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The Epipolar Geometry
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 The image point x in I back-projects to a ray, and this ray projects
to I' as the epipolar linel'.
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* The corresponding point X’ can lie anywhere onl’.

* Epipolar plane 1 is determined by the baseline and ray defined by
X.

Image Source: R. Hartley and A. Zisserman, “Multiple View Geometry in Computer Vision”
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The Epipolar Geometry: Terminology

W / \

e

\ baseline -/

Epipoles (e, e’):

* Point of intersection of the line joining the camera centers
(baseline) with the image plane.

baseline

Epipoles

* Equivalently, it is the image in one view of the camera center of
the other view.

 Also, the vanishing point of the baseline (translation) direction.

Image Source: R. Hartley and A. Zisserman, “Multiple View Geometry in Computer Vision”
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The Epipolar Geometry: Terminology

-y . %

Epipolar plane 7 :

nefparameter
. o ?Zly of planes

* A plane containing the baseline.

* There is a one-parameter family (a pencil) of epipolar
planes.

Image Source: R. Hartley and A. Zisserman, “Multiple View Geometry in Computer Vision”
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The Epipolar Geometry: Terminology

N

1

\\ baseline ‘/ baseline /
Epipolar lines

Epipolar lines (1,1') :

* The intersection of an epipolar plane with the image plane.

e All epipolar lines intersect at the epipole.

* An epipolar plane intersects the left and right image plane in
epipolar lines, and defines the correspondences between the
lines.

Image Source: R. Hartley and A. Zisserman, “Multiple View Geometry in Computer Vision”
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The Fundamental Matrix

* The fundamental matrix is the algebraic representation
of epipolar geometry.

* Gives the projective mapping relationship between a
point X on one image to a line 1’ on the other.

X

< epipolar line
forx

Image Source: R. Hartley and A. Zisserman, “Multiple View Geometry in Computer Vision”
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F Matrix: Geometric Derivation

* The mapping x — 1’ may be decomposed into two
steps:

1. The point X is mapped to some point X' in the
other image lying on the epipolar line I’; this
point X' is a potential match for the point x.

2. The epipolar line 1" is obtained as the line joining
X to the epipole e’.
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F Matrix: Geometric Derivation

Step 1: Point transfer via a plane.

* Consider a plane 1 in space not passing through either
of the two camera centres and contains the point X.

* Thus, there is a 2D homography H,; mapping each x; to

Xi‘

/N

Image Source: R. Hartley and A. Zisserman, “Multiple View Geometry in Computer Vision”
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F Matrix: Geometric Derivation

Step 2: Constructing the epipolar line.

* Given the point X, the epipolar line 1’ passing
through X’ and the epipole e’ can be written as 1’ =
e’ xx' =[e']X.

* Since X' may be written as X’ = H_Xx, we have:

where we define F = |€’| H, as the fundamental
matrix.
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Cross-Product as Matrix Multiplication

 Vector cross product can be expressed as the
product of a skew-symmetric matrix and a vector:

0 —a3; a, ||b
axb=][al,b=| as 0 —aql|b,
_az a1 O b3
NUS s CS4277-CS5477 :: G.H. Lee 13




F Matrix: Geometric Derivation

* The fundamental matrix F may be written as:

F = |€|«H,

* where H is the transfer mapping from one image
to another via any plane.

* Furthermore, since |[e'] has rank 2 and H,, rank 3,
F is a matrix of rank 2.

CS4277-CS5477 :: G.H. Lee 14




F Matrix: Geometric Derivation

 Geometrically, F represents a mapping from the 2-
dimensional projective plane IP? of the first image to
the pencil of epipolar lines through the epipole e’.

* Thus, it represents a mapping of P? = P!, and
hence must have rank 2.

* Note: The plane is simply used here as a means of
defining a point map from one image to another, but
not required for F to exist.
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F Matrix: Algebraic Derivation

* The form of the fundamental matrix in terms of the

two camera projection matrices, P and P’, may be
derived algebraically.

* The back-projected ray from X is given by:

X(\) =P"x + AC,
where

» P is the pseudo-inverse of P, i.e. PP =]
> C the null-vector of P, i.e. the camera center, PC = 0
> The ray is parametrized by the scalar A
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F Matrix: Algebraic Derivation

* Let’s consider two points on the ray: P*xat A = 0 and
the first camera center C at A = oo.

