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Rigid-body motion and its 
Representations

• The point 𝑝 on the object w.r.t 𝐹𝑊 is represented by the 
vector 𝑋𝑤
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Image source: Y. Ma, S. Soatto, J. Kosecka, S. S. Sastry, “ An invitation to 3-D vision.

𝐹𝑐

𝐹𝑊

• 𝑋𝑤 is simply the sum of the translation 𝑇𝑤𝑐 ∈ ℝ3in 𝐹𝑐
and 𝑋𝐶 in 𝐹𝑊.

• Since 𝑋𝑐 is the point 𝑝 in 𝐹𝐶, it 
becomes 𝑅𝑤𝑐𝑋𝑐 in 𝐹𝑊, where 
𝑅𝑤𝑐 ∈ 𝑆𝑂 3 .

• We get: 



Homogeneous Representation

• The transformation                                    can be 
written in a “linear form ” as: 

• 𝑔 is the homogeneous representation given by:
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𝑔

𝑔𝑤𝑐 ഥ𝑿𝑐.



Homogeneous Representation

• The homogeneous representation of 𝑔 gives rise to a 
natural matrix representation of the special Euclidean 
transformations:

• ∀𝑔1, 𝑔2 ∈ 𝑆𝐸 3 , we have 
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and

𝑔

𝑔1𝑔2

𝑔−1



Composition of Rigid-body Motions
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• Given three camera frames at time 𝑡 = 𝑡1 , 𝑡2, 𝑡3, 
respectively.

𝑿1
𝑿2

𝑿3

𝑔21
𝑔32

𝐹1 𝐹2

𝐹3

𝑔31

𝑔𝑖𝑗 =
𝑅𝑖𝑗 𝑇𝑖𝑗
0 1

∈ 𝑆𝐸(3)



Composition of Rigid-body Motions

• Then we have the following relationship between 
coordinates of the same point 𝑝 at different frames:

• This implies the following composition rule:
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𝑿2 = 𝑔21𝑿1, 𝑿3 = 𝑔32𝑿2, 𝑿3 = 𝑔31𝑿1.

𝑿3 = 𝑔32𝑿2 = 𝑔32𝑔21𝑿1 = 𝑔31𝑿1,
since

𝑔32𝑔21 = 𝑔31,



• The same composition rule implies the rule of 
inverse:

• since 𝑔21𝑔12 = 𝑔22 = 𝐼.

• In general, the composition rules in homogeneous 
representation is given by:
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Composition of Rigid-body Motions

𝑔21−1 = 𝑔12. 



Planar Projective Transformations
We have seen in Lecture 1:
• Central projection maps points on one plane to points on 

another plane.
• And represented by a linear mapping of homogeneous 

coordinates 𝐱′ = H𝐱.
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Image source: “Multiple View Geometry in Computer Vision”, Richard Hartley and Andrew Zisserman

This is also known as 
Homography! 



Existence of Projective Homography
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1. Planar scene:

𝐂𝟏

x1 x2

X

I1 I2

(R, t) 

𝐂𝟐
𝐻

𝝅 𝐗2 = R𝐗1 + 𝐭.

• 𝐗1 and 𝐗2 is the 3D point 𝐗 expressed 
in 𝐂1 and 𝐂2 respectively:

• 𝐍 = 𝑛1, 𝑛2, 𝑛3 ⊤ is the unit normal 
vector representing the plane 𝝅 w.r.t 
𝐂1, and 𝑑 is the perpendicular distance 
from plane to 𝐂1 :

𝐍⊤𝐗1 = 𝑛1𝑋 + 𝑛2𝑌 + 𝑛3𝑍 = 𝑑,

⇒ 𝐍⊤𝐗1
𝑑

= 1, ∀ 𝐗1 ∈ 𝝅.



Existence of Projective Homography
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1. Planar scene:

𝐂𝟏

x1 x2

X

I1 I2

(R, t) 

𝐂𝟐
H

𝝅

• Combining the two equations, we 
get

𝐗2 = R + 𝐭𝐍⊤

𝑑
𝐗1,

• Since 𝜆1𝐱1 = 𝐗1and 𝜆2𝐱2 = 𝐗2, 
we get

𝜆𝐱2 = R + 𝐭𝐍⊤

𝑑
𝐱1

H



Existence of Projective Homography
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2. Plane at infinity: Scene is very far away from the 
camera, e.g., aerial images, i.e.

