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The Epipolar Geometry 
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Image Source: R. Hartley and A. Zisserman, “Multiple View Geometry in Computer Vision” 

• The image point x in 𝐼 back-projects to a ray, and this ray projects 
to 𝐼′ as the epipolar line 𝐥′.

• The corresponding point 𝐱′ can lie anywhere on 𝐥′.

• Epipolar plane 𝝅 is determined by the baseline and ray defined by 
𝐱.

ray defined by x

baseline

𝝅 x′ can lie 
anywhere here!

𝐼 𝐼′



The Epipolar Geometry: Terminology
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Epipoles (𝐞, 𝐞′): 
• Point of intersection of the line joining the camera centers 

(baseline) with the image plane.
• Equivalently, it is the image in one view of the camera center of 

the other view.
• Also, the vanishing point of the baseline (translation) direction.

Epipoles

Image Source: R. Hartley and A. Zisserman, “Multiple View Geometry in Computer Vision” 



The Epipolar Geometry: Terminology
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Epipolar plane 𝝅 : 
• A plane containing the baseline.
• There is a one-parameter family (a pencil) of epipolar

planes.

One-parameter 
family of planes

Image Source: R. Hartley and A. Zisserman, “Multiple View Geometry in Computer Vision” 
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The Epipolar Geometry: Terminology

Epipolar lines

Epipolar lines (𝐥, 𝐥′) : 
• The intersection of an epipolar plane with the image plane.
• All epipolar lines intersect at the epipole.
• An epipolar plane intersects the left and right image plane in 

epipolar lines, and defines the correspondences between the 
lines.

Image Source: R. Hartley and A. Zisserman, “Multiple View Geometry in Computer Vision” 



𝐱 ↦ 𝐥′

The Fundamental Matrix
• The fundamental matrix is the algebraic representation

of epipolar geometry.

• Gives the projective mapping relationship between a 
point 𝐱 on one image to a line 𝐥′ on the other.
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Image Source: R. Hartley and A. Zisserman, “Multiple View Geometry in Computer Vision” 



F Matrix: Geometric Derivation

• The mapping 𝐱 ↦ 𝐥′ may be decomposed into two 
steps: 

1. The point 𝐱 is mapped to some point 𝐱′ in the 
other image lying on the epipolar line 𝐥′; this 
point 𝐱′ is a potential match for the point 𝐱. 

2. The epipolar line 𝐥′ is obtained as the line joining 
𝐱′ to the epipole 𝐞′.

CS4277-CS5477 :: G.H. Lee 10



F Matrix: Geometric Derivation
Step 1: Point transfer via a plane.

• Consider a plane 𝝅 in space not passing through either 
of the two camera centres and contains the point 𝐗.

• Thus, there is a 2D homography H𝝅 mapping each 𝐱𝑖 to 
𝐱𝑖

′.  
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Image Source: R. Hartley and A. Zisserman, “Multiple View Geometry in Computer Vision” 



F Matrix: Geometric Derivation
Step 2: Constructing the epipolar line.

• Given the point 𝐱′, the epipolar line 𝐥′ passing 
through 𝐱′ and the epipole 𝐞′ can be written as 𝐥′ =
𝐞′ × 𝐱′ = 𝐞′

×𝐱′.

• Since 𝐱′ may be written as 𝐱′ = H𝝅𝐱, we have:
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where we define                         as the fundamental 
matrix. 

,



Cross-Product as Matrix Multiplication

• Vector cross product can be expressed as the 
product of a skew-symmetric matrix and a vector:
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𝐚 × 𝐛 = 𝐚 ×𝐛 =
0 −𝑎3 𝑎2

𝑎3 0 −𝑎1
−𝑎2 𝑎1 0

𝑏1
𝑏2
𝑏3



F Matrix: Geometric Derivation

• The fundamental matrix F may be written as:

• where H𝝅 is the transfer mapping from one image 
to another via any plane.

