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What is a Camera?

* A camera is a mapping between the 3D world (object
space) and a 2D image.

Projection

2D Image _

3D World

Image source: http://www.shortcourses.com/guide/guidel-3.html
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Camera Models

* |n this lecture, we will look at camera models with
central projection.

* Camera models with central projection fall into two
major classes: those with a finite centre, and those
with a centre “at infinity”.

* We will see more details of the projective camera
with a finite centre and affine camera with a centre

“at infinity”.
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The Basic Pinhole Model

* The projective camera is based on the basic pinhole
camera.

* Let the centre of projection be the origin of a Euclidean
coordinate system.

* And consider the plane Z = f as the image plane or focal

A
e X
" > 7 )
\ p \
principal axis f
camera
centre image plane

Image source: “MultipleView Geometry in Computer Vision”, Richard Hartley and Andrew Zisserman
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The Basic Pinhole Model

e Using similar triangle, we can see that the point (X, Y, 2) 7 is
mapped to the point (fX/Z,fY/Z, )" on the image plane.

* lIgnoring the final coordinate, we get the central projection
mapping from world to image coordinates:

(X,Y,2)" — (fx/z,fY/2)",i.e. R® » R?

,
| > 7 X
p \
\ principal axis f
camera
centre image plane

Image source: “Multiple View Geometry in Computer Vision”,Richard Hartleyand Andrew Zisserman
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The Basic Pinhole Model

Camera Centre or Optical Centre: Centre of projection.

Principal Axis or Principal Ray: Line from camera centre
perpendicular to image plane.

Principal Point: Point where principal axis meets the image plane.

Principal Plane: Plane through the camera centre parallel to the
image plane.

A Y
X
) == - Z
\ P \
principal axis f

camera

centre image plane
e NUS Image source: “Multiple View Geometry in Computer Vision”,Richard Hartleyand Andrew Zisserman
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Central Projection Using
Homogeneous Coordinates

* The world and image points becomes a linear mapping in
homogeneous coordinates:

BRI

diag(f. f.1)[1 | 0]

e Letting P = diag(f,f, D[110],x=(fX, fY,Z)" and X =
(X,Y,Z, 17, we get:

= N~

x = PX,

* Pis the 3x4 homogeneous camera projection matrix.

f
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Principal Point Offset

* |n practice, the origin of coordinates in the image plane
might not be at the principal point, i.e.

T T
(X,Y,2)" — (fX/Z2+p., fY/Z+D,)" T-Vcam
T .
* (px,py) are the coordinates of the A pe———>
principal point. v A * cam
* Expressingin homogeneous coordinates, > i
we get:
i fX + ZDy f Pa 0 }Y<
Z — fY—}—Zpy - f Dy 0 7
| z 1 0 |

Image source: “Multiple View Geometry in Computer Vision”,Richard Hartleyand Andrew Zisserman
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Camera Calibration Matrix

* Now, writing:

e We can rewrite

JX+ Zp, / pe 0
Y +zp, | = f py 0
0

Z 1

dS X = K[I ‘ O]Xcam-

=N K

* The matrix K is called the camera calibration matrix.
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Camera Rotation and Translation

* Xeam = (X,Y,Z,1) T is expressed in the camera coordinate
frame, where the camera is at the origin and principal axis
points in the z-axis.

* In general, 3D points are expressed in a different Euclidean
coordinate frame, known as the world coordinate frame.

* The two frames are related via a rigid transformation (R, t).
AYcam

Camera Frame Z

C ZC am

R, t World Frame

cam

0] >
Y

Image source: “MultipleView Geometry in Computer Vision”, Richard Hartley
and Andrew Zisserman

X
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Camera Rotation and Translation

Camera Frame

“ World Frame

(0 >
Y

* Denoting the coordinates of the camera centre in the world
frame as C, we write:

X
R —RC Y R —RC
e z |70 1 |
Image source: “Multiple View Geometry in Computer Vision”,Richard Hartley and Andrew Zisserman
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Cam w.r.t world frame