H = R + 𝐭𝐍⊤

𝑑
⇒ H∞ = lim

𝑑→∞
R + 𝐭𝐍⊤

𝑑
= R.

This is the same as pure rotation, i.e., 𝐭 = 0,0,0 ⊤:

H = R + 𝐭𝐍⊤

𝑑
⇒ H = R.



Reverse Mapping
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https://towardsdatascience.com/spatial-transformer-tutorial-part-1-
forward-and-reverse-mapping-8d3f66375bf5

𝐱′ = H𝐱𝐱

Directly computing 𝐱′ =
H𝐱 leads to holes.

Instead, we should 
create a lookup table of 
H−1𝐱′ = 𝐱.



2D Homography
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Point correspondences 
on image planes undergo 

2D Homography

ℙ2→ ℙ2

𝐱1

𝐱2
𝐱3

𝐱4

𝐱1′

𝐱2′

𝐱3′

𝐱4′

• Given: A set of points correspondences 𝐱𝑖 ↔ 𝐱𝑖′
between two images.

• Compute: The 2D Homography, H such that H𝐱𝑖 = 𝐱𝑖′
for each 𝑖.



Number of Measurements Required?

Question: 

How many corresponding points 𝐱𝑖 ↔ 𝐱𝑖′ are required 
to compute H?

CS4277-CS5477 :: G.H. Lee 37



Number of Measurements Required?

Answer:

• The number of degrees of freedom and number of 
constraints give a lower bound:

1. 8 degrees of freedom for H, i.e., 9 entries less 1 for up 
to scale.

2. We will see that each point correspondence 𝐱𝑖 ↔ 𝐱𝑖′
gives 2 constraints. 

• Therefore, it is necessary to specify four-point 
correspondences in order to constrain H fully.
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Approximate Solutions

• It will be seen that if exactly four correspondences are 
given, then an exact solution for the matrix H is possible.

• This is the minimal solution, which is important for the 
number of RANSAC loops for robust estimation (details 
later). 

• Since points are measured inexactly (“noise”), more than 
four correspondences are usually used to obtain a least-
squares solution (details later).
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Direct Linear Transformation 
(DLT) Algorithm

• We begin with a simple linear algorithm for determining 
H given a set of four-point correspondences, 𝐱𝑖 ↔ 𝐱𝑖′.

• Let us denote H𝐱𝑖 = 𝐱𝑖′ in terms of vector cross product: 

• The cross product may then be given explicitly as:
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and                              ., where

.



Direct Linear Transformation 
(DLT) Algorithm
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• Since                          for                     , the cross product 
can be written in a linear form:

• The third row is obtained, up to scale, from the sum of 
𝑥𝑖′ times the first row and 𝑦𝑖 times the second.

Only first 2 rows 
are independent!

, or                             .



Direct Linear Transformation 
(DLT) Algorithm
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• A𝑖 is a 2 x 9 matrix, and 𝐡 is a 9-vector made up of 
all elements in H, i.e. 

• With ℎ𝑖 the 𝑖−th element of 𝐡.

• Note that 𝑤𝑖 is normally chosen as 1.
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Direct Linear Transformation 
(DLT) Algorithm

• 𝐡 has 8 degrees of freedom and each point 
correspondence gives two constraints.

• A minimum of 4-point correspondences is needed 
to solve for h, i.e.                  , for 𝑖 ≥ 4.

• Stacking all equations together, we get:

• A is now a 2𝑖 × 9 matrix.
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Least –Squares Solution

• In real image measurements, the point correspondences 
are corrupted with noise. 

• An exact solution for A𝐡 = 0 does not exist!

• Instead, we seek to minimize A𝐡 over 𝐡, subjected to 
the constraint of 𝐡 = 1.