• Furthermore, since 𝐞′
× has rank 2 and H𝝅 rank 3, 

F is a matrix of rank 2. 
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F Matrix: Geometric Derivation

• Geometrically, F represents a mapping from the 2-
dimensional projective plane ℙ2 of the first image to 
the pencil of epipolar lines through the epipole 𝐞′.

• Thus, it represents a mapping of ℙ2 ↦ ℙ1, and 
hence must have rank 2.

• Note: The plane is simply used here as a means of 
defining a point map from one image to another, but 
not required for F to exist. 
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F Matrix: Algebraic Derivation
• The form of the fundamental matrix in terms of the 

two camera projection matrices, P and P′, may be 
derived algebraically.

• The back-projected ray from 𝐱 is given by:
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where
,

➢ P+ is the pseudo-inverse of P, i.e. PP+ = I
➢ 𝐂 the null-vector of P, i.e. the camera center, P𝐂 = 𝟎
➢ The ray is parametrized by the scalar λ



F Matrix: Algebraic Derivation
• Let’s consider two points on the ray: P+𝐱 at 𝜆 = 0 and 

the first camera center 𝐂 at 𝜆 = ∞. 

• These two points are imaged by the second camera P′
at P′P+𝐱 and P′𝐂, respectively in the second view.

• The epipolar line is the line joining these two projected 
points, i.e.                                 .

• The point P′𝐂 is the epipole in the second image, i.e.
𝐞′.
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F Matrix: Algebraic Derivation

• Thus,                                       where F is the matrix

• This is similar to that we have derived 
geometrically.   

• We can see that the homography takes the form 
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in terms of the two camera matrices.



F Matrix: Algebraic Derivation

• Remarks: Note that this derivation breaks down in 
the case where the two camera centres are the 
same.
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Proof:

𝐞′ = P′𝐂 = 𝟎, when 𝐂 = 𝐂′. It follows that: 

= 𝟎.



F Matrix: Algebraic Derivation
Example: Suppose the camera matrices are those of a 
calibrated stereo rig with the world origin at the first 
camera
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Then

and



Correspondence Condition
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• For any pair of corresponding points 𝐱 ↔ 𝐱′ in two 
images:

𝐱′⊤F𝐱 = 0

Proof:

𝐱′ lies on the epipolar line 𝐥′ = F𝐱 corresponding to the 
point 𝐱

⇒ 0 = 𝐱′⊤𝐥′ = 𝐱′⊤F𝐱 = 0



Correspondence Condition

• The importance of the relation 𝐱′⊤F𝐱 = 0 is that it gives a 
way of characterizing the fundamental matrix without 
reference to the camera matrices. 

• That is the relation is only in terms of corresponding 
image points, and this enables F to be computed from 
image correspondences alone.

• We will discuss the details later: how many 
correspondences are required to compute F from 𝐱′⊤F𝐱 =
0 ? 
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Properties of the F Matrix
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• Transpose: 
➢ F is the fundamental matrix of the pair of cameras (P, P′)
➢ F⊤ is the fundamental matrix of the pair in the opposite order: (P′, P)

• Epipolar lines: 
➢ For any point 𝐱 in first image, corresponding epipolar line is 𝐥′ = F𝐱
➢ 𝐥 = F⊤𝐱′ represents epipolar line corresponding to 𝐱′ in second image

• Epipole: 
➢ For any point 𝐱 (other than 𝐞) the epipolar line 𝐥′ = F𝐱 contains the 

epipole 𝐞′
➢ 𝐞′ satisfies 𝐞′⊤(F𝐱) = (𝐞′⊤F)𝐱 = 0 for all 𝐱
➢ 𝐞′⊤F = 𝟎, i.e. 𝐞′ is the left null-vector of F
➢ F𝐞 = 𝟎, i.e. 𝐞 is the right null-vector of F



