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Points in ℙ3

• A point 𝐗 in 3-space is represented in homogeneous 
coordinates as a 4-vector, i.e.

• Represents the point X, Y, Z ⊤ of ℝ3 with inhomogeneous 
coordinates

• Homogeneous points with X4 = 0 represent points at 
infinity.
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𝐗 = X1, X2, X3, X4 ⊤ with X4 ≠ 0



Projective Transformation of Points in ℙ3

• A projective transformation acting on ℙ3 is a linear 
transformation on 𝐗 by a non-singular 4×4 matrix:

• The matrix H is homogeneous and has 15 degrees of 
freedom: 16 elements less one for scaling.

• As in ℙ2, the map is a collineation (lines are mapped to 
lines), 

• which preserves incidence relations such as the 
intersection point of a line with a plane, and order of 
contact.
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Planes in ℙ3

• A plane in 3-space may be written as:

• Homogenizing by                                                                    
gives
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or                       ,

which expresses that the point 𝐗 is on the plane 𝝅 =
𝜋1, 𝜋2, 𝜋3, 𝜋4 ⊤.



Planes in ℙ3

• Only three independent ratios {𝜋1 ∶ 𝜋2 ∶ 𝜋3 ∶ 𝜋4} of 
the plane coefficients are significant, i.e., 3 degrees of 
freedom.

• The first 3 components of 𝝅 correspond to the plane 
normal of Euclidean geometry, i.e., 𝐧 = 𝜋1, 𝜋2, 𝜋3 ⊤.

CS4277-CS5477 :: G.H. Lee 8

𝐧

𝝅



Planes in ℙ3

• Using inhomogenous notation to rewrite 𝝅⊤X = 0 as:  

• In this form, 𝑑/ 𝐧 is the distance of the plane from the 
origin.

• Under the point transformation 𝐗′ = H𝐗, a plane 
transforms as:
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where X = X, Y, Z, 1 ⊤ and 𝑑 = 𝜋4.

𝐧

𝝅



Three Points Define a Plane
• Suppose three points 𝐗𝑖 are incident with the plane 𝝅, 

where each point satisfies 𝝅⊤𝐗𝑖 = 0 for 𝑖 = 1,2,3, i.e.

• The 3 × 4 matrix 𝐗1, 𝐗2, 𝐗3 ⊤ has rank 3 when the 
points are in general positions, i.e., linearly independent.

• The plane 𝝅 defined by the points is obtained uniquely 
(up to scale) as the 1-dimensional (right) null-space.
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𝐧

𝝅

𝐗1 𝐗2

𝐗3



Three Points Define a Plane

• If the matrix 𝐗1, 𝐗2, 𝐗2 ⊤ has only a rank of 2, and 
consequently the null-space is 2-dimensional.

• Then the points are collinear and define a pencil of 
planes with the line of collinear points as axis.
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Image source: https://en.wikipedia.org/wiki/Sheaf_of_planes



Three Planes Define a Point
• The intersection point 𝐗 of three planes 𝝅𝑖 can be 

computed as the (right) null-space of the 3 × 4 matrix 
composed of the planes as rows:

• The development here is dual to the case of three points 
defining a plane and it shows the point-plane duality. 
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Image source: https://www.ditutor.com/space/three_planes.html
Refer to link for details of the eight possibilities. 

𝐴

rank 𝐴 = 3

rank 𝐴 =2

rank 𝐴 =2

rank 𝐴 =2

rank 𝐴 =2

rank 𝐴 = 1 rank 𝐴 = 1

rank 𝐴 = 1

https://www.ditutor.com/space/three_planes.html


Parametrized Points on a Plane
• The points 𝐗 on the plane 𝝅 may be written as

• The columns of the 4×3 matrix M generate the rank 3 
null-space of 𝝅⊤, i.e., 𝝅⊤M = 𝟎1×3 , and the 3-vector 𝐱
parametrizes points on the plane 𝝅.

• M is not unique, suppose the plane is 𝝅 =
𝑎, 𝑏, 𝑐, 𝑑 ⊤ and 𝑎 is non-zero, then M⊤ can be written as 
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.