• This is the least-squares solution of 𝐡 and can obtained 
by taking the 9-vector right null-space of A.
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Singular Value Decomposition (SVD)

• Right null-space: right singular vector that correspondences 
to the smallest singular value, i.e. 𝜎9 in the Singular Value 
Decomposition (SVD) of A, i.e. 𝑣9,

svd A = 𝑢1, 𝑢2, … 𝑢2𝑖

𝜎1 ⋯ 0
⋮ ⋱ ⋮
0
⋮
0

⋯
⋮
0

𝜎9
⋮
0

𝑣1, 𝑣2, … 𝑣9 ⊤

Singular values
(2i x 9)

Right singular 
vectors (9 x 9)

Left singular 
vectors (2i x 2i) 



• In general, for a given 𝑚 × 𝑛 matrix A, where 𝑚 >
𝑛 and rank(A) = 𝑟, its Singular Value Decomposition is 
given by:

• 𝜎𝑛−𝑟, … , 𝜎𝑛 = 0, i.e., rank(A) = 𝑟 if A is NOT corrupted 
by noise and an exact solution for A𝐡 = 0 exists!
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Singular Value Decomposition (SVD)

A = 𝑢1 … 𝑢𝑚

𝜎1 0 … 0 0
0 𝜎2 0 0 0
⋮ 0 ⋱ 0 ⋮
0 0 0 𝜎𝑛−1 0
0
⋮
0

0
⋮
0

…
⋮
0

0
⋮
0

𝜎𝑛
⋮
0

𝑣1 … 𝑣𝑛 ⊤ = UΣ𝑉⊤

Left singular 
vectors (m x m) 

Singular values (m x n)
𝜎1 > 𝜎2 > 𝜎3 > ⋯ > 𝜎𝑛

Right singular 
vectors (n x n)



Singular Value Decomposition (SVD)

• If A is corrupted by noisy measurements, 
𝜎𝑛−𝑟, … , 𝜎𝑛 ≠ 0.

• Since U and V are orthogonal matrices, and Σ is a 
diagonal matrix, we have:

• A𝑣𝑖 is minimized when 𝑢𝑖𝜎𝑖 is at its minimum, 
i.e. smallest singular value, i.e. 𝜎𝑛.
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A = UΣV⊤ ⇒ AV = UΣ
A𝑣𝑖 = 𝑢𝑖𝜎𝑖



Singular Value Decomposition (SVD)

• The solution of the problem: 

is given by setting 𝐡 = 𝑣𝑛.

• We note that the constraint of 𝐡 = 1 is satisfied 
since 𝑣1 … 𝑣𝑛 ⊤ an orthogonal matrix, where 
the rows and columns are unit norm, respectively.
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argmin
𝐡

A𝐡 , s. t. 𝐡 = 1
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Direct Linear Transformation 
(DLT) Algorithm

Objective
Given 𝑛 ≥ 4 2D to 2D point correspondences {𝐱𝑖 ↔ 𝐱𝑖’}, 
determine the 2D homography matrix H such that 𝐱𝑖’ = H𝐱𝑖

Algorithm
(i) For each correspondence 𝐱𝑖 ↔ 𝐱𝑖’ compute A𝑖. Usually only 

two first rows needed.
(ii) Assemble n 2 × 9 matrices A𝑖 into a single 2𝑛 × 9 matrix A.
(iii) Obtain SVD of A. Solution for h is last column of V.
(iv) Determine H from 𝐡.

Slide credit: Marc Pollefeys



Homography: Degeneracy
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• Rank of matrix A drops below 8 if three of the 
minimum four points correspondences are 
collinear.

• In this case, we cannot solve for h, i.e. critical 
configuration or degeneracy.

• It is important to check that selected points are 
NOT in the critical configuration, i.e. collinear.
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Importance of Normalization
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Orders of magnitude difference -
This causes bad behavior in the SVD solution!

Problem:
For a point (x,y,w)T = (100,100,1)T,

Solution: Data normalization
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Importance of Normalization
Monte Carlo simulation: 
• 5 points subjected to 0.1 pixel Gaussian noise are used to 

compute an identity homography matrix in 100 trials.
• Computed homography is used to transfer a further point into 

the second image in each trial. 
• Results show that homographies computed from unnormalized

data is less accurate.
Larger errors in 
transfer point

Image Source: R. Hartley and A. Zisserman, “Multiple View Geometry in Computer Vision” 

Unnormalized Data Normalized Data
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Data Normalization
• Data normalization is carried out by a transformation 

of the points as follows:
i. Points are translated so that their centroid is at the 

origin.
ii. Points are then scaled so that the average distance from 

the origin is equal to sqrt(2).
iii. Transformation is applied to each of the two images 

independently.