Euler Angles to Rotation Matrix

.\‘2 =X 4

cosy —siny 0 cosf 0 sing 1 0 0
. 1 - p2_ ;
Rz(7):R10: siny  cosy 0 Ry(ﬂ):Rzz 0 1 0 R (a)=R;=|0 cosa -—sina
0 0 1 —sinff 0 cosf 0 sina cosa
= X, =R'X, = X, =RX, = X, =R X,
cosy —siny O cosff O sing |1 0 0
R} =R'R,R; =|siny cosy 0| O 1 0 |0 cosa —-sina
0 0 I|{-sinf 0 cosf |0 sina cosa
= X, =R} X,

Image Source: http://www.mdpi.com/1424-8220/15/3/7016/htm
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Properties of Rotation Matrix

Rotation matrices are:

e Square matrices 2x2 (2 dimensional) or 3x3 (3
dimensional) with real entries.

* Orthonormal matrices with the following properties:

1 det(R) _ {ti, Right-Hand coordinate frame

Left-Hand coordinate frame

2. RT =R,

3. 1 X =Ty, (third column is the cross-product of the other two columns)
4

5.

1= 0, where r;is column i of the rotation matrix

Il = Iz |l = llmsll = 1.

CS4277-CS5477 :: G.H. Lee 16




The Basic Pinhole Model

* Putting X, backinto x = K|I | 0|Xcam, we get the
general mapping of a pinhole camera:

x = KR[I | —C]X

where X is now in a world coordinate frame.

* We write the camera projection matrix as:

P =KR[I | —C],

* P has 9 degrees of freedom: 3 for K (the elements f, py, py),
3 for R, and 3 for C.

B &
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The Basic Pinhole Model

* The parameters contained in K are called the internal camera
parameters, or the intrinsic of the camera.

e The parameters of R and C are called the external parameters
or the extrinsic of the camera.

* |t is often more convenient to represent the extrinsics in
terms of (R, t):

P—KR |t

By rewriting t = —RC.

CS4277-CS5477 :: G.H. Lee 18




Non-Square and Skewed Pixels

 Same focal length f for both x and y directions in camera
calibration matrix = Square pixel assumption.

* Pixels might be non-square and skewed in real cameras.

* More accurate to have:

1. Different focal lengths for individual directions, i.e., f, and f,.
2. Skew parameter, i.e., s in the x direction.

y .. .
Camera Intrinsic Matrix:
fo s D,
y K=]0 fy p,
Square Pixel Non-square pixel 0 0 1]
with x-skew
NUS i B C54277-CS5477 :: G.H. Lee




Camera Intrinsic and Extrinsic

* In general, the camera projection matrix P has 11
degrees of freedom:

P =K[R t]
I I S Y
fo fyr S Py Py Intrinsic Parameters
R 3 a B,y
_ Extrinsic Parameters
Cort 3 (Cx; Cyr Cz) or (txr tyr tz)
Total: 11 DOF
NUS i CS4277-CS5477 :: G.H. Lee
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Finite Projective Cameras

* The set of camera matrices of finite projective cameras

P =KR[I | —C]

is identical with the set of homogeneous 3x4 matrices,
l.e.

P=MI|M'py =KR[I|—C]

for which the left-hand 3x3 submatrix M is non-singular.

* p, is the last column of P.

Y3 National niversity
of Singapore
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Finite Projective Cameras:
Camera Anatomy
Camera centre:

* The rank 3 matrix P has a 1-dimensional right null-
space; and this 4-vector null-space is the camera
centre C, i.e.

B &
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C = [Cx/Cw , Cy/Cw , Cz/Cw]
~C = [Cx,,Cy,Cz,Cw]


Finite Projective Cameras:
Camera Anatomy
Sketch of Proof:

* Consider the line containing C and any other point A in 3-
space,

X(A\) =X+ (1-A)C .

* Under the mapping X = PX points on this line are projected
A

x = PX(\) = APA + (1 — \)PC = \PA

* i.e. all points X(A) are mapped to the same image point PA,
hence, the line must be a ray through the camera centre.
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Finite Projective Cameras:
Camera Anatomy

Column vectors:

* With the notation that the columnsof Parep;, i =1,...,4,
then p4, Py, P53 are the vanishing points of the world
coordinate X, Y and Z axes, respectively.

* The column p, is the image of the world origin.