M⊤ = 𝐩 𝐼3×3], where 𝐩 = − 𝑏
𝑎
,− 𝑐

𝑎
, − 𝑑

𝑎

⊤
.



Lines in ℙ3

• A line is defined by the join of two points or the 
intersection of two planes.

• Awkward to represent 3-space line with a homogeneous 5-
vector, we will look at two alternatives representations.
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• Lines have 4 degrees of freedom in 3-
space.

Sketch of Proof: A line may be specified by its points of intersection 
with two orthogonal planes. Each intersection point has 2 degrees 
of freedom, hence 4 degrees of freedom.

Image source: “Multiple View Geometry in Computer Vision”, Richard Hartley and Andrew Zisserman



Lines in ℙ3: Null-Space and Span 
Representation

• Suppose 𝐀,𝐁 are two (non-coincident) space points.

• The line joining these points (6 dofs, i.e. overparameterized) is 
represented by the span of the row space of the 2 × 4 matrix 
W composed of 𝐀⊤ and 𝐁⊤ as rows:

• Then:
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1. The span of W⊤ is the pencil of points 𝜆𝐀 + 𝜇𝐁 on the line.

2. The span of the 2-dimensional right null-space of W is the 
pencil of planes with the line as axis.

𝐀

𝐁

Image source: https://en.wikipedia.org/wiki/Sheaf_of_planes



Lines in ℙ3: Null-Space and Span 
Representation

Remarks on (1):

• It is evident that two other points, 𝐀′⊤ and 𝐁′⊤, on the line 
will generate a matrix W′ with the same span as W.

• Hence, the representation is independent of the particular 
points used to define it. 
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𝐀

𝐁

𝐀′

𝐁′

W = A⊤
B⊤

W′ = A′⊤
B′⊤

Same line!



Lines in ℙ3: Null-Space and Span 
Representation

Remarks on (2):

• Suppose that 𝐏 and 𝐐 are a basis for the null-space, then 
W𝐏 = 𝟎 and consequently 𝐀⊤𝐏 = 𝐁⊤𝐏 = 0, so that 𝐏 is a 
plane containing the points 𝐀 and 𝐁.

• Any plane of the pencil, with the line as axis, is given by the 
span 𝜆𝐏 + 𝜇𝐐.
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• Similarly, 𝐐 is a distinct plane also 
containing the points 𝐀 and 𝐁.

• 𝐀 and 𝐁 lie on both the (linearly 
independent) planes 𝐏 and 𝐐 , so the line 
defined by W is the plane intersection.

𝐏

𝐐

𝐀

𝐁

W = A⊤
B⊤



Lines in ℙ3: Null-Space and Span 
Representation

• The dual representation of a line as the intersection of two 
planes, 𝐏,𝐐, follows in a similar manner.

• The line is represented as the span (of the row space) of the 
2 × 4 matrix W∗ composed of 𝐏⊤ and 𝐐⊤ as rows:
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𝐏

𝐐



Lines in ℙ3: Null-Space and Span 
Representation

• With the properties:

1. The span of W∗⊤ is the pencil of planes 𝜆𝐏 + 𝜇𝐐 with 
the line as axis.

2. The span of the 2-dimensional null-space of W∗ is the 
pencil of points on the line.

• The two representations are related by W∗W⊤ =
WW∗⊤ = 02×2, where 02×2 is a 2 × 2 null matrix.
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Lines in ℙ3: Null-Space and Span 
Representation

• Join and incidence relations are also computed from 
null-spaces:

1. The plane 𝝅 defined by the join of the point 𝐗 and 
line W is obtained from the null-space of
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If the null-space of M is 2-dimensional then 𝐗 is on W, 
otherwise M𝝅 = 𝟎.

𝝅

W

𝐗



Lines in ℙ3: Null-Space and Span 
Representation

• Join and incidence relations are also computed from 
null-spaces:

2. The point 𝐗 defined by the intersection of the line W
with the plane 𝝅 is obtained from the null-space of
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If the null-space of M is 2-dimensional then the line W
is on 𝝅, otherwise M𝐗 = 0.