• This means that the average point is equal to (1,1,1)T

after normalization 
• ⇒ no magnitude difference in linear equation Ah=0.
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Normalized DLT Algorithm

Objective
Given n≥4 2D to 2D point correspondences {xi↔xi’}, 
determine the 2D homography matrix H such that xi’=Hxi

Algorithm
(i) Normalize points  
(ii) Apply DLT algorithm to 
(iii) Denormalize solution

,x~x~ ii 
inormiinormi xTx~,xTx~ ==

norm
-1

norm TH~TH =

Tnorm =
𝑠 0 −𝑠𝑐𝑥
0 𝑠 −𝑠𝑐𝑦
0 0 1

c: centroid of all data points

𝑠 =
2
ҧ𝑑

where ҧ𝑑 : mean distance of all points from centroid. 

Data normalization is an essential step in the DLT algorithm. 
It must not be considered optional!



Random Sample Consensus: RANSAC

• Up to this point, we have assumed a set of 
correspondences with only measurement noise.
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Random Sample Consensus: RANSAC

• In reality, keypoint matching gives us many outliers.
• Outliers can severely disturb the least-squares 

estimation and should be removed.
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RANSAC: Line Fitting Example
• Given: n data points (xi,yi), for 𝑖 = 1,… , 𝑛

• Find: Best fit line, i.e. two parameters (m,c) from the line 
equation 𝑦𝑖 = 𝑚𝑥𝑖 + 𝑐,  for 𝑖 = 1,… , 𝑛
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Y

X
(x1,y1) 

(x2,y2) 

(xi,yi) 

(xn,yn) 



RANSAC: Line Fitting Example
• Given: n data points (xi,yi), for 𝑖 = 1,… , 𝑛

• Find: Best fit line, i.e. two parameters (m,c) from the line 
equation 𝑦𝑖 = 𝑚𝑥𝑖 + 𝑐,  for 𝑖 = 1,… , 𝑛
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Y

X
(x1,y1) 

(x2,y2) 

(xi,yi) 

(xn,yn) 
Least-squares solution:

argmin
𝑚,𝑐

෍
𝑖=1

𝑛

𝑦𝑖 − 𝑚𝑥𝑖 + 𝑐 2



RANSAC: Line Fitting Example
• Given: n data points (xi,yi), for 𝑖 = 1,… , 𝑛

• Find: Best fit line, i.e. two parameters (m,c) from the line 
equation 𝑦𝑖 = 𝑚𝑥𝑖 + 𝑐,  for 𝑖 = 1,… , 𝑛
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Y

X
(x1,y1) 

(x2,y2) 

(xi,yi) 

(xn,yn) 
Least-squares solution:

argmin
𝑚,𝑐

෍
𝑖=1

𝑛

𝑦𝑖 − 𝑚𝑥𝑖 + 𝑐 2

Least-squares fails 
when there’s outliers!!!



RANSAC: Line Fitting Example
RANSAC Steps:
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1. Randomly select minimal subset of points, i.e. 2 points

Y

X



RANSAC: Line Fitting Example
RANSAC Steps:
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2. Hypothesize a model 

Y

X



RANSAC: Line Fitting Example
RANSAC Steps:
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3. Compute error function, i.e. shortest point to line distance 

Y

X



RANSAC: Line Fitting Example
RANSAC Steps:
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4. Select points consistent with model 

Y

X



RANSAC: Line Fitting Example
RANSAC Steps:
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5. Repeat hypothesize-and-verify loop

Y

X

Y

X

Y

X

Y

X



RANSAC: Line Fitting Example
RANSAC Steps:
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6. Select the hypothesis with the highest number of 
consistent points, i.e. inliers.

Y

X

Y

X

Y

X
Y

X



RANSAC Algorithm
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Objective
Robust fit of a model to a data set S which contains outliers.

Algorithm
i. Randomly select a sample of s data points from S and 

instantiate the model from this subset.
ii. Determine the set of data points Si which are within a 

distance threshold t of the model. The set Si is the consensus 
set of the sample and defines the inliers of S.

iii. After N trials, select the largest consensus set Si. The model is 
re-estimated using all the points in the subset Si.

Three parameters:  Number of points s

Distance threshold t

Number of Samples N

M. Fischler, R. Bolles, “Random sample consensus: a paradigm for model fitting with applications 
to image analysis and automated cartography”, Communications ACM, 1981.



Choosing the Parameters
• Number of points, s: 

• Typically, minimum number needed to fit the model.
• e.g., 2 for line and 4 for homography. 

• Distance threshold, t:
• Usually chosen empirically.
• But can be set as t2=3.84σ2  if the measurement error, 

i.e., zero-mean Gaussian noise with std. dev. Σ is known.