Properties of the F Matrix

• 7 degrees of freedom (9 elements – 2 dof): 
➢ 3 x 3 homogenoueous matrix with 8 independent ratios ⇒ -1 dof

➢ det(F) = 0 ⇒ -1 dof

• Not a proper correlation (not invertible): 

➢ Projective map taking a point to a line

➢ A point in first image 𝐱 defines a line in the second 𝐥 = F𝐱, i.e.
epipolar line of 𝐱

➢ If 𝐥 and 𝐥′ are corresponding epipolar lines, then any point 𝐱 on 𝐥
is mapped to the same line 𝐥′

➢ This means no inverse mapping, and F is not of full rank
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Summary of F Matrix Properties

CS4277-CS5477 :: G.H. Lee 26
Source: Page 246, R. Hartley and A. Zisserman, “Multiple View Geometry in Computer Vision” 



The Epipolar Line Homography
• Suppose 𝐥 and 𝐥′ are corresponding epipolar lines, and 𝐤 is 

any line not passing through the epipole 𝐞, then 𝐥 and 𝐥′ are 
related by 𝐥′ = F 𝐤 ×𝐥, where F 𝐤 × is a homography.  

• Symmetrically, 𝐥 = F⊤[𝐤′] × 𝐥′.
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Proof:

The expression 𝐤 ×𝐥 = 𝐤 × 𝐥 is the point of intersection of 
the two lines k and l, and hence a point on the epipolar line 𝐥
– call it 𝐱. 

Hence, F 𝐤 ×𝐥 = F𝐱 is the epipolar line corresponding to 
the point 𝐱, namely the line 𝐥.



The Epipolar Line Homography

• There is a pencil of epipolar lines in each image 
centred on the epipole. 

• The correspondence between epipolar lines, 𝐥𝑖 ↔
𝐥𝑖, is defined by the pencil of planes with axis the 
baseline.
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Source: Page 246, R. Hartley and A. Zisserman, “Multiple View Geometry in Computer Vision” 

𝐥′ = F 𝐤 ×𝐥
𝐥 = F⊤[𝐤′] × 𝐥′

Homography in ℙ2:



Special Motion: Pure Translation

• Suppose the motion of the cameras is a pure 
translation with no rotation (R = I) and no change 
in the internal parameters (K = K′). 

• The two cameras are P = K[I ∣ 𝟎] and P′ = K I 𝐭 , 
and

• F is skew-symmetric and has only 2 degrees of 
freedom, which correspond to the position of the 
epipole. 
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Special Motion: Pure Translation

• The epipolar line of 𝐱 is 𝐥′ = F𝐱 = 𝐞 ×𝐱, and 𝐱′ lies 
on this line since 𝐱′⊤ 𝐞 ×𝐱 = 0.

• That is 𝐱, 𝐱′ and 𝐞 = 𝐞′ are collinear (assuming both 
images are overlaid on top of each other). 

• This collinearity property is termed auto-epipolar, 
and does not hold for general motion.
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Special Motion: Pure Translation

• We may consider the equivalent 
situation of pure translation.

• Camera is stationary, and the 
world undergoes a translation −𝐭.
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Source: Page 246, R. Hartley and A. Zisserman, “Multiple View Geometry in Computer Vision” 

Example 1:

• 3D points appear to slide along parallel rails.

• The images of these parallel lines intersect in a vanishing 
point corresponding to the translation direction.

• The epipole 𝐞 is the vanishing point.



General Motion
• A general motion and its effect on the fundamental 

matrix can be separate into a pure rotation followed by 
a pure translation. 
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Source: Page 246, R. Hartley and A. Zisserman, “Multiple View Geometry in Computer Vision” 



General Motion
• Now the the two cameras are given by P = K[I ∣ 𝟎] and 

P = K[R ∣ 𝐭].

• The pure rotation may be simulated by:
where H∞ is the infinite homography.

• As seen earlier, the fundamental matrix ෨F under pure 
translation is given by ෨F = 𝐞′

×.