* These two points are imaged by the second camera P’
at P'P*x and P’'C, respectively in the second view.

* The epipolar line is the line joining these two projected
points, i.e. I’ = (P'C) x (P'PTx),

* The point P'C is the epipole in the second image, i.e.

CS4277-CS5477 :: G.H. Lee 17



F Matrix: Algebraic Derivation

* Thus, I = [¢/](P'PT)x = Fx, where F is the matrix
F=[e],P'PT.

* This is similar to F = |e’|H, that we have derived
geometrically.

* We can see that the homography takes the form
H. = P'P*

in terms of the two camera matrices.

CS4277-CS5477 :: G.H. Lee 18



F Matrix: Algebraic Derivation

e Remarks: Note that this derivation breaks down in
the case where the two camera centres are the
same.

Proof:

e =P'C=0,when C=C'. It follows that:

F=[e][,PP" =0. 0

CS4277-CS5477 :: G.H. Lee 19




F Matrix: Algebraic Derivation

Example: Suppose the camera matrices are those of a
calibrated stereo rig with the world origin at the first
camera

P=X[I|O] P'=K[R | t].

(1)

Then

K—l

and

F = [P'c|.P'PT
= [K't| KRK!' =K T[t],RK ' =K TR[R"t],K* =K' TRK'[KR"t],

School of CS4277-CS5477 :: G.H. Lee 20
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Correspondence Condition

* For any pair of corresponding points X < X' in two
Images:

xX'"TFx=0
Proof:

X' lies on the epipolar linel’ = Fx corresponding to the
point X

>0=x""TI'"=x""TFx=0

CS4277-CS5477 :: G.H. Lee 22




Correspondence Condition

 The importance of the relation X' TFx = 0 is that it gives a
way of characterizing the fundamental matrix without
reference to the camera matrices.

* That is the relation is only in terms of corresponding
image points, and this enables F to be computed from
image correspondences alone.

* We will discuss the details later: how many

correspondences are required to compute F from x'"Fx =
07

et | Eomating CS4277-CS5477 :: G.H. Lee 23




Properties of the F Matrix

* Transpose:
> F is the fundamental matrix of the pair of cameras (P, P')
> FT is the fundamental matrix of the pair in the opposite order: (P, P)

e Epipolar lines:
» For any point X in first image, corresponding epipolar line is1’ = Fx
> 1 = FTx’ represents epipolar line corresponding to X’ in second image

* Epipole:

> For any point X (other than e) the epipolar linel' = Fx contains the
epipole e’

> e’ satisfies e’T(Fx) = (e’TF)x = 0 forall x
> e'TF = 0, i.e. e’ is the left null-vector of F
> Fe =0, i.e. eis the right null-vector of F

CS4277-CS5477 :: G.H. Lee 24




Properties of the F Matrix

» 7 degrees of freedom (9 elements — 2 dof):
> 3 x 3 homogenoueous matrix with 8 independent ratios = -1 dof

> det(F) = 0=-1dof
* Not a proper correlation (not invertible):

> Projective map taking a point to a line

> A point in first image X defines a line in the second 1 = Fx, i.e.
epipolar line of x

> If 1and 1" are corresponding epipolar lines, then any point x on 1
is mapped to the same line I’

> This means no inverse mapping, and F is not of full rank

School of CS4277-CS5477 :: G.H. Lee 25
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Summary of F Matrix Properties

¢ Fis arank 2 homogeneous matrix with 7 degrees of freedom.
o Point correspondence: If x and x’ are corresponding image points, then
x'TFx = 0.
e Epipolar lines:
¢ I' = Fx is the epipolar line corresponding to x.
o 1=FTx is the epipolar line corresponding to x’.
e Epipoles:
o Fe = 0.
o Fle! = 0.

¢ Computation from camera matrices P, P':
¢ General cameras,
F = [e']xP'PT, where PT is the pseudo-inverse of P, and ' = P'C, with PC = 0.

¢ Canonical cameras, P = [I | 0], P’ = [M | m],
F=le]xM=M Tle]x, wheree’ = mande = M~ 'm.

¢ Cameras not at infinity P = K[I | 0], P = K'[R [rt],
F=K"T[t]«xRK™! = [K't]xK'RK~! =K'~ TRK'T[KRt] .