• Number of samples, N:
• Exhaustive search of all sample is often unnecessary and 

infeasible.
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Choosing the Parameters
• Number of samples, N
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p: probability that at least one of the random samples of s points is 
free from outliers. 

w : probability that any selected point is an inlier.

1 − 𝑝 = 1 − 𝑤𝑠 𝑁

Probability that all s 
points are inliers

probability that at least one 
of the s points is an outlier

Probability that algorithm never selects a set of s points which all are 
inliers:

⟹𝑁 =
log(1 − 𝑝)
log(1 − 𝑤𝑠)



Choosing the Parameters
• Number of samples, N:
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Table gives examples of N for p = 0.99 for a given s and ϵ.

Source: R. Hartley and A. Zisserman, “Multiple View Geometry in Computer Vision” 

𝑁 =
log(1 − 𝑝)
log(1 − 𝑤𝑠)

= 1 − 𝑤



Choosing N Adaptively

• Often w is unknown, we can choose the worst case, 
i.e., 50%.

• w can also be decided adaptively:
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N=∞ , sample_count =0 
while N > sample_count Repeat

1. Choose a sample and count #inliers
2. Set  𝑤 = #inliers

#points

3. N = log(1−p)
log(1−ws)

with p=0.99
4. Increment sample_count by 1

Terminate

Adaptive RANSAC Algorithm
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Robust 2D Homography Computation
Objective

Compute the 2D homography between two images.
Algorithm
i. Interest points: Compute keypoints in each image.
ii. Putative correspondences: Match keypoints using descriptors.

iii. RANSAC robust estimation: Repeat for N samples, where N is determined 
adaptively:

a. Select a random sample of 4 correspondences and compute the 
homography, H.

b. Calculate the distance d for each putative correspondence.
c. Compute the number of inliers consistent with H by the number of 

correspondences for which d < t

Choose the H with the largest number of inliers.

iv. Optimal estimation: re-estimate H from all correspondences classified as 
inliers.



Different Cost Functions: 
Algebraic Distance

• The DLT algorithm minimizes the norm A𝐡 , where 
𝝐 = A𝐡 is called the residual vector.

• Each correspondence 𝐱𝑖 ↔ 𝐱𝑖′ contributes a partial 
error vector 𝝐𝑖 (2 × 1), where the norm is called the 
algebraic distance:

• Given a set of correspondences, the total algebraic 
error for the complete set is:

CS4277-CS5477 :: G.H. Lee 55



Different Cost Functions: 
Algebraic Distance

• The disadvantage is that the quantity that is minimized 
is not meaningful geometrically nor statistically.

• Nevertheless, it is a linear solution (and thus a unique), 
and is computationally inexpensive. 

• Often solutions based on algebraic distance are used as 
a starting point for a non-linear minimization of a 
geometric cost function (details later). 

• The non-linear minimization gives the solution a final 
“polish”.
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Different Cost Functions: 
Geometric Distance

• The geometric distance in the image refers to the difference 
between the measured and estimated image coordinates.

• Let’s first consider the transfer error in one image:

• This is the Euclidean image distance in the second image 
between the measured point 𝐱𝑖′ and the corresponding point 
H𝐱𝑖 transferred from the first image.

• The error is minimized over the estimated homography H.
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Different Cost Functions: 
Geometric Distance

Symmetric Transfer Error

• Preferable that errors be minimized in both images, and not 
solely in the one.

• Symmetric transfer error considers the forward (H) and 
backward (H−1) transformation:

• The first term is the transfer error in the first image, and the 
second term is the transfer error in the second image. 

• Again, the error is minimized over the estimated 
homography H.
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Different Cost Functions: 
Geometric Distance

Reprojection Error

• We are seeking a homography ෡H and pairs of perfectly
matched points ො𝐱𝑖 and ො𝐱𝑖′ that minimize the total error 
function:

• Minimizing this cost function involves determining 
both ෡H and a set of subsidiary correspondences 
{ො𝐱𝑖} and {ො𝐱𝑖′}.
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Symmetric Transfer Error (upper) Vs 
Reprojection Error
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Image Source: R. Hartley and A. Zisserman, “Multiple View Geometry in Computer Vision” 



Different Cost Functions: 
Sampson Error

• The minimization of both homography H and points 
ො𝐱𝑖, ො𝐱𝑖′ makes the reprojection error accurate but also 
computationally complex.