• Since F = 𝐞′
×K′RK−1 (c.f. algebraic derivation), we 

have F = ෨FH∞ = 𝐞′
×H∞.
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Source: Page 246, R. Hartley and A. Zisserman, “Multiple View Geometry in Computer Vision” 



Retrieving the Camera Matrices

• To this point we have examined the properties of F
and of image relations for a point correspondence 
𝐱 ↔ 𝐱′.

• We now turn to one of the most significant properties 
of F, that the matrix may be used to determine the 
camera matrices of the two views.
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Projective Invariance
• The fundamental matrices corresponding to the pairs of 

camera matrices (P, P′) and (PH, P′H) are the same.

• H is a 4 × 4 matrix representing a projective transformation 
of 3-space.
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Proof: 

• Observe that P𝐗 = (PH)(H−1𝐗), and similarly for P′.

• Thus, if 𝐱 ↔ 𝐱′ are matched points with respect to the pair of 
cameras (P, P′), corresponding to a 3D point 𝐗.

• Then they are also matched points with respect to the pair of 
cameras (PH, P′H), corresponding to the point H−1𝐗.



Projective Invariance
• Thus, although a pair of camera matrices 

(P, P′) uniquely determine a fundamental matrix F, 
the converse is not true.

• The fundamental matrix determines the pair of 
camera matrices at best up to right-multiplication 
by a 3D projective transformation.
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Given: P, P′ F,
Unique

Given: F P, P′ or (PH, P′H)
Not Unique



Canonical Form of Camera Matrices
• The fundamental matrix corresponding to a pair of 

camera matrices P = [I ∣ 𝟎] and P′ = [M | 𝐦] is 
equal to 𝐦 ×M.
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Proof:

F = 𝐞′ ×P′P+ = 𝐦 × M 𝐦] I3×3
03×1

= 𝐦 ×M,

𝐞′ = P′C = M 𝐦 0,0,0,1 ⊤ = 𝐦

where P+ = I3×3
03×1

since PP+ = I.



Projective Ambiguity of Cameras Given F

Theorem:

• Let (P, P′) and (෨P, ෨P′) be two pairs of camera matrices 
such that F is the fundamental matrix corresponding 
to each of these pairs. 

• Then, there exists a non-singular 4 × 4 matrix H such 
that ෨P = PH and ෨P′ = P′H .
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Proof:
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Projective Ambiguity of Cameras Given F

• Suppose that a given fundamental matrix F corresponds 
to two different pairs of camera matrices (P, P′) and 
(෨P, ෨P′).

• And the two pair of camera matrices is in canonical form 
with P = ෨P = [I | 𝟎], P′ = [A | 𝐚] and ෨P′ = [෩A ∣ 𝐚]. 

• According to result of canonical cameras earlier, the 
fundamental matrix may then be written F = 𝐚 ×A =

𝐚 ×෩A.



Projective Ambiguity of Cameras Given F

Proof (cont.):  
• We will need the following lemma:
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Lemma:

Suppose the rank 2 matrix F can be decomposed in two 
different ways as F = 𝐚 ×A and F = 𝐚 ×෩A; 

then 𝐚 = 𝑘𝐚 and ෩A = 𝑘−1(A + 𝐚𝐯⊤) for some non-zero 
constant 𝑘 and 3-vector v.



Projective Ambiguity of Cameras Given F
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(Lemma) Proof:

First, note that 𝐚⊤F = 𝐚⊤ 𝐚 ×A = 𝟎, and similarly, 𝐚⊤F = 𝟎. 
Since F has rank 2, it follows that 𝐚 = 𝑘𝐚 as required. 

Next, from 𝐚 ×A = 𝐚 ×෩A, it follows that 𝐚 ×(𝑘෩A − A) = 0, 
and so 𝑘෩A − A = 𝐚𝐯⊤ for some v. Hence, ෩A = 𝑘−1(A +
𝐚𝐯⊤) as required.



