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Action of Projective Camera on Planes

• Assuming we assign the XY-plane of the world 
coordinate frame to lie on the plane π, we get 
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𝐗 : 3-space point

𝐱 : 2-space point on the image

Image source: “Multiple View Geometry in Computer Vision”, Richard Hartley and Andrew Zisserman

𝐱𝝅 : 2-space point 𝐗 on plane 𝝅



• So that the map between points 𝐱𝜋 = X, Y, 1 ⊤ on 𝝅
and their image 𝐱 is a general planar homography.

• That is a plane-to-plane projective transformation: 𝐱 =
H𝐱𝝅, with H a 3 × 3 matrix of rank 3.
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Action of Projective Camera on Planes

Homography H

𝐱𝝅



• Forward projection: A line in 3-space projects to a 
line in the image.
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Action of Projective Camera on Lines

Image source: “Multiple View Geometry in Computer Vision”, Richard Hartley and Andrew Zisserman

• The line and camera centre define 
a plane, and the image is the 
intersection of this plane with the 
image plane.
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Action of Projective Camera on Lines

Image source: “Multiple View Geometry in Computer Vision”, Richard Hartley and Andrew Zisserman

𝐀

𝐁𝐚

𝐛

• Given two 3-space points 𝐀,𝐁, where a, b are their 
images under P, then a point 𝐗(𝜇) = 𝐀 + 𝜇𝐁 on the L
projects to a point: 

which is on the line 𝐥 joining a and b.



• Back-projection of lines: The set of points in space 
which map to a line in the image is a plane in space 
defined by the camera centre and image line.
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Action of Projective Camera on Lines

Image source: “Multiple View Geometry in Computer Vision”, Richard Hartley and Andrew Zisserman

• The set of points in space mapping 
to a line 𝐥 via the camera matrix P is 
the plane 𝝅 = P⊤𝐥.



Proof:

• A point 𝐱 lies on 𝐥 if and only if 
𝐱⊤𝐥 = 0. 

• A space point 𝐗 maps to a point 
P𝐗, which lies on the line if and 
only if 𝐗⊤P⊤𝐥 = 0. 
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Action of Projective Camera on Lines

Image source: “Multiple View Geometry in Computer Vision”, Richard Hartley and Andrew Zisserman

𝐱

𝐗



Proof:

• Thus, if P⊤𝐥 is taken to represent a plane, then 𝐗 lies 
on this plane if and only if 𝐗 maps to a point on the 
line 𝐥. 
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Action of Projective Camera on Lines

Image source: “Multiple View Geometry in Computer Vision”, Richard Hartley and Andrew Zisserman

𝐱

𝐗

• In other words, P⊤𝐥 is the back-
projection of the line 𝐥.

= P⊤𝐥



The Importance of the Camera Centre
• An object in 3-space and camera centre define a set of 

rays, and an image is obtained by intersecting these rays 
with a plane. 

• Often this set is referred to as a cone of rays, even 
though it is not a classical cone.
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Image source: “Multiple View Geometry in Computer Vision”, Richard Hartley and Andrew Zisserman



• Images obtained with the same camera centre may 
be mapped to one another by a plane projective 
transformation, i.e. homography.

• In other words, they are projectively equivalent and 
so have the same projective properties. 

• A camera can thus be thought of as a projective 
imaging device – measuring projective properties 
of the cone of rays with vertex the camera centre.

CS4277-CS5477 :: G.H. Lee 22

The Importance of the Camera Centre



• We now show that the two images, I and I′, with the same 
camera centre are clearly related by a homography.

• Consider two cameras 
with the same centre, i.e. 

• It then follows that the images of a 3-space point 𝐗 by the 
two cameras are related as

• That is, the corresponding image points are related by a 
planar homography (a 3 × 3 matrix) as 𝐱 = H𝐱, where H =
KR KR −1.
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The Importance of the Camera Centre



Moving the image plane (increase focal length):

• This corresponds to a displacement of the image 
plane along the principal axis, where the image effect 
is a simple magnification.

• If 𝐱, 𝐱′ are the images of a point 𝐗 before and after 
zooming, then
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The Importance of the Camera Centre

so that 𝐱′ = H𝐱 with H = K′K−1.



Moving the image plane (increase focal length):

• If only the focal lengths differ between K and K′ then

• where ෤𝐱0 is the inhomogeneous principal point, and 𝑘 =
𝑓′/𝑓 is the magnification factor.

• Consequently, the effect of zooming by a factor 𝑘 is to 
multiply the calibration matrix K on the right by diag 𝑘, 𝑘, 1 :
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The Importance of the Camera Centre



Camera rotation:

• Here we consider the camera is rotated about its centre 
with no change in the internal parameters.
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The Importance of the Camera Centre

Image source: “Multiple View Geometry in Computer Vision”, Richard