𝝅 W∗

𝐗



3D Hierarchy of Transformations
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Table source: “Multiple View Geometry in Computer Vision”, Richard Hartley and Andrew Zisserman

R ,    3x3 rotation matrix 

𝑡 = (𝑡𝑥, 𝑡𝑦, 𝑡𝑧)⊤ ,    3x1 translation vector



Line at Infinity and Circular Points

• In the following, it will be shown that: 

1. The projective distortion may be removed once 
the image of 𝐥∞ is specified; 

2. And the affine distortion removed once the 
image of the circular points is specified. 

• Then the only remaining distortion is a similarity.
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The Line at Infinity

• The line at infinity, 𝐥∞, is a fixed line under the projective 
transformation H if and only if H is an affinity, i.e.,

• An affinity is the most general linear transformation with 
H31 = H32 = 0 for the relationship to be true.

• We will see that identifying 𝐥∞ allows the recovery of 
affine properties (parallelism, ratio of lengths).
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The Line at Infinity
• Contrast this with projective transformation, where an 

ideal point and line at infinity might not remain at 
infinity.
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H𝑝𝐱 = 𝐱′ ⇒

Might not be 0 since 𝑣1 and 𝑣2 are not 0.

H𝑝
−⊤𝐥 = 𝐥′ ⇒ A 𝐭

𝐯⊤ 𝑣
−⊤ 0

0
1

=
𝑎21𝑣2 − 𝑎22𝑣1
−𝑎11𝑣2 + 𝑎12𝑣1
𝑎11𝑎22 − 𝑎12𝑎21

Might not be 0 since 𝑣1 and 𝑣2 are not 0.



The Line at Infinity
• Interestingly, 𝐥∞ is not fixed pointwise under an 

affine transformation.

• In general, under an affinity , a point on 𝐥∞ (an 
ideal point) is mapped to another point on 𝐥∞:

• Nonetheless, it would be the same point when:
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Recovery of Affine Properties from Images
Affine Rectification: imaged line at infinity can be used 
to remove projective distortion.
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H𝑝 maps ideal points 
and l∞ to finite 

Image source: “Multiple View Geometry in Computer Vision”, Richard Hartley and Andrew Zisserman

𝐥∞

𝐥∞′



Recovery of Affine Properties from Images
Problem: 
Given 𝐥 = 𝑙1, 𝑙2, 𝑙3 ⊤where 𝑙3 ≠ 0, find H𝑝

′ that can be used to 
remove the projective distortion.
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Image source: “Multiple View Geometry in Computer Vision”, Richard Hartley and Andrew Zisserman

𝐥∞

𝐥∞′



Recovery of Affine Properties from Images
Solution:

Since 𝐥 = H𝑝
−⊤𝐥∞ ⇒ Hp

⊤ 𝑙1, 𝑙2, 𝑙3 ⊤ = 0,0,1 ⊤, we can 
choose

H𝑝
⊤ =

1 0 −𝑙1/𝑙3
0
0

1
0

−𝑙2/𝑙3
1/𝑙3

.

Furthermore, H𝐴 = H𝑝
′ H𝑃

⇒ H𝑝
′ = H𝐴H𝑝

−1 = H𝐴
1 0 −𝑙1/𝑙3
0
0

1
0

−𝑙2/𝑙3
1/𝑙3

,

where H𝐴 is any affine transformation since 𝐥∞′ = H𝐴−⊤𝐥∞.
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−⊤



Recovery of Affine Properties from Images
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1. The imaged vanishing line of the plane 𝐥 is computed from 
the intersection of two sets of imaged parallel lines.

2. Compute H𝑝
′ = H𝐴H𝑃

−1by choosing an arbitrary affinity H𝐴.

𝐥

Image source: “Multiple View Geometry in Computer Vision”, Richard Hartley and Andrew Zisserman



Recovery of Affine Properties from Images

CS4277-CS5477 :: G.H. Lee 36

3. Use H𝑝
′ to projectively warp the image to produce the 

affinely rectified image.

4. Affine properties can be recovered from the affinely rectified 
image, e.g. parallel lines and ratio of lengths. 

5. Note: angles cannot be recovered since image is still affinely 
distorted.

Image source: “Multiple View Geometry in Computer Vision”, Richard Hartley and Andrew Zisserman

H𝑝
′



Computing a Vanishing Point from a
Length Ratio

• Conversely, known affine properties may be used to 
determine points and the line at infinity.