Proof (cont.):

• Applying this result to the two camera matrices P and ෨P
shows that P′ = [A ∣ 𝐚] and ෨P′ = [𝑘−1(A + 𝐚𝐯⊤) | 𝑘𝐚]
if they are to generate the same F.

• Now let                                    , we then we can verify 

that PH = 𝑘−1[I | 𝟎] = 𝑘−1 ෨P.
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Projective Ambiguity of Cameras Given F



Proof (cont.):

• And furthermore,    
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Projective Ambiguity of Cameras Given F

so that the pairs P, P′ and ෨P, ෨P′ are indeed projectively
related.



Decomposition of F Matrix

• A non-zero matrix F is the fundamental matrix 
corresponding to a pair of camera matrices P and P′ if 
and only if P′⊤FP is skew-symmetric.
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Proof:
The condition that P′⊤FP is skew-symmetric is equivalent to 
𝐗⊤P′⊤FP𝐗 = 0 for all X. 

Setting 𝐱′ = P′𝐗 and 𝐱 = P𝐗, this is equivalent to 𝐱′⊤F𝐱 = 0, 
which is the defining equation for the fundamental matrix.



Decomposition of F Matrix

• The camera matrices corresponding to a fundamental 
matrix F may be chosen as P = [I | 𝟎] and P′ = [ 𝐞′ ×F | 𝐞′].
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Proof:
We may verify that 

,  where S = 𝐞′ ×.

which is skew-symmetric and hence F is a valid fundamental 
matrix (as we have proven previously).



Decomposition of F Matrix
• According to the Lemma seen earlier: 

• The general formula for a pair of canonic camera matrices 
corresponding to a fundamental matrix F is given by:
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F can be decomposed in two different ways as F =
𝐚 ×A and F = 𝐚 ×෩A, where 𝐚 = 𝑘𝐚 and ෩A = 𝑘−1(A +
𝐚𝐯⊤) for some non-zero constant 𝑘 and 3-vector v.

where v is any 3-vector, and λ a non-zero scalar.



Essential Matrix
• Normalized coordinates: Known calibration matrices 

K and K′ ⇒ we can write 𝐱 ↔ 𝐱′ as K−1𝐱 ↔ K′−1𝐱′, 
i.e. ො𝐱 ⟷ ො𝐱′:

• E is the Essential Matrix which can be expressed in 
terms of the relative transformation between two 
image frames.
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ො𝐱′⊤ 𝐭 ×Rො𝐱 = 0

𝐱′⊤F𝐱 = 𝐱′⊤K′−⊤EK−1𝐱 = 0

ො𝐱′⊤Eො𝐱 = 0



Essential Matrix

Proof:
Previously we seen F = 𝐞′

×P′P+, since P = K I | 0 and 
P′ = K′ R | 𝐭 , we have:

and 
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P+ = K−1

01×3
, 𝐂 = 03×1

1

F = 𝐞′
×P′P+ = P′𝐂 ×P′P+

= K′𝐭 ×K′RK−1 = K′−⊤ t ×RK−1



Properties of the Essential Matrix

• Five degree of freedom (3+3-1):

• R and t have 3 degree of freedom each

• But there is an overall scale ambiguity ⇒ -1 dof

• Singular values:

• A 3 x 3 matrix is an essential matrix iff two of its 
singular values are equal, and the third is zero
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Decomposition of E Matrix
• Extract R and t from the essential matrix E.
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E = 𝐭 ×R

Let us factorize 𝐭 × and R into:

Since E is known up to a scale and ignoring the sign, 
we can set:

E = t ×R = UZU⊤ UXV⊤ = U(ZX)V⊤

Skew-symmetric 
matrix

SVD of E

ZX = ൝
ZW = diag 1,1,0

ZW⊤ = diag −1, −1,0 , where

Z =
0 1 0

−1 0 0
0 0 0

W =
0 −1 0
1 0 0
0 0 1

Some rotation 
matrix



Decomposition of E Matrix
• U and V are known from SVD of E.