Example:
. L) L) 0
The x-axis has direction D =
(1,0,0,0)T, which is imaged at
p; = PD. «
Image source: “Multiple View Geometry in Computer Vision”, Richard Hartley and Andrew Zisserman
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Finite Projective Cameras:
Camera Anatomy

Row vectors:

* The rows of the projective camera are 4-vectors
which may be interpreted geometrically as particular
world planes, i.e.

i} i ST -
P11 P12 P13 Dia P
B 2T
P= | po1 D P23 pPau | = | P
3T
| P31 P32 P33 P34 | P70
NUS Sl C54277-CS5477 :: G.H. Lee 25




Finite Projective Cameras:
Camera Anatomy

1. Principal plane:

* The principal plane is the plane through the camera centre
parallel to the image plane.

Sketch of Proof:

* |t consists of the set of points X C
imaged on the line at infinity of the ;

image, i.e. PX = (x,y,0)".

* Thus, a point lies on the principal plane
of the camera if and only if P3TX = 0,
hence P37 is the principal plane. 0

principal plane

Image source: “Multiple View Geometry in Computer Vision”, Richard Hartley and Andrew Zisserman
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Finite Projective Cameras:
Camera Anatomy

2. Axis plane:

« P! is defined by the camera centre C and the line x = 0 in
the image. Similarly, P? is defined by the camera centre and
the liney = 0.

Sketch of Proof:

A set of points X on the plane P? satisfy
P2"X = 0, hence PX = (x,0,w) " which
are points on the liney = 0.

* It follows from PC = 0 that P?"C = 0 and
so C also lies on the plane P2.

e Similar result can be shown for P1. O

Image source: “Multiple View Geometry in Computer Vision”, Richard Hartley and Andrew Zisserman
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C must be in the null space of Plane P


Finite Projective Cameras:
Camera Anatomy

The principal point:

* The principal axis is the line passing through the
camera centre C, with direction perpendicular to
the principal plane P3.

* The axis intersects the image plane at the principal
point X,.

CS4277-CS5477 :: G.H. Lee
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Finite Projective Cameras:
Camera Anatomy

Remarks:

* The point P3 = (p31,032,P33,0) T = (m3,0) "denotes
the direction of the normal vector (principal axis) of the
principal plane.

 This point projects onto the image as the principal point,
i.e., Xxg = PP3which can be written as:

Xo = Mm® , where P = [M| p4] and m>'
is the third row of M.

School of
Col i

mputing CS4277-CS5477 :: G.H. Lee 29

EANUS
........ I University
of Singapore



Finite Projective Cameras:
Camera Anatomy

The principal axis vector:

* Although any point X not on the principal plane may be
mapped to an image point according to x = PX.

* |n reality, only half the points in space, those that lie in
front of the camera, may be seen in an image.

e v = det(M) m? is a vector in the direction of the
principal axis, directed towards the front of the camera.

il e CS4277-CS5477 :: G.H. Lee 30



Finite Projective Cameras:
Camera Anatomy

Remarks:

* We have seen earlier that m? is the principal axis
obtained from P = [M | p4].

 However, P is only defined up to sign. This leaves an
ambiguity on whether m? or —m? points in the +ve
direction.

* The direction of the principal axis can be obtained from
det(M), which is the signed area equivalent.

il e CS4277-CS5477 :: G.H. Lee 31



Summary of the properties of P

Camera centre. The camera centre 1s the 1-dimensional right null-space C of P, 1.e. PC = 0.

_um-1
¢ Finite camera (M 1s not singular) C = ( Ml P4 )

o Camera at infinity (M 1s singular) C = ( Bi ) where d 1s the null 3-vector of M,

1e.Md = 0.

Column points. Fori = 1,...,: .3, the column vectors p; are vanishing pomts in the 1image
correspondlno to the X, v and Z axes respectively. Column py4 1s the image of the
coordinate origin.

Principal plane. The principal plane of the camera is P2, the last row of P.

Axis planes. The planes P! and P? (the first and second rows of P) represent planes in space
through the camera centre, corresponding to points that map to the image lines = 0
and y = 0 respectively.

Principal point. The image point xo = Mm? is the principal point of the camera, where m
1s the third row of M.

Principal ray. The principal ray (axis) of the camera 1s the ray passing through the camera

centre C with direction vector m®". The principal axis vector v = det(M)m? is

directed towards the front of the camera.

3T

Tablesource: “Multiple View Geometry in Computer Vision”, Richard Hartley and Andrew Zisserman
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Action of a Projective Camera on Points

Forward projection:

* As seen, a general projective camera maps a point in

space X to an image point according to the mapping
X = PX.

* Points D = (d',0) " on the plane at infinity represent
vanishing points; such points are mapped to:

x =PD = [M | p4s/D = Md

* Thus, are only affected by M, i.e., the first 3 x 3
submatrix of P.
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Action of a Projective Camera on Points

Back-projection of points to rays:

* The ray is the line

X(\) =PTx + \C

formed by the join of two points:

1. The camera center C (where PC = 0).

2. The point P*x, where P* = PT (PPT) 1is the
pseudo-inverse of P.

CS4277-CS5477 :: G.H. Lee 34



Action of a Projective Camera on Points

Back-projection of points to rays:

e For a finite camera where M1 exists, we can write
the line as:

o) (1) ()

where

e C = —M 'py isthe inhomogenous camera center.

+ M™!x is the ideal point D = ((M™'x)",0)7 from the
intersection of backprojected image point x and .

Y3 National niversity
of Singapore
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Action of a Projective Camera on Points

Depth of points:

e LetX=(X,Y,Z T)" bea 3D pointand P = [M | p,] be a
camera matrix for a finite camera. Suppose P(X,Y,Z,T) T =

w(x,y,1)T, then

sign(det M)w
T{jm?|

depth(X;P) =

is the depth of the point X in front of the principal plane of
the camera.

* This formula is an effective way to determine if a point X is
in front of the camera.

chool of CS4277-CS5477 :: G.H. Lee 36




Action of a Projective Camera on Points

Proof:
3D Point: X = (X,Y,7,1)" = (XT, T

Camera Centre: C = (C,1)T

Image point: x = w(x, v, 1)T = PX

depth(X; P)

Dot product
A

r, — -\

The dot product can be writtenas: ||m3||||(X — €)||cos@ = sign(det M)w,

where the depth s given by:

sign(det M)w
[l m3|

depth(X;P) = ||(X = C)||cosd =
O
Image source: “Multiple View Geometry in Computer Vision”, Richard Hartley and Andrew Zisserman
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Decomposition of the Camera Matrix

* Given: The camera matrix P representing a general
projective camera.

* Find: The camera centre, the orientation of the camera
and the internal parameters of the camera.

School of

Computing CS4277-CS5477 :: G.H. Lee 38




Decomposition of the Camera Matrix

Finding the camera centre:

* The principal and two axis planes we have seen earlier
intersect at the camera centre, i.e. the null-space of PC =

0, where
P11 P12 P13 Pi4 plT
P= | pa po Doz Dou | = | P?T |.
D31 D32 P33 P34 p3T
* The null-space is given by:
X = det([p2, ps. p4]) Y = —det([p1,ps. P4l
z =det(|p1,p2,p4)]) T = —det([pi,p2.P3)).

Y3 National niversity
of Singapore
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Decomposition of the Camera Matrix

Finding camera orientation and internal parameters:

* In the case of a finite camera:

P=[M| —-MC| =K[R | —RC],

KR can be found from the RQ decomposition of M.

* The ambiguity in the decomposition is removed by
requiring that K have positive diagonal entries.
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Decomposition of the Camera Matrix

Finding camera orientation and internal parameters:

* The matrix K has the form:

where

a,. 1s the scale factor in the xz-coordinate direction,
(v, 1s the scale factor in the y-coordinate direction,
s 1s the skew,

The aspect ratio is o,/ v,

School of
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(20,10)" are the coordinates of the principal point.
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Euclidean vs Projective Spaces

* The development of the camera model has implicitly
assumed that the world and image coordinate systems
are Euclidean.

 However, the projective camera is a mapping from
P2 — P3, i.e. a composed effects of:

projection from 3-space to

an image

A
4 )

oS = O

0
0
1

o O O

1
P = [3 x 3 homography]| | 0 4 x 4 homography]
0

N J
~ N ~ J

projective transformation projective transformation
of the image of 3-space
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Cameras at Infinity: Affine camera

* The camera matrix of an affine camera has the form:

miy Mqo Mz 1
P, = | mo1 Mmoo Moy 1Ty |.

0 0 0 1

* These are cameras with centre lying on the plane at infinity,
l.e.

1. C=(d,0)" isanidea point, where d is the null-space of
M,.;d = 0since PC = 0.

2 P37 =(0,0,0,1) which is the principal plane must be the
plane at infinity.

* The left hand 3 x 3 block of the camera matrix P, is singular.

=ANU
........ I University
of Singapore
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Cameras at Infinity: Affine camera

* The affine camera matrix can be decomposed into:

orthographic projection
from 3-space to an image

N
! )
I 00 0
P,=[3x3affine] | 0 1 0 0 [[4x 4 affine]
- looo 1]
affine transformation of affine transformation

the image of 3-space

NUS i CSA4277-CS5477 :: G.H. Lee
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Cameras at Infinity: Affine camera

* Alternatively:

calibration matrix

N
[ A

K X
-

a, s Pl [Tty a, S 't 4
— a, Pyl | T 1y | = v r’t ot |
I]lom 1 1]l om 1

* Xy = (Px,py) is the principal point, which is
conventionally set to 0;

+ 07 = (0,0);
* (ay, @y ) are the scale factors and s is the skew parameter.

[ 1
0
| 0

where

School of CS4277-CS5477 :: G.H. Lee 45
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e The affine camera matrix:

Cameras at Infinity: Affine camera

Oy S r11_ T ] M1 119 113 tl
P, — Qv r’T ¢, Ma1 Moy Mag T2
10" 1 0 0 0 1

* Has eight degrees of freedom corresponding to the
eight non-zero and non-unit matrix elements.

* The sole restriction on the affine camera is that M, 3
has rank 2.

School of
Computing
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Affine Properties of Camera at Infinity

1. The plane at infinity in space is mapped to points at
infinity in the image.

Proof: This is easily seen by computing PA(X,Y,Z,0) " =
(X) Yl O)T [

2. Parallel world lines are projected to parallel image lines.

Sketch of Proof:
Parallel world lines intersect at the plane at infinity, and
this intersection point is mapped to a point at infinity in

the image. Hence the image lines are parallel. -
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A Hierarchy of Affine Cameras

1. Orthographic projection:

No change in scale = camera calibration = identity.

The optical center is located at infinity.

The projection rays are parallel.

y
The model ignores depth altogether. ! . { %

Camera projection matrix: Aﬂge Object  ?
I 00 0 Rt v’
0 0 0 1 0" 1

Slide adapted from: https://kth.instructure.com/files/1316041/download?download_frd=1
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A Hierarchy of Affine Cameras

1. Orthographic projection:

Camera projection matrix:

P=101 0 0 T = | T t
o' 1
00 0 1 or 1

* Anorthographic camera has five degrees of freedom: three
parameters for rotation matrix R, plus two offset parameters
t; and t,.

* Anorthographic projection matrix P = [M | t] is characterized
by a matrix M with last row zero, first two rows orthogonal
and of unit norm, and t; = 1.

CS4277-CS5477 :: G.H. Lee 49




A Hierarchy of Affine Cameras

2. Scaled orthographic projection:

g
x / / Object
Scaling e
\\ 5 ey
Orthographic
Image / grap
Center of g Projection

Projection

A pointin 3D space is:

i. projected to a reference plane using orthographic
projection; and then

ii. projectedtothe image plane using a perspective projective.

Slide adapted from: https://kth.instructure.com/files/1316041/download?download_frd=1

School of
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A Hierarchy of Affine Cameras

2. Scaled orthographic projection:

Camera projection matrix:

RS ey
= k I'QT tQ = I'2T tQ .

L ullom o) Lom k]

* |t has six degrees of freedom; one additional for the equal
scale factors.

* A scaled orthographic projection matrix P = [M | t] is characterized
by a matrix M with last row zero, and the first two rows orthogonal

and of equal norm.

Slide adapted from: https://kth.instructure.com/files/1316041/download?download_frd=1

SANUS
9

National University
3 rsupors
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A Hierarchy of Affine Cameras

3. Weak perspective projection

 Similar to scaled orthographic projection.

* Difference: allow two different scalings in the two different
axial image directions.

Camera projection matrix:

- 1EelT g
_ , 2T

P = vy r lo

1 o' 1

CS4277-CS5477 :: G.H. Lee 52




A Hierarchy of Affine Cameras

3. Weak perspective projection

Camera projection matrix:

_ 1 1T -

Wy r tl
P = Yy, I"‘2T to
1 0" 1

* It has seven degrees of freedom; one additional for the
different scale factors.

* A weak perspective projection matrix P = [M | t] is
characterized by a matrix M with last row zero, and first two
rows orthogonal (no need for equal norm).

Y3 National niversity
of Singapore
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Calibration of Projective Camera

* We have seen that the camera projection matrix P
has 11 degrees of freedom:

P =K[R t]
ey T T T
fo fyr S Py Py Intrinsic Parameters
R 3 a, B,y
_ Extrinsic Parameters
Cort 3 (Cx; Cyr Cz) or (txr tyr tz)

Total: 11 DOF

How do we find all the 11 parameters?

School of
E gl i 8 CS4277-CS5477 :: G.H. Lee
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Calibration of Projective Camera

* Estimation of the camera intrinsic and extrinsic
parameters is known as resectioning.

* Most used approach: Use a 2D calibration pattern
(e.g. a checkerboard).




Camera Calibration: Open Source

* 7. Y. Zhang, “A Flexible New Technique for Camera
Calibration”, TPAMI 2000.

* Bouguet Calibration Toolbox:
http://www.vision.caltech.edu/bouguetj/calib_doc/

* OpenCV Calibration:
http://docs.opencv.org/2.4/doc/tutorials/calib3d/c
amera_calibration/camera_calibration.html|

* Matlab Image Processing Toolbox:
http://www.mathworks.com/help/vision/single-
camera-calibration.html

B &
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Calibration of Projective Camera

* Set the world coordinate system to the corner of
the checkerboard.

* Now all 3D points on the checkerboard lie on a
single plane, i.e. Z=0.

B &
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Calibration of Projective Camera

* Let us denote the it" column of the rotation matrix R by
r, we have:

e
Scale factor X Y 3D points lieon a
S [31,] =K[n n ot 0 plane,i.e. Z=0
1.

e 2D-3D correspondence (x, y) « (X, Y) respectively lies
on planes, hence related by a homography:

X
Y
1

Homography: H =[h; h, hs]

X
S [i]] — K[Tl &) t] — S[hl hz h3] = K[rl 4 t]

where h; is the i column H
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Calibration of Projective Camera

* Recall y X 1, = r;= we get two independent
constraints:

sfhy hy hg] =K[n 1r2 t]

= SK_lhl =11, SK_lhz =71

e Using the orthonormal constraints of a rotation
matrix, we get:

nr=0= hiK"TK™th, =0 (1)

Iyl = eyl = RTK-TK=1h, = hIK-TK-1h, (@

e Equations (1) and (2) are now independent of the
camera extrinsics.
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Calibration of Projective Camera

e Let us denote:

B11 B12 B13
BZl BZZ BZS
B31 BSZ B33

K-TK'=B =

* Bis symmetric and positive definite.

* Since B is symmetric, it can be represented as a 6-
vector:

b=[B11,B13, B13, B2, B33, B33]'

School of

Computing CS4277‘C55477 . GH Lee
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Calibration of Projective Camera

* Putting the 6-vector b into Equations (1) and (2).

e Re-arranging the homography terms, we get:

ab=0

* ais a 2x6 matrix made up of the homography terms
h, and h..
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Calibration of Projective Camera

Each view of the checkerboard gives us two constraints.

e A minimum of three different views to solve for the 6
unknownsin b.

e At least four 2D-3D correspondences per plane for
homography.

OpenCV detects the pointcorrespondences automatically

Image source: http://docs.opencv.org/2.4/doc/tutorials/calib3d/camera_calibration/camera_calibration.html
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Calibration of Projective Camera

* For n > 3 different views, we get: Ab=0

* Ais a 2n x 6 matrix obtained from stacking 2n
constraints together.

* A least-squares solution of b can be obtained by taking
the 6-vector right null-space of A (using SVD).

Image Source: http://www.vision.caltech.edu/bouguetj/calib_doc/
School of
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Calibration of Projective Camera

e K can be recovered from B by doing Cholesky
decomposition = f,, f,, s, p,, p, can be recovered.

* Once K is known, the extrinsic parameters of all
views can be solved:

2] =SK_1h1, 7‘2=SK_1h2, r3="n XTZ; t = SK_lhg,

where
1 1

IR AL K Ay

S

Y3 National niversity
of Singapore
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Lens Distortion

1. Radial distortion (More common)

AEEENENNN
INEEEEEN = ~
INEEEEEN gEEilnuyg
TITIITIl 1T
AEEEREEEN ‘I..l..'
11T 1T T
IEEEEEEE Umyymy”
EEEEEEEN 771
Negative radial distortion Nodistortion Positive radial distortion
“pincushion” “barrel”
2. Tangential distortion (Less common)
Zero Tangential Distortion Tangential Distortion
Lens and sensor are parallel Lens and sensor are not parallel
Cameralens Camera lens
Vertical plane Vertical plane
Camera
sensor Camera
sensor

Image source: http://www.mathworks.com/help/vision/ug/camera-calibration.html
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Lens Distortion: Radial Distortion

e Let x = (x, y) be the image projection of a 3D point
without distortion.

* The image point after radial distortion is given by:

X, = BC,:] = (1 + K7 4+ K,1r* + KsT°) [;]
where
e 12=x2 4 y2
* Ky, Ky, Keg @ 3 Radial distortion parameters

Reference: “Close-Range Camera Calibration” - D.C. Brown, Photogrammetric Engineering, pages 855-866,
Vol. 37, No. 8, 1971.
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Lens Distortion: Tangential Distortion

* The image point after tangential distortion is given
by:

iy — 2K3xy + Ka (1% + 2x2%)
K3(7% + 2y2%) + 2K,xy

where
o 72=x2 42

°* K3,K4 : 2Tangential distortion parameters

Reference: “Close-Range Camera Calibration” - D.C. Brown, Photogrammetric Engineering, pages 855-866,
Vol. 37, No. 8, 1971.

Y3 National niversity
of Singapore
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Lens Distortion

* Combining radial and tangential distortions:

Xq = X, +dx
2K3xy + K, (1% + 2x9)
K3 (1% 4+ 2y%) + 2K,.xy

X
(1 4+ k7% + Kor* + Ke7°) [y] + [
where

e 12 =x24y?
* Ky, Ky, Kg : 3 Radial distortion parameters

* K3, Ky : 2 Tangential distortion parameters
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Lens Distortion:
Maximum Likelihood Estimation

Steps:

1. Estimateintrinsic parametersink,i.e. f, f,, s, p,, p,, and
extrinsic parameters, i.e. R, and t; for all views without

taking lens distortions into account.

2. Initialize all lens distortion parametersto 0, i.e. kK; = K, =
Kz = K4 = Kg =0.

3. Minimize the total reprojection error over all parameters:

n m
argminz: ZHXU - 7T(K, Ri,ti, K, X') “ :

K,R,t,x i=17=1

Use Levenberg-Marquardt to minimize this!
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_ens Distortion:
Maximum Likelihood Estimation

# views # 3D points
n m
argmin z z ”Xij — n(K, R;, t;, K, Xj)Hz
KRtk 4 -
=1 =1

* X; : j*" 3D point
* X; : 2D image point from the ith view corresponding to the X
* K : cameraintrinsic

(R, t.) : extrinsic of the it" view

K = (Kq, Ky, K3,Kq, Kg) : lens distortion parameters

mt(.) : projection function + lens distortion

iij = K[Rl ti]Xj ‘ 77,'() == Xdij = XT(XL']') + dX(y(U)
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Lens Distortion Correction

Before and after lens distortion correction

e

&
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summary

 We have looked at how to:

1. Describe camera projection with the pinhole model.

2. ldentify the camera centre, principal planes, principal point,
and principal axis from the projection matrix.

3. Use the projection matrix to get the forward and backward
projection of a point.

4. Explain the properties of an affine camera.

5. Do calibration to find the intrinsic and extrinsic values of a
projective camera.
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