!

 In high dimensions it is not efficient either…

Importance Sampling
 The optimal proposal is not very useful in the sense that it is not easy to 

sample from  

 High sampling efficiency is achieved when we focus on sampling from p(x) 
in the important regions where |f (x)|p(x) is relatively large; hence the 
name importance sampling
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MCMC sampling - Main ideas

Create a Markov chain, which has the desired limiting distribution!
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Definition:

[stationary distribution, invariant distribution, steady state distributions]

Markov Chains, 
stationary distribution 

The stationary distribution might be not unique (e.g. T= identity matrix)
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Markov Chains, limit distributions

If the probability vector for the initial state is 

it follows that 

and, after several iterations (multiplications by T )

no matter what initial distribution µ(x1) was.

limit distribution

The chain has forgotten its past.

Some Markov chains have unique limit distribution:
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Our goal is to find conditions under which the Markov chain

converges to a unique limit distribution (independently from its 
starting state distribution)

Markov Chains

Observation: 

If this limiting distribution exists, it has to be the stationary distribution. 
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Limit Theorem of Markov Chains

If the Markov chain is Irreducible and Aperiodic, then:

Theorem:

That is, the chain will convergence to the unique stationary distribution
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For each pairs of states (i,j), there is a positive probability, starting in 
state i, that the process will ever enter state j. 

= The matrix T cannot be reduced to separate smaller matrices

= Transition graph is connected.

Markov Chains
Definition

Irreducibility:

It is possible to get to any state from any state.



32

Markov Chains
Definition

The chain cannot get trapped in cycles.Aperiodicity:

A state i has period k if any return to state i, must occur in multiples of 
k time steps. Formally, the period of a state i is defined as

For example, suppose it is possible to return to the state in 
{6,8,10,12,...} time steps. Then k=2

(where "gcd" is the greatest common divisor)

Definition
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Markov Chains

In other words, 

a state i is aperiodic if there exists n such that for all n' ≥ n,

A Markov chain is aperiodic if every state is aperiodic. 

Definition

Definition

The chain cannot get trapped in cycles.Aperiodicity:
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Let

If we start the chain from (1,0), or (0,1), then the chain get 
traps into a cycle, it doesn’t forget its past. 

Markov Chains

Example for periodic Markov chain:

In this case

It has stationary distribution, but no limiting distribution!
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A sufficient, but not necessary, condition to ensure that a particular π is 
the desired invariant distribution of the Markov chain is the detailed 
balance condition.

Reversible Markov chains
(Detailed Balance Property)

Definition: reversibility /detailed balance condition:

Theorem:

How can we find the limiting distribution of an irreducible and aperiodic 
Markov chain? 
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How fast can Markov chains forget 
the past?

 irreducible and aperiodic Markov chains 

 have the target distribution as the invariant distribution. 

 the detailed balance condition is satisfied. 

It is also important to design samplers that converge quickly.  

MCMC samplers are 
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The Hastings-Metropolis Algorithm
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The Hastings-Metropolis Algorithm

Our goal:

The main idea is to construct a time-reversible Markov chain 
with (π,…,πm) limit distributions

We don’t know B ! 

Generate samples from the following discrete distribution:

Later we will discuss what to do when the distribution is continuous
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The Hastings-Metropolis Algorithm
Let {1,2,…,m} be the state space of a Markov chain that we 
can simulate.

No rejection: we use all X1, X2,… Xn, …
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Example for Large State Space
Let {1,2,…,m} be the state space of a Markov chain that we 
can simulate.

d-dimensional grid:

 Max 2d possible movements at each grid point (linear in d)

 Exponentially large state space in dimension d  
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The Hastings-Metropolis Algorithm

Theorem

Proof
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The Hastings-Metropolis Algorithm

Observation

Corollary

Theorem

Proof:
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The Hastings-Metropolis Algorithm

Proof:

Theorem

Note:
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The Hastings-Metropolis Algorithm

It is not rejection sampling, we use all the samples!
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Continuous Distributions

 The same algorithm can be used for 
continuous distributions as well.

 In this case, the state space is continuous.



47q(x | x(i )) = N(x(i), 100), 5000 iterations

Bimodal target distribution: p(x) ∝ 0.3 exp(−0.2x2) +0.7 exp(−0.2(x − 10)2) 

Experiment with HM 
An application for continuous distributions 
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Good proposal distrib. is important



49

HM on Combinatorial Sets

Generate uniformly distributed samples from the set of permutations 

{1,2,3}: 1+4+9=14

{1,3,2}: 1+6+6=13

{2,3,1}: 2+6+3=11

{2,1,3}: 2+2+9=13

{3,1,2}: 3+2+6=11

{3,2,1}: 3+4+3=10

Let n=3, and a=12:
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To define a simple Markov chain on , we need the concept of

neighboring elements (permutations):

Definition: Two permutations are neighbors, if one results from 
the interchange of two of the positions of the other:

(1,2,3,4) and (1,2,4,3) are neighbors. 

(1,2,3,4) and (1,3,4,2) are not neighbors.

HM on Combinatorial Sets
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HM on Combinatorial Sets

That is what we wanted!
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Gibbs Sampling: The Problem

Our goal is to generate samples from

Suppose that we can generate samples from
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Gibbs Sampling: Pseudo Code
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Gibbs Sampling: Theory

Let

and let

Observation: By construction, this HM sampler would sample from

Consider the following HM sampler:

We will prove that this HM sampler = Gibbs sampler.  
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Gibbs Sampling is a Special HM

Proof:
By definition:

Theorem: The Gibbs sampling is a special case of HM with
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Gibbs Sampling is a Special HM

Proof:
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Gibbs Sampling in Practice