• A typical case is where three points 𝐚′, 𝐛′ and 𝐜′ are 
identified on a line in an image.

• Suppose 𝐚, 𝐛 and 𝐜 are the corresponding collinear points 
on the world line.

• The length ratio 𝑑(𝐚, 𝐛) ∶ 𝑑(𝐛, 𝐜) = 𝑎 ∶ 𝑏 is known; 
𝑑(𝐱, 𝐲) is the Euclidean distance between points 𝐱 and 𝐲.
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Computing a Vanishing Point from a
Length Ratio

Solution:

ii. Points 𝐚, 𝐛 and 𝐜 may be represented as coordinates 0, 𝑎
and 𝑎 + 𝑏 in a coordinate frame on the line 𝐚, 𝐛, 𝐜 .
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These points are represented by homogeneous 2-vectors in 
ℙ1, i.e. 0,1 ⊤, 𝑎, 1 ⊤ and 𝑎 + 𝑏, 1 ⊤. 

Similarly, 𝐚′, 𝐛′, 𝐜′ have coordinates 0,1 ⊤, 𝑎′, 1 ⊤ and 
𝑎′ + 𝑏′, 1 ⊤.

i. Measure the distance ratio in the 
image, 𝑑 𝐚′, 𝐛′ ∶ 𝑑(𝐛′, 𝐜′) = 𝑎′: 𝑏′.

ℙ1

𝑎

𝑏0,1 ⊤

𝑎, 1 ⊤

𝑎 + 𝑏, 1 ⊤



Computing a Vanishing Point from a
Length Ratio

Solution:

iii. Relative to these coordinate frames, compute the 1D projective 
transformation H2×2 mapping 𝐚 ↦ 𝐚′, 𝐛 ↦ 𝐛′ and 𝐜 ↦ 𝐜′.

iv. The image of the point at infinity (with coordinates 1, 0 ⊤) under 
H2×2 is the vanishing point on the line 𝐚′, 𝐛′, 𝐜′ .
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Image source: “Multiple View Geometry in Computer Vision”, Richard Hartley and Andrew Zisserman

Two examples of using equal length ratios on a line to 
determine the point at infinity.



Circular Points and Their Dual
• Under any similarity transformation there are two 

points on 𝐥∞ which are fixed.

• These are the circular points (also called the 
absolute points) 𝐈, 𝐉, with canonical coordinates:

• The circular points are a pair of complex conjugate 
ideal points. 

CS4277-CS5477 :: G.H. Lee 40



Circular Points and Their Dual
• The circular points, 𝐈, 𝐉, are fixed points under the 

projective transformation H if and only if H is a similarity, 
i.e.

• With an analogous proof for 𝐉. 

• The converse is also true, i.e. if the circular points are fixed 
then the linear transformation is a similarity.
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,   where  𝑒𝑖𝜃 = cos 𝜃 + 𝑖sin𝜃.



Circular Points and Their Dual
• The name “circular points” arises because every circle 

intersects 𝐥∞ at the circular points.

• To see this, we start from the conic equation of a circle, i.e.
𝑎 = 𝑐 (we scale to 1) and 𝑏 = 0:
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𝐥∞

𝐈
𝐉

• This conic intersects 𝐥∞ at the ideal points 
where 𝑥3 = 0:

• with solution 𝐈 = 1, i, 0 𝑇, 𝐉 = 1,−i, 0 𝑇

⇒ 𝑥1 + 𝑖𝑥2 𝑥1 − 𝑖𝑥2 = 0



Circular Points and Their Dual
• The dual to the circular points is the conic:

• The conic C∞∗ is a degenerate (rank 2) line conic 
which consists of the two circular points.

• In a Euclidean coordinate system, it is given by:
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𝐈 𝐉



Circular Points and Their Dual
• The conic C∞∗ is fixed under similarity transformations, 

i.e.
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=
𝑠 cos𝜃 −𝑠 sin𝜃 𝑡𝑥
𝑠 sin𝜃 𝑠 cos𝜃 𝑡𝑦
0 0 1

1 0 0
0 1 0
0 0 0

𝑠 cos𝜃 𝑠 sin𝜃 0
−𝑠 sin𝜃 𝑠 cos𝜃 0

𝑡𝑥 𝑡𝑦 1

=
𝑠 cos𝜃 −𝑠 sin𝜃 0
𝑠 sin𝜃 𝑠 cos𝜃 0
0 0 0

𝑠 cos𝜃 𝑠 sin𝜃 0
−𝑠 sin𝜃 𝑠 cos𝜃 0

𝑡𝑥 𝑡𝑦 1

= 𝑠
cos2𝜃 + sin2 𝜃 0 0

0 cos2𝜃 + sin2 𝜃 0
0 0 0

=
1 0 0
0 1 0
0 0 0



Circular Points and Their Dual
• Some properties of C∞∗ in any projective frame:

i. C∞∗ has 4 degrees of freedom:

ii. 𝐥∞ is the null vector of C∞∗ : 
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A 3 × 3  homogeneous symmetric matrix has 5 
degrees of freedom, but the constraint det(C∞∗ ) = 0
reduces the degrees of freedom by 1.

This is clear from the definition: the circular points lie 
on 𝐥∞, so that 𝐈⊤𝐥∞ = 𝐉⊤𝐥∞ = 0; then



Angles on the Projective Plane

• In Euclidean geometry, the angle between two lines is given 
by the inner product of the normals of 𝐥 = 𝑙1, 𝑙2, 𝑙3 ⊤ and 
𝐦 = 𝑚1,𝑚2,𝑚3

⊤:

• Problem with this expression: it is not defined under 
projective transformation.

• Hence, the expression cannot be applied after an affine or 
projective transformation of the plane.
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Angles on the Projective Plane
• Once the conic C∞∗ is identified on the projective plane then 

Euclidean angles may be measured by

• which is invariant to projective transformation. 
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,

Proof: We have                       and                            under the point 
transformation 𝐱′ = H𝐱, hence the numerator transforms as 

It can be verified that the denominator terms also stay the same, 
and the scales of 𝐥 and 𝐦 cancel out.                              



Angles on the Projective Plane

• Lines 𝐥 and 𝐦 are orthogonal if 𝐥⊤C∞∗ 𝐦 = 0.
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Proof: 

This is because cos 𝜋
2

= 0.  



Metric rectification using C∞∗
• Once the conic C∞∗ is identified on the projective plane then 

projective distortion may be rectified up to a similarity.

Proof:
If the point transformation is 𝐱′ = H𝐱, we have

It is clear that image of C∞∗ gives the projective (𝐯) and affine (K) 
components, but not the similarity component.
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= C∞∗

Recall:



Metric rectification using C∞∗
• Given the identified C∞∗ in an image, i.e. C′∞∗ , a suitable 

rectifying homography H can be found from the SVD of C′∞∗ :

• where the rectifying projectivity is H = U up to a similarity 
√𝑆.

• 𝑆 is the singular value of C′∞∗ .
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= C∞∗

C∞∗′ = U
√𝑆 0 0
0 √𝑆 0
0 0 0

1 0 0
0 1 0
0 0 0

√𝑆 0 0
0 √𝑆 0
0 0 0

U⊤



Metric rectification using C∞∗

• Note: In general C′∞∗ does not fulfil the rank-2 and 
repeated singular value constraint due to noisy 
measurements, i.e.  

• We can simply set  𝑆3 = 0, and the 𝑆2 = 𝑆1. This gives 
C, the closest rank-2 matrix with repeated singular 
values to the measured C∞∗′, i.e. 

• . 𝐹 denotes the Frobenius norm.
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C∞∗′ = U
𝑆1 0 0
0 𝑆2 0
0 0 𝑆3

U⊤.

argmin
C

C∞∗
′ − C 𝐹 s.t rank 𝐶 = 2, and 𝑆1 = 𝑆2. 