• Its complexity contrasts with the simplicity of 
minimizing the algebraic error.

• The Sampson error lies between the algebraic and 
geometric cost functions in terms of complexity, but
gives a close approximation to reprojection error.
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Different Cost Functions: 
Sampson Error

• Let CH(𝐗) = 𝟎 denote the cost function A𝐡 = 𝟎 that is 
satisfied by the point 𝐗 = 𝑥, 𝑦, 𝑥′, 𝑦′ ⊤ for a given 
homography H.

• We further denote ෡𝐗 as the desired point so that 
CH(෡𝐗) = 𝟎, where 𝛿𝐗 = ෡𝐗 − 𝐗, and now the cost 
function may be approximated by a Taylor expansion:  
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Different Cost Functions: 
Sampson Error

• The approximated cost function can be rewritten as:

• The minimization problem now becomes: Find the vector 
𝛿𝐗 that minimizes 𝛿𝐗 2 subject to   .
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where J is the partial-derivative matrix, and 𝝐 is the 
cost CH(𝐗) associated with 𝐗.



Different Cost Functions: 
Sampson Error

• Now                        can be solved using the right 
pseudo inverse as:  

• And the Sampson error is defined by the norm: 
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Different Cost Functions: 
Sampson Error

• For the 2D homography estimation problem, 𝐗 =
𝑥, 𝑦, 𝑥′, 𝑦′ ⊤ where the measurements are 𝐱 = 𝑥, 𝑦, 1 ⊤

and 𝐱′ = 𝑥′, 𝑦′, 1 ⊤.

• And 𝝐 = C𝐻(𝐗) is the algebraic error vector A𝑖𝐡 (a 2-
vector).

• is a 2 x 4 matrix, where
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Exercise: Derive the full expression of 𝛿𝐗 2 !



Iterative Minimization
• The Geometric and Sampson errors are usually minimized as 

the squared Mahalanobis distance :

• This is an unconstrained continuous optimization that can 
be solved with solvers such as Gauss-Newton or Levenberg-
Marquardt (details in Lecture 9). 
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where
➢ 𝐗 ∈ ℝ𝑁 is the measurement vector with covariance matrix Σ.
➢ 𝐏 ∈ ℝ𝑀 is the set of parameters to be optimized.
➢ A mapping function 𝑓 ∶ ℝ𝑀 → ℝ𝑁.

,

argmin
𝐏

,



Iterative Minimization
Error in one image: 

• Measurement vector 𝐗 is made up of the 2𝑛 inhomogeneous 
points 𝐱𝑖′.

• Set of parameters to be optimized 𝐏 is set as 𝐡.

• Mapping function 𝑓 is defined by:

• We now find that                         becomes  
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where the coordinates of points 𝐱𝑖 in the first image is taken 
as a fixed input.

,



Iterative Minimization

Symmetric Transfer Error:

• Measurement vector 𝐗 is a 4-vector made up of the 
inhomogeneous coordinates of the points 𝐱𝑖 and 𝐱𝑖′.

• Set of parameters to be optimized 𝐏 is set as 𝐡.

• Mapping function 𝑓 is defined by:

• We now find that                         becomes                 
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Iterative Minimization
Reprojection Error:

• Measurement vector contains the inhomogeneous coordinates 
of all the points 𝐱𝑖 and 𝐱𝑖′.

• Set of parameters to be optimized is                                         .      

• Mapping function 𝑓 is defined by:

• We can verify that                          becomes: 
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, where

with 𝐗 as a 4n-vector.



Iterative Minimization

Sampson Approximation:

• Measurement vector 𝐗 = 𝑥, 𝑦, 𝑥′, 𝑦′ ⊤.

• Set of parameters to be optimized 𝐏 is set as 𝐡.