Source: Page 246, R. Hartley and A. Zisserman, “Multiple View Geometry in Computer Vision”
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The Epipolar Line Homography

« Suppose 1 and I’ are corresponding epipolar lines, and K is
any line not passing through the epipole e, thenland 1’ are
related by I' = F[K] ], where F[K], is a homography.

« Symmetrically, 1 = FT[K'] x I.

Proof:

The expression [K]«1 = k X 1 is the point of intersection of
the two lines k and |, and hence a point on the epipolar line 1
— call it x.

Hence, F|Kk]«1 = Fxis the epipolar line corresponding to
the point X, namely the line 1.

e | e CS4277-CS5477 :: G.H. Lee 28




The Epipolar Line Homography

Homography in P?:

I' = F[K], ]
1=FT[K]xI

* There is a pencil of epipolar lines in each image
centred on the epipole.

* The correspondence between epipolar lines, 1; &
l;, is defined by the pencil of planes with axis the
baseline.

Source: Page 246, R. Hartley and A. Zisserman, “Multiple View Geometry in Computer Vision”
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Special Motion: Pure Translation

e Suppose the motion of the cameras is a pure
translation with no rotation (R = I) and no change
in the internal parameters (K = K').

* The two camerasare P =K[I | 0] and P’ = K| 1| t],
and

F =[] KK~ = [€].

* Fis skew-symmetric and has only 2 degrees of
freedom, which correspond to the position of the
epipole.

CS4277-CS5477 :: G.H. Lee 31



Special Motion: Pure Translation

* The epipolar line of xis1' = Fx = [e]X, and X’ lies
on this line since X' "[e]«x = 0.

* Thatis X, X' and e = e’ are collinear (assuming both
images are overlaid on top of each other).

* This collinearity property is termed auto-epipolar,
and does not hold for general motion.

CS4277-CS5477 :: G.H. Lee 32



Special Motion: Pure Translation

Example 1:

" parallel |
fines

* We may consider the equivalent
situation of pure translation.

!

vanishing
point

 Camera is stationary, and the
world undergoes a translation —t.

. N e
image P

XY
é camera
centre

* 3D points appear to slide along parallel rails.

* The images of these parallel lines intersect in a vanishing
point corresponding to the translation direction.

* The epipole e is the vanishing point.

Source: Page 246, R. Hartley and A. Zisserman, “Multiple View Geometry in Computer Vision”
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General Motion

* A general motion and its effect on the fundamental
matrix can be separate into a pure rotation followed by
a pure translation.

Source: Page 246, R. Hartley and A. Zisserman, “Multiple View Geometry in Computer Vision”
ea CS4277-CS5477 :: G.H. Lee 35

Computing

% National University
of Singapore



General Motion

* Now the the two cameras are given by P = K[I | 0] and
P =K[R | t].

* The pure rotation may be simulated by: H = K'RK~! = H_,
where H, is the infinite homography.

* As seen earlier, the fundamental matrix F under pure
translation is given by F = [e'].

* Since F = [e'[<K'R ~1 (c.f. algebraic derivation), we
have F = FH, = [e ’]XHOO.

Source: Page 246, R. Hartley and A. Zisserman, “Multiple View Geometry in Computer Vision”
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Retrieving the Camera Matrices

* To this point we have examined the properties of F
and of image relations for a point correspondence
X X,

* We now turn to one of the most significant properties
of F, that the matrix may be used to determine the
camera matrices of the two views.

CS4277-CS5477 :: G.H. Lee 37




Projective Invariance

* The fundamental matrices corresponding to the pairs of
camera matrices (P, P") and (PH, P'H) are the same.

 His a 4 x 4 matrix representing a projective transformation
of 3-space.

Proof:
* Observe that PX = (PH)(H™!X), and similarly for P’.

* Thus, if X & X' are matched points with respect to the pair of
cameras (P, P), corresponding to a 3D point X.

 Then they are also matched points with respect to the pair of

cameras (PH, P'H), corresponding to the point H™X.
[

School of CS4277-CS5477 :: G.H. Lee 38
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Projective Invariance

* Thus, although a pair of camera matrices
(P, P") uniquely determine a fundamental matrix F,
the converse is not true.

* The fundamental matrix determines the pair of
camera matrices at best up to right-multiplication
by a 3D projective transformation.

Unique

Given: (P,P’) mm=) F,

Not Unique

Given: F === (P,P’) or (PH,P'H)

CS4277-CS5477 :: G.H. Lee 39




Canonical Form of Camera Matrices

* The fundamental matrix corresponding to a pair of
camera matricesP =[I | 0] and P’ = [M | m] is
equal to [m] M.

Proof:
e =P'C=[M|m][0,00,1]T = m

F =[PP+ = [ml, (M| m] [ (> | = (ml.m,

where Pt = IBX?’] since PPt = 1.
O3X1

CS4277-CS5477 :: G.H. Lee 40



Projective Ambiguity of Cameras Given F

Theorem:

* Let (P, P") and (P, P") be two pairs of camera matrices
such that F is the fundamental matrix corresponding
to each of these pairs.

* Then, there exists a non-singular 4 x 4 matrix H such
that P = PHand P' = P'H.

CS4277-CS5477 :: G.H. Lee 41



Projective Ambiguity of Cameras Given F

Proof:

e Suppose that a given fundamental matrix F corresponds
to two different pairs of camera matrices (P, P") and

(7, 5.

 And the two pair of camera matrices is in canonical form
withP=P=1[1|0],P'=[A|a]and P’ = [A ]| &].

e According to result of canonical cameras earlier, the
fundamental matrix may then be written F = [a] A =
[a] < A.

Res | CS4277-CS5477 :: G.H. Lee 42



Projective Ambiguity of Cameras Given F

Proof (cont.):

* We will need the following lemma:

Lemma:

Suppose the rank 2 matrix F can be decomposed in two
different ways as F = [a]A and F = [4], A;

thend = kaand A = k~1(A + av') for some non-zero
constant k and 3-vector v.

f
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Projective Ambiguity of Cameras Given F

(Lemma) Proof:
First, notethata'F = a'[a] A = 0, and similarly,a'F = 0.

Since F has rank 2, it follows that a = ka as required.

Next, from [a] A = [A]«A, it follows that [a] (kA — A) = 0,
andso kA— A = av' for somev. Hence, A = k™ 1(A +
av') as required.

CS4277-CS5477 :: G.H. Lee 44




Projective Ambiguity of Cameras Given F

Proof (cont.):

* Applying this result to the two camera matrices P and P
shows that P’ = [A | a]and P' = [k~ (A + av") | ka]
if they are to generate the same F.

k11 0
vtk
that PH = k~[1| 0] = k~1P.

* Now let H = { } , we then we can verify

CS4277-CS5477 :: G.H. Lee 45



Projective Ambiguity of Cameras Given F

Proof (cont.):

 And furthermore,

PH=[A|aH=[k"'(A+av')|ka]=[A]|a =P

so that the pairs P, P’ and P, P’ are indeed projectively
related.

B &
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Decomposition of F Matrix

* A non-zero matrix F is the fundamental matrix
corresponding to a pair of camera matrices P and P’ if
and only if P'TFP is skew-symmetric.

Proof:

The condition that P’ T FP is skew-symmetric is equivalent to
XTP'TFPX = O forall X.

Setting X' = P'X and x = PX, this is equivalent to x'TFx = 0,
which is the defining equation for the fundamental matrix.
]

N, al University
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Decomposition of F Matrix

* The camera matrices corresponding to a fundamental
matrix F may be chosenas P = [I| 0] and P’ = [[e']<F | e].

Proof:

We may verify that

SF | €]"F[I| 0] = [FTSTF 0 ] _ [ F'STF 0

eTF () 0T 0 ], where S = [e'],.

which is skew-symmetric and hence F is a valid fundamental
matrix (as we have proven previously).

CS4277-CS5477 :: G.H. Lee 48




Decomposition of F Matrix

* According to the Lemma seen earlier:

F can be decomposed in two different ways as F =
[a] A and F = [a] A, whered = kaand A = k™ 1(A +
av') for some non-zero constant k and 3-vector v.

* The general formula for a pair of canonic camera matrices
corresponding to a fundamental matrix F is given by:

P=[I|o0] P =][€]F+ev' |A\e]
where v is any 3-vector, and A a non-zero scalar.