Identifying C∞∗ in an Image
Example 1: Metric rectification of an affinely rectified 
image
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1. Affine rectification, i.e. removal of 
projective distortion H𝑝 (seen earlier)

2. Metric rectification, i.e.
removal of affine distortion H𝐴

Image source: “Multiple View Geometry in Computer Vision”, Richard Hartley and Andrew Zisserman



Identifying C∞∗ in an Image

• We have seen that

• which can be written as

• where C′′∞∗ is the image of the conic C∞∗ after removal of 
projective distortion.
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H𝑝
−1C′∞∗ H𝑝

−⊤ = H𝐴C∞∗ H𝐴⊤

= C′′∞∗

,

,

Example 1: Metric rectification of an affinely rectified 
image



Identifying C∞∗ in an Image

CS4277-CS5477 :: G.H. Lee 54

Example 1: Metric rectification of an affinely rectified image

• We can compute C′′∞∗ and hence H𝐴 from two pairs of orthogonal 
lines.

• Suppose the lines 𝐥′, 𝐦′ in the affinely 
rectified image correspond to an orthogonal 
line pair 𝐥, 𝐦 on the world plane, we get:

𝐥⊤HA
−1 H𝐴C∞∗ H𝐴⊤ HA

−⊤𝐦 = 0

𝐥′⊤ 𝐦′

⇒ ,
where we write S2×2 = KK⊤

with 3 independent elements. 

,      H𝐴 =
K 0
0⊤ 1

C′′∞∗

Image source: “Multiple View Geometry in Computer Vision”, Richard Hartley and Andrew Zisserman



Identifying C∞∗ in an Image

• Thus, the orthogonality constraint can be written as:

where 𝐬 = 𝑠11, 𝑠12, 𝑠22 ⊤ is S written as a 3-vector.

• Two constraints from two orthogonal line pairs which may be stacked 
to give a 2 × 3 matrix with s determined as the null vector.

• Thus S, and hence K (therefore H𝐴), is obtained up to scale by 
Cholesky decomposition.
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Example 1: Metric rectification of an affinely rectified image



Identifying C∞∗ in an Image
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Example 2: Metric rectification of perspective image of 
the plane (not affinely rectified).

Removal of projective and 
affine distortion H𝑝H𝐴

This can be achieved by identifying C∞∗ on the perspective 
image, i.e.

Image source: “Multiple View Geometry in Computer Vision”, Richard Hartley and Andrew Zisserman



Identifying C∞∗ in an Image

• Each orthogonal pair of lines 𝐥′, 𝐦′ on the perspective 
image gives the constraint:

• where 𝐜 = 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓 ⊤ is C′∞∗ written as a 6-vector.

• Five such constraints can be stacked to form a 5 × 6 matrix, 
and 𝐜, and hence C′∞∗ (therefore H𝑝H𝐴), is obtained as the 
null vector.
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Example 2: Metric rectification of perspective image of the 
plane (not affinely rectified).

, , , , , , , , , , , , , , , , , ,



Stratification

• Note the two-step (remove projective then affine) 
and one-step (remove both) difference between 
example 1 and 2. 

• The two-step approach is termed stratified.
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The Plane at Infinity
• The plane at infinity has the canonical position 
𝝅∞ = 0, 0, 0, 1 ⊤ in affine 3-space.

• It contains the directions 𝑫 = 𝑋1, 𝑋2, 𝑋3, 0 ⊤, and 
enables the identification of affine properties such 
as parallelism, particularly:

i. Two planes are parallel if, and only if, their line of 
intersection is on 𝝅∞.

ii. A line is parallel to another line, or to a plane, if 
the point of intersection is on 𝝅∞.
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The Plane at Infinity
• The plane at infinity, 𝝅∞, is a fixed plane under the projective 

transformation H if, and only if, H is an affinity, i.e.

• Remarks:

1. The plane 𝝅∞ is, in general, only fixed as a set under an 
affinity; it is not fixed pointwise.

2. Under a particular affinity (for example a Euclidean motion) 
there may be planes in addition to 𝝅∞ which are fixed. 
However, only 𝝅∞ is fixed under any affinity.
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𝝅∞
′ = H𝐴−⊤𝝅∞ = A−⊤ 𝟎

−t⊤A−⊤ 1

0
0
0
1

=

0
0
0
1

= 𝝅∞



The Plane at Infinity
Example: Consider the Euclidean transformation represented 
by the matrix

• This is a rotation by 𝜃 about the Z-axis with a zero translation, 
hence, there is a pencil of fixed planes orthogonal to the z-
axis. 

• The planes are fixed as sets, but not pointwise as any (finite) 
point (not on the axis) is rotated in horizontal circles by this 
Euclidean action. 
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𝜃

𝑍



The Plane at Infinity

• Algebraically, the fixed planes of H are the eigenvectors of 
H⊤, i.e. 

• 𝜆, 𝐯 are the eigenvalues and eigenvectors of H⊤ and H−⊤.

• In this case, the eigenvalues and eigenvectors of HE
⊤ are 

{𝑒𝑖𝜃, 𝑒−𝑖𝜃, 1, 1} and
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H−⊤𝐯 = 𝜆𝐯 ⇔ H−⊤𝝅 = 𝜆𝝅, 

Example continue: 



The Plane at Infinity

• The eigenvectors 𝐄1 and 𝐄2 are imaginary planes, and
will not be discussed further.

• In addition to 𝐄4 (i.e. the plane at infinity), we can see that 
there is a pencil of fixed planes spanned by 𝐄3 and 𝐄4
under HE, i.e. 

• We say that the eigenvectors 𝐄3 and 𝐄4 are degenerate.
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𝝅 = 𝜇𝐄3 + 𝜆𝐄4.

Example continue: 



The Plane at Infinity

• The axis of this pencil is the line of intersection of the planes 
(perpendicular to the Z-axis) with 𝝅∞, and the pencil includes 
𝝅∞, i.e.

• 1,0,0,0 ⊤ and 0,1,0,0 ⊤ are ideal points that lie on 𝝅∞, and 
hence 𝐄3 and 𝐄4 intersects at 𝐥∞.
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L∗ =
𝐄3⊤

𝐄4⊤
, with null-space basis 1,0,0,0 ⊤ and 0,1,0,0 ⊤.

Example continue: 



The Plane at Infinity
• We will see in Lecture 6 that uncalibrated two-view 

reconstructions lead to projective ambiguity. 

• The identified 𝜋∞ can be used to remove the projective 
ambiguity, where affine properties can be measured.  
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Projective Ambiguity Affine Ambiguity

𝝅∞

Image source: “Multiple View Geometry in Computer Vision”, Richard Hartley and Andrew Zisserman



The Absolute Conic

• The absolute conic, Ω∞, is a (point) conic on 𝝅∞. 

• In a metric frame 𝝅∞ = 0, 0, 0, 1 ⊤, and points on 
Ω∞ satisfy

• Note that two equations are required to define Ω∞.
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The Absolute Conic

• For directions on 𝝅∞ (i.e. points with 𝑋4 = 0 ) the 
defining equation can be written

• So that Ω∞ corresponds to a conic C with matrix 
C = I; it is thus a conic of purely imaginary points 
on 𝝅∞.

• The conic Ω∞ is a geometric representation of the 5 
additional degrees of freedom required to specify 
metric properties in an affine coordinate frame.
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The Absolute Conic
• The absolute conic, Ω∞ , is a fixed conic under the projective 

transformation H if, and only if, H is a similarity transformation.

Proof:
Since the absolute conic lies in 𝝅∞, a transformation fixing it must fix 
𝝅∞, and hence must be affine, i.e.

At 𝝅∞, Ω∞ = I3×3, and since it is fixed by H𝐴, one has A−⊤IA−1 = I (up 
to scale), and taking inverses gives AA⊤ = I.

This means that A is orthogonal, hence a scaled rotation, or scaled 
rotation with reflection, i.e. similarity transform.
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The Absolute Conic

• Even though Ω∞ does not have any real points, it shares 
the properties of any conic:

1. The conic Ω∞ is only fixed as a set by a general 
similarity; it is not fixed pointwise. 
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Remark: This means that under a similarity a point on Ω∞
may travel to another point on Ω∞, but it is not mapped to 
a point off the conic.



The Absolute Conic

2. All circles intersect Ω∞ in two points. 

3. All spheres intersect 𝝅∞ in Ω∞ .
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Remark: Suppose the support plane of the circle is 𝝅. Then 
𝝅 intersects 𝝅∞ in a line, and this line intersects Ω∞ in two 
points. These two points are the circular points of 𝝅.