• Here, we directly set 𝐗 − 𝑓 𝐡 = 𝛿𝐗, and                         
gives us the Sampson error: 

CS4277-CS5477 :: G.H. Lee 70


	Slide 1: CS4277 / CS5477 3D Computer Vision
	Slide 2: Course Schedule
	Slide 3: Learning Outcomes
	Slide 4: Acknowledgements
	Slide 5: Three-Dimensional Euclidean Space
	Slide 6: Three-Dimensional Euclidean Space
	Slide 7: Dot and Cross Products in double-struck cap E cubed
	Slide 8: Dot and Cross Products in double-struck cap E cubed
	Slide 9: Dot and Cross Products in double-struck cap E cubed
	Slide 10: Dot and Cross Products in double-struck cap E cubed
	Slide 11: Right-Hand Rule
	Slide 12: Coordinate Frames
	Slide 13: Coordinate Frames
	Slide 14: Special Euclidean Transformation
	Slide 15: Special Euclidean Transformation
	Slide 16: Special Euclidean Transformation
	Slide 17: Orthogonal Matrix Representation of Rotations
	Slide 18: Orthogonal Matrix Representation of Rotations
	Slide 19: Orthogonal Matrix Representation of Rotations
	Slide 20: Orthogonal Matrix Representation of Rotations
	Slide 21: Euler Angles to Rotation Matrix
	Slide 22: Euler Angles to Rotation Matrix
	Slide 23: Euler Angles to Rotation Matrix
	Slide 24: Euler Angles to Rotation Matrix
	Slide 25: Rigid-body motion and its Representations
	Slide 26: Homogeneous Representation
	Slide 27: Homogeneous Representation
	Slide 28: Composition of Rigid-body Motions
	Slide 29: Composition of Rigid-body Motions
	Slide 30: Composition of Rigid-body Motions
	Slide 31: Planar Projective Transformations
	Slide 32: Existence of Projective Homography
	Slide 33: Existence of Projective Homography
	Slide 34: Existence of Projective Homography
	Slide 35: Reverse Mapping
	Slide 36: 2D Homography
	Slide 37: Number of Measurements Required?
	Slide 38: Number of Measurements Required?
	Slide 39: Approximate Solutions
	Slide 40: Direct Linear Transformation  (DLT) Algorithm
	Slide 41: Direct Linear Transformation  (DLT) Algorithm
	Slide 42: Direct Linear Transformation  (DLT) Algorithm
	Slide 43: Direct Linear Transformation  (DLT) Algorithm
	Slide 44: Least –Squares Solution
	Slide 45: Singular Value Decomposition (SVD)
	Slide 46: Singular Value Decomposition (SVD)
	Slide 47: Singular Value Decomposition (SVD)
	Slide 48: Singular Value Decomposition (SVD)
	Slide 49: Direct Linear Transformation  (DLT) Algorithm
	Slide 50: Homography: Degeneracy
	Slide 51: Importance of Normalization
	Slide 52: Importance of Normalization
	Slide 53: Data Normalization
	Slide 54: Normalized DLT Algorithm
	Slide 55: Different Cost Functions:  Algebraic Distance
	Slide 56: Different Cost Functions:  Algebraic Distance
	Slide 57: Different Cost Functions:  Geometric Distance
	Slide 58: Different Cost Functions:  Geometric Distance
	Slide 59: Different Cost Functions:  Geometric Distance
	Slide 60: Symmetric Transfer Error (upper) Vs Reprojection Error
	Slide 61: Different Cost Functions:  Sampson Error
	Slide 62: Different Cost Functions:  Sampson Error
	Slide 63: Different Cost Functions:  Sampson Error
	Slide 64: Different Cost Functions:  Sampson Error
	Slide 65: Different Cost Functions:  Sampson Error
	Slide 66: Iterative Minimization
	Slide 67: Iterative Minimization
	Slide 68: Iterative Minimization
	Slide 69: Iterative Minimization
	Slide 70: Iterative Minimization
	Slide 71: Random Sample Consensus: RANSAC
	Slide 72: Random Sample Consensus: RANSAC
	Slide 73: The RANSAC Song
	Slide 74: RANSAC: Line Fitting Example
	Slide 75: RANSAC: Line Fitting Example
	Slide 76: RANSAC: Line Fitting Example
	Slide 77: RANSAC: Line Fitting Example
	Slide 78: RANSAC: Line Fitting Example
	Slide 79: RANSAC: Line Fitting Example
	Slide 80: RANSAC: Line Fitting Example
	Slide 81: RANSAC: Line Fitting Example
	Slide 82: RANSAC: Line Fitting Example
	Slide 83: RANSAC Algorithm
	Slide 84: Choosing the Parameters
	Slide 85: Choosing the Parameters
	Slide 86: Choosing the Parameters
	Slide 87: Choosing N Adaptively
	Slide 88: Robust 2D Homography Computation
	Slide 89: Summary