Recovery of t:

Since U is orthogonal and 𝐭 × is skew-symmetric, we 
get:

Recovery of R:
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𝐭 × = UZU⊤

𝐭 = ±𝐔3,    i.e. third column of U

R = UWV⊤, or R = UW⊤V⊤

Make sure that R is in the Right-Hand 
Coordinate:

If det(R) < 0, then R = -R.

Left-Hand: 
det(R) = -1

Right-Hand: 
det(R) = +1

Image Source: https://en.wikipedia.org/wiki/Right-hand_rule



Decomposition of E Matrix

Four Possible Solutions for P’:
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Only 1 of the 4 solutions is 
physically correct, i.e. the 3D point 
appears in front of both cameras.



Linear 8-Point Algorithm for F Matrix

• Given: A set of points correspondences 𝐱𝑖 ⟷ 𝐱𝑖
′

between two images.
• Compute: The Fundamental matrix F.
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I1 I2

F ?



Linear 8-Point Algorithm for F Matrix

• For any pair of matching points 𝐱𝑖 ⟷ 𝐱𝑖
′ in two images, the 

3x3 fundamental matrix is defined by the equation:

• Let 𝐱 = 𝑥, 𝑦, 1 ⊤and 𝐱′ = 𝑥′, 𝑦′, 1 ⊤, we rewrite the above 
equation as:

• Let f be the 9-vector made up of the entries of F in row-
major order, we get:
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Linear 8-Point Algorithm for F Matrix

• From a set of n point matches, we obtain a set of 
linear equations of the form:

• A is a n x 9 matrix.
• For a non-trivial solution to exist, rank(A)=8 since f 

is a 9-vector.
• A minimum of 8-point correspondences is needed 

to solve for f.
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Linear 8-Point Algorithm for F Matrix

• For noisy data, we obtain the solution of f by finding 
the least-squares solution.

• Least-squares solution for f is the singular vector 
corresponding to the smallest singular value of A.

• That is the last column of V in the SVD A = UDVT.

• Similar to homography estimation, data normalization
is needed. 
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Singularity Constraint of F Matrix
• An important property of the fundamental matrix is that it is 

singular, i.e. rank(F) = 2.

• Problem: Least-squares solution in general will NOT give 
rank(F)=2.
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rank F ≠ 2 rank F = 2

Recall:

• Right and left nullspaces
of F gives the epipoles, i.e.
F𝐞 = 0, and F⊤𝐞′ = 0.

• Since e is a 3-vector, 
epipole exists if rank(F)=2. Epipole does 

not exist
Epipole exists

Image Source: R. Hartley and A. Zisserman, “Multiple View Geometry in Computer Vision” 



Singularity Constraint of F Matrix
• Most convenient way is to correct the matrix F found by the 

SVD solution from A.

• Matrix F is replaced by the matrix F’ that minimizes the 
Frobenius norm:

Steps:
1. Take SVD of F, i.e. F = UDV⊤, where D = diag 𝑟, 𝑠, 𝑡

satisfying 𝑟 ≥ 𝑠 ≥ 𝑡.
2. Then, F′ = Udiag 𝑟, 𝑠, 0 V⊤ minimizes the Frobenius

norm of F − F′.
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min
F′

F − F′ , s.t. det F′ = 0



Normalized 8-Point Algorithm for F Matrix
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Objective
Given n ≥ 8 image point correspondences {xi↔xi’}, compute the 
fundamental matrix F such that 𝐱𝑖

′⊤F𝐱𝑖 = 0.
Algorithm
(i) Normalization: Transform the image coordinates according to   

ො𝐱𝑖 = T𝐱𝑖 and ො𝐱𝑖
′ = T′𝐱𝑖

′, where T and T′ are normalizing 
transformations.

(ii) Find the fundamental matrix F′ corresponding to the matches 
ො𝐱𝑖 ⟷ ො𝐱𝑖

′ by: 
a) Linear 8-point algorithm.
b) Enforcing singularity constraint.

(iii) Denormalization: Set F = T′⊤ F′T.

T =
𝑠 0 −𝑠𝑐𝑥
0 𝑠 −𝑠𝑐𝑦
0 0 1

c: centroid of all data points

𝑠 =
2
ҧ𝑑

where ҧ𝑑 : mean distance of all points from centroid. 

Note: RANSAC should be 
used for robust estimation!



Normalized 8-Point Algorithm for E Matrix
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Objective
Given n ≥ 8 image point correspondences {xi↔xi’} and the camera 
calibration matrices K and K’, compute the essential matrix E such that 
𝐱𝑖

′⊤ K′−⊤E K−1𝐱𝑖 = 0.
Algorithm
(i) Normalized Coordinates: For each correspondence 𝐱𝑖 ⟷ 𝐱𝑖

′, 
compute K−1𝐱𝑖 ⟷ K′−1𝐱𝑖

′, i.e.  ො𝐱 ⟷ ො𝐱′.
(ii) Find the essential matrix E corresponding to the matches ො𝐱𝑖 ⟷ ො𝐱𝑖

′

by: 
a) Linear 8-point algorithm.
b) *Enforcing singularity constraint.

(iii) Decompose E to get R and 𝐭, thus forming P and P’.

*Singular constraint for E matrix is different from F matrix. See next slide 
for more detail.



Singularity Constraint of E Matrix
Problem:
• In general, the essential matrix E obtained from the linear 

8-point algorithm will NOT have two similar singular 
values, and third is zero.

Solution:
1. Take SVD of E, i.e. E = UDV⊤, where D = diag(𝑎, 𝑏, 𝑐)

with 𝑎 ≥ 𝑏 ≥ 𝑐.
2. The closest essential matrix to E in Frobenius norm is 

given E = UDV⊤, where 
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D = diag(
𝑎 + 𝑏

2
,
𝑎 + 𝑏

2
, 0)



3D Structure Computation

• Given: The point correspondence 𝐱𝑖 ⟷ 𝐱𝑖
′ and 

camera projection matrices P and P’ of two images.

• Find: The 3D structure points 𝐗𝑖 that corresponds 
to each 2D point correspondence. 
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C

x x’

I I’

C’

X ?

P = K[I | 0] P’ = K’[R | t]



3D Structure Computation

Linear Triangulation Method

• In each image, we have a measurement:

• Unknown scale factor is eliminated by a cross-product, i.e. 𝐱 ×
P𝐗 = 0 to give:

• P𝑖⊤ are rows of P.
• Two of the three equations are linearly independent.
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3D Structure Computation
Linear Triangulation Method

• An equation of the form A𝐗 = 0 can be formed:

• Two equations from each image, giving a total of four equations 
in four homogeneous unknowns, i.e. 𝐗 = 𝑋 𝑌 𝑍 1 ⊤. 

• Solution given by the right singular vector that corresponds to 
the smallest singular value of A, i.e. v4.

• X = v4 / v4w ⇒ to make last element of 𝐗 equal to 1.
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Reconstruction (Similarity) Ambiguity
• Known Calibration: Scene determined by the image is 

only up to a similarity transformation (rotation, translation 
and scaling).
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Image Source: R. Hartley and A. Zisserman, “Multiple View Geometry in Computer Vision” 



Reconstruction (Similarity) Ambiguity
Proof sketch:
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Image Source: R. Hartley and A. Zisserman, “Multiple View Geometry in Computer Vision” 

Let H𝑆 be any similarity transformation:

We can see that the projection on X𝑖 is the 
same under P and PHs

−1: 

.

.