CS4277-CS5477 :: G.H. Lee 49




Essential Matrix

* Normalized coordinates: Known calibration matrices
K and K’ = we can writex & X as K 1x & K'1x/,

ie. X & X"

X'TEX = x'TK'"TEK™?

R'TER = 0

2Tt R = 0

e E is the Essential Matrix which can be

x=0

expressed in

terms of the relative transformation between two

image frames.

CS4277-CS5477 :: G.H. Lee
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Essential Matrix

Proof:
Previously we seen F = |e’ | P'P*, since P = K[I | 0] and
P’ = K'[R | t], we have:

p+ — (I)i:;], C = [Oslx1]

and

F = |e'|P'P* = [P'C|.P'P*

= |K't| K'RK~! = K’ "[|t],RK 1

CS4277-CS5477 :: G.H. Lee
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Properties of the Essential Matrix

* Five degree of freedom (3+3-1):

* Rand t have 3 degree of freedom each

e But there is an overall scale ambiguity = -1 dof

 Singular values:

* A 3 x 3 matrix is an essential matrix iff two of its
singular values are equal, and the third is zero

B &

of Singapore
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Decomposition of E Matrix

e Extract R and t from the essential matrix E.
E = lthR

Let us factorize |t] and R into:

E = |t|],R = (UZUT)(UXVT) = UZX)VT

Skew-symmetric Some rotation SVD of E
matrix matrix

Since E is known up to a scale and ignoring the sign,

we can set: 0 1 0]
Z=|-1 0 o

oy ZW = diag(1,1,0) ] 000
= , wher 0 -1 0
ZWT = diag(—1,—1,0) © W= (1) 01 8

0 0 1l

CS4277-CS5477 :: G.H. Lee 53




Decomposition of E Matrix
U and V are known from SVD of E.

Recovery of t: |t]|, = UZUT

Since U is orthogonal and |t] is skew-symmetric, we
get:
t = +U;, i.e. third column of U

Recoveryof Ri R=UWVT,or R=UWTVT

A Z  Left-Hand: A2 Right-Hand:

Make sure that R is in the Right-Hand S det(R)=-1 det(R) = +1

Coordinate: /él\ Lo ng(“\
If det(R) < 0, then R =-R. <y <x

Image Source: https://en.wikipedia.org/wiki/Right-hand_rule
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Decomposition of E Matrix

Four Possible Solutions for P’:

P/ = [UWV' | +us] or [UWV' | —us] or [UW'V' | +us] or [UW'V' | —uy]

A B
@ . _
Only 1 of the 4 solutions is
physically correct, i.e. the 3D point
__/ appears in front of both cameras.
/
A B
/
© @

B &
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Linear 8-Point Algorithm for F Matrix

* Given: A set of points correspondences X; < X;
between two images.

* Compute: The Fundamental matrix F.

schoolof CS4277-CS5477 :: G.H. Lee 56
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Linear 8-Point Algorithm for F Matrix

* For any pair of matching points X; <= X; in two images, the
3x3 fundamental matrix is defined by the equation:

x'TFx =

letx = (x,y,1)Tand X' = (x’,y’,1) T, we rewrite the above
equation as:

drfiy+2yfio+ 2 fis + v xfor + Y yfoo + Y fos Fxfar +yfao + faz =0

Let f be the 9-vector made up of the entries of F in row-
major order, we get:

(2w, 2"y, 2y e, gy, ey, 1) fF =0

%) w5 | Computing CS4277-CS5477 :: G.H. Lee 57



Linear 8-Point Algorithm for F Matrix

* From a set of n point matches, we obtain a set of
linear equations of the form:

J o J J ! .. / / .
riry o e Y oy oy oy 1
. . . . . . . f

Jo. J J ! . / / .
[.1 CTn T UYn Ty Y Tn YlUn Yo Tp Un 1J

* Aisanx9 matrix.

* For a non-trivial solution to exist, rank(A)=8 since f
IS @ 9-vector.

* A minimum of 8-point correspondences is needed
to solve for f.

CS4277-CS5477 :: G.H. Lee 58



Linear 8-Point Algorithm for F Matrix

* For noisy data, we obtain the solution of f by finding
the least-squares solution.

* Least-squares solution for f is the singular vector
corresponding to the smallest singular value of A.