The Absolute Conic
• The angle between two lines with directions (3-vectors) 
𝐝1 and 𝐝2 is given by:

• where 𝐝1 and 𝐝2 are the points of intersection of the 
lines with the plane 𝝅∞ containing the conic Ω∞. 

• And Ω∞ is the matrix representation of the absolute 
conic in that plane.

• Two directions 𝐝1 and 𝐝2 are orthogonal if 𝐝1⊤Ω∞𝐝2 = 0. 
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The Absolute Conic: 
Orthogonality and Polarity

• We will see in Lecture 5 that the imaged absolute conic can 
be used to recover the camera intrinsics, i.e. calibration. 

• Furthermore, we will see in Lecture 6 that both the absolute 
conic and plane at infinity can be used to remove affine 
distortion, hence the metric properties can be measured.
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Image source: “Multiple View Geometry in Computer Vision”, Richard Hartley and Andrew Zisserman

Affine Ambiguity
Similarity Ambiguity

𝝅∞,Ω∞



The Absolute Dual Quadric
• The dual of the absolute conic Ω∞ is a degenerate dual 

quadric in 3-space called the absolute dual quadric, and
denoted by Q∞

∗ .

• Geometrically Q∞
∗ consists of the planes tangent to Ω∞, so 

that Ω∞ is the “rim” of Q∞
∗ , hence called a rim quadric.

• Algebraically Q∞
∗ is represented by a 4 × 4 homogeneous 

matrix of rank 3, with the canonical form:
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The Absolute Dual Quadric

• The dual quadric Q∞
∗ is a degenerate quadric. 

• There are 8 degrees of freedom (a symmetric matrix 
has 10 independent elements, but the irrelevant scale 
and zero determinant).
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The Absolute Dual Quadric
• The absolute dual quadric, Q∞

∗ , is fixed under the 
projective transformation H if, and only if, H is a similarity.
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Proof:

Since Q∞
∗ is a dual quadric, it is fixed under H if and only if 

Q∞
∗ = HQ∞

∗ H⊤. Applying this with an arbitrary transform

, we get 



The Absolute Dual Quadric
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Proof (continued):

which must be true up to scale. 

By inspection, this equation holds if and only if 𝐯 = 𝟎
and A is a scaled orthogonal matrix (scaling, rotation and 
possible reflection). 

In other words, H is a similarity transform.



The Absolute Dual Quadric

• The plane at infinity 𝝅∞ is the null-vector of 𝑄∞∗ .
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Remarks:

This is easily verified when Q∞
∗ has its canonical form in a metric 

frame since then, with 𝝅∞ = 0, 0, 0, 1 ⊤, Q∞
∗ 𝝅∞ = 𝟎.

This property holds in any frame as may be readily seen 
algebraically from the transformation properties of planes and 
dual quadrics: if 𝐗′ = H𝐗, then Q∞

∗ ′ = HQ∞
∗ H⊤, 𝝅∞′ = H−⊤𝝅∞, 

and



The Absolute Dual Quadric
• The angle between two planes 𝝅1 and 𝝅2 is given 

by
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Proof:

Consider two planes with Euclidean coordinates 𝝅1 = 𝒏1⊤, 𝑑1 ⊤, 
𝝅2 = 𝒏2⊤, 𝑑2 ⊤. In a Euclidean frame, Q∞

∗ has the form

which is the angle between the planes expressed in terms of a 
scalar product of their normals.

, and we get 



The Absolute Dual Quadric

Remarks: 

If the planes and Q∞
∗ are projectively transformed, 

will still determine the angle between planes due to the 
(covariant) transformation properties of planes and 
dual quadrics.

Exercise: Prove it!
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Summary

• Students should be able to:

1. Represent points, planes, lines and quadrics in 𝕡3.

2. Use line at infinity and/or circular points to remove 
affine and/or projective distortions. 

3. Describe the plane at infinity and its invariance under 
affine transformation. 

4. Describe the absolute conic (and its absolute dual 
quadrics) and its invariance under similarity 
transformation.
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