And PHs
−1 is still a valid projection 

matrix: 



Reconstruction (Projective) Ambiguity
• Unknown Calibration: We saw earlier that the 

fundamental matrix can be decomposed into P and 
P′ or PH−1 and P′H−1.
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Image Source: R. Hartley and A. Zisserman, “Multiple View Geometry in Computer Vision” 

P P′

PH−1 P′H−1

H

𝐗

H𝐗

• The point 𝐗 is 
reconstructed as H𝐗 under 
PH−1 and P′H−1 since:

P𝐗 = PH−1H𝐗.
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Reconstruction (Projective) Ambiguity
• Original image pair

• Two different views of the reconstruction by P and P′
decomposed from the F matrix obtained with the image pair.

Image Source: R. Hartley and A. Zisserman, “Multiple View Geometry in Computer Vision” 



Stratified Reconstruction

• The “stratified” approach to reconstruction: 

1. Begin with a projective reconstruction. 
2. And then refine it progressively to an affine.
3. Finally a metric reconstruction.

• We will see that affine and metric reconstruction are 
not possible without further information either about 
the scene, the motion or the camera calibration.
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The Step to Affine Reconstruction
• The essence of affine reconstruction is to locate the plane 

at infinity.

• Let the 4-vector 𝝅 be the plane at infinity under projective 
distortion; the goal is to find the projective transformation 
H that maps 𝝅 to 0,0,0,1 ⊤, i.e.  𝝅∞ = H−⊤𝝅.

• H can be easily obtained as:

• Map all 3D reconstruction points X using H to remove the 
projective distortion (get an affine reconstruction). 
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The Step to Affine Reconstruction
• Let v1, v2, v3 be the intersection points of a pair of parallel 

lines in three different directions, i.e. vanishing points.

• 𝝅 can be identified from:  v1 v2 v3 ⊤𝝅 = 𝟎.
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Example:

Image Source: 
R. Hartley and A. Zisserman, “Multiple View Geometry in Computer Vision” 

v1

v2
v3

𝐀

𝐁

𝐂
𝐃𝐯 = 𝜆1𝐀 + 𝜆2𝐁; 𝐯′ = 𝜇1𝐂 + 𝜇2𝐃

Points on span by the lines:

𝐯1 = 𝜆1𝐀 + 𝜆2𝐁 = 𝜇1𝐂 + 𝜇2𝐃
Solve for 4 unknowns with the 4 equations:



The Step to Affine Reconstruction
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Image Source: R. Hartley and A. Zisserman, “Multiple View Geometry in Computer Vision” 

Projective distortion Affine distortion 



The Step to Metric Reconstruction

• The key to metric reconstruction is the identification of 
the image of absolute conic 𝜔 (IAC).

• The affine reconstruction may be transformed to a 
metric reconstruction by applying a 3D transformation 
of the form:
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where
➢ A is obtained by Cholesky factorization of
➢ The affine reconstruction is from the camera matrix P′ =

[M | m].

,



The Step to Metric Reconstruction

Proof:

• We have seen earlier that under known calibration K’, the 
camera matrix PM

′ = K′[R ∣ 𝐭] is subjected to similarity 
distortion.

• The affinely distorted camera matrix P′ = [M | m] is transformed 
to PM

′ as PM
′ = P′H−1, where
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⇒ K′R K′𝐭 = [MA ∣ m]



The Step to Metric Reconstruction
Proof (cont.):

• Hence, we get MA = K′R,  which can be written as:

• Refer to Lecture 5 for the various methods to get the Image of 
absolute conic 𝝎 (IAC). 
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MA MA ⊤ = K′R K′R ⊤ ⇒ MAA⊤M⊤ = K′K′⊤

AA⊤ = M−1K′K′⊤M−⊤⇒
𝝎∗ = 𝝎−1

⇒ AA⊤ = M⊤𝝎M −1.



The Step to Metric Reconstruction
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Image Source: R. Hartley and A. Zisserman, “Multiple View Geometry in Computer Vision” 

Similarity distortion Affine distortion 
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