* That is the last column of V in the SVD A = UDVT.

» Similar to homography estimation, data normalization
Is needed.
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Singularity Constraint of F Matrix

* An important property of the fundamental matrix is that it is
singular, i.e. rank(F) = 2.

* Problem: Least-squares solution in general will NOT give
rank(F)=2.

rank(F) # 2 rank(F) = 2
| | "

Recall:

e Right and left nullspaces
of F gives the epipoles, i.e.
Fe=0,andFTe’ = 0.

* Since e is a 3-vector,
epipole exists if rank(F)=2.

AN

T AR SR
: K

.l s v.

BE o\ W e -
R A%
I

N N ¥
AN -

/ o W
P, > \

B & A\ N e
Wele 8

Image Source: R. Hartley and A. Zisserman, “Multiple View Geometry in Computer Vision”
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Singularity Constraint of F Matrix

* Most convenient way is to correct the matrix F found by the
SVD solution from A.

* Matrix F is replaced by the matrix F’ that minimizes the
Frobenius norm:

rrllzi,nllF —F'||, s.t. det(F') =0

Steps:

1. Take SVD of F,i.e. F = UDV', where D = diag(r, s, t)
satisfyingr = s > t.

2. Then, F' = Udiag(r,s, 0)V" minimizes the Frobenius
normof F — F'.
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Normalized 8-Point Algorithm for F Matrix

Objective
Given n 2 8 image point correspondences {X;<X.'}, compute the

fundamental matrix F such that x{Tin = 0.
Algorithm

(i) Normalization: Transform the image coordinates according to
X; = Tx; and X; = T'x;, where T and T are normalizing
transformations.

(i) Find the fundamental matrix F’ corresponding to the matches
R; > X; by:

a) Linear 8-point algorithm. Note: RANSAC should be

b) Enforcing singularity constraint. used for robust estimation!
(iii) Denormalization: Set F = T'TF'T.

0 s —SCy,

s 0 —sc,] ¢ centroid of all data points
T= 2 _
0 0 1 s = i where d : mean distance of all points from centroid.

B &
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Normalized 8-Point Algorithm for E Matrix

Objective

Given n > 8 image point correspondences {X;<>X;’} and the camera
calibration matrices K and K’, compute the essential matrix E such that
x;' K"TEK 1x; = 0.

Algorithm

(i) Normalized Coordinates: For each correspondence x; < X;,
compute K™1x; e K'71x},i.e. R & %'

I/

(i) Find the essential matrix E corresponding to the matches X; < X;
by:
a) Linear 8-point algorithm.
b) *Enforcing singularity constraint.

(iii) Decompose E to get R and t, thus forming P and P’.

*Singular constraint for E matrix is different from F matrix. See next slide
for more detail.

B &®
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Singularity Constraint of E Matrix

Problem:

* In general, the essential matrix E obtained from the linear
8-point algorithm will NOT have two similar singular
values, and third is zero.

Solution:

1. TakeSVDof E,i.e. E = UDVT, where D = diag(a, b, ¢)
witha = b = c.

2. The closest essential matrix to E in Frobenius norm is
given E = UDV', where

~ a+ba+b
D = diag( B ,0)
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3D Structure Computation

* Given: The point correspondence X; < X; and

camera projection matrices P and P’ of two images.

* Find: The 3D structure points X; that corresponds
to each 2D point correspondence.

. X?
I\ r
X /X’
° [ ]
~— —
C . \ / -
P=K[I | 0] P=kR|t] ©
NUS s CS4277-CS5477 :: G.H. Lee
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3D Structure Computation

Linear Triangulation Method

* In each image, we have a measurement:
x = PX, x' = P'X

* Unknown scale factor is eliminated by a cross-product, i.e. X X
(PX) = 0 to give:

 P'T are rows of P.
* Two of the three equations are linearly independent.
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3D Structure Computation
Linear Triangulation Method

* An equation of the form AX = 0 can be formed:

5 .,l"pBT . plT .
‘ 9
A= 'l{pj; B p~/1TT
rpr =P
I y/p/ST o p/2T .

* Two equations from each image, giving a total of four equations
in four homogeneous unknowns, i.e. X = [XY Z 1]".

* Solution given by the right singular vector that corresponds to
the smallest singular value of A, i.e. v,.

* X=v,/v,, = to make last element of X equal to 1.
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Reconstruction (Similarity) Ambiguity

 Known Calibration: Scene determined by the image is
only up to a similarity transformation (rotation, translation
and scaling).

e

Slmllal‘lt}

Image Source: R. Hartley and A. Zisserman, “Multiple View Geometry in Computer Vision”

School of
Computing

1S
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Reconstruction (Similarity) Ambiguity
Proof sketch:
Let Hg be any similarity transformation: H, = [ ORT ; ]
We can see that the projection on X; is the
same under P and PH; !:
PX, = (PH;')(H.X,) * g '»

And PH; 1 is still a valid projection
matrix:

Sml rity

P =K[Re | ts], PH, I — K[RPR_1 | t] -<:iif'

=<

Image Source: R. Hartley and A. Zisserman, “Multiple View Geometry in Computer Vision”
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Reconstruction (Projective) Ambiguity

e Unknown Calibration: We saw earlier that the

fundamental matrix can be decomposed into P and
P’ orPH !'and PPH™ L.

\ g /
* The point X is

reconstructed as HX under
PH™! and P’H™?! since: Projects

PX = PH™1HX. * 9/

Image Source: R. Hartley and A. Zisserman, “Multiple View Geometry in Computer Vision”

1S
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Reconstruction (Projective) Ambiguity

* Original image pair

* Two different views of the reconstruction by P and P’
decomposed from the F matrix obtained with the image pair.

Image Source: R. Hartley and A. Zisserman, “Multiple View Geometry in Computer Vision”
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Stratified Reconstruction

* The “stratified” approach to reconstruction:

1. Begin with a projective reconstruction.
2. And then refine it progressively to an affine.
3. Finally a metric reconstruction.

 We will see that affine and metric reconstruction are
not possible without further information either about
the scene, the motion or the camera calibration.
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The Step to Affine Reconstruction

* The essence of affine reconstruction is to locate the plane
at infinity.

* Let the 4-vector m be the plane at infinity under projective
distortion; the goal is to find the projective transformation
H that maps m to (0,0,0,1)7,i.e. m, = H™ "m.

* H can be easily obtained as: H = { Iﬂ_‘TO } .

* Map all 3D reconstruction points X using H to remove the
projective distortion (get an affine reconstruction).
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The Step to Affine Reconstruction

* Let vq, V5, V3 be the intersection points of a pair of parallel
lines in three different directions, i.e. vanishing points.

7T can be identified from: [V1 V2 V3]'m = 0.

Example:

POi ntsons p an by th e I | nes: A

-

Vl —_ /11A + /12B —_ ,U]_C + ,u,zD

Image Source:

R. Hartley and A. Zisserman, “Multiple View Geometry in Computer Vision” , V3
V2
=&
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The Step to Affine Reconstruction

Projective distortion Affine distortion

Image Source: R. Hartley and A. Zisserman, “Multiple View Geometry in Computer Vision”
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The Step to Metric Reconstruction

* The key to metric reconstruction is the identification of
the image of absolute conic w (IAC).

* The affine reconstruction may be transformed to a
metric reconstruction by applying a 3D transformation

of the form:
A—l
-]
where

> Ais obtained by Cholesky factorization of AAT = (M'TwM) ™!

> The affine reconstruction is from the camera matrix P’ =
[M | m].
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The Step to Metric Reconstruction

Proof:

 We have seen earlier that under known calibration K’, the
camera matrix Py; = K'[R | t] is subjected to similarity
distortion.

* The affinely distorted camera matrix P’ = [M | m] is transformed
to Py; as Py = P'H™1, where

H1:[A O] = | K'R | K't] = [MA | m]
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The Step to Metric Reconstruction

Proof (cont.):

* Hence, we get MA = K'R, which can be written as:

MA(MA)T = KR(KR)T = MAATMT = K'K'T
=  AAT=M"IKKTMT
1

w'=w"

= AAT=M"wM)"l. O

» Refer to Lecture 5 for the various methods to get the Image of
absolute conic w (IAC).
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The Step to Metric Reconstruction

Affine distortion Similarity distortion

iR —

Image Source: R. Hartley and A. Zisserman, “Multiple View Geometry in Computer Vision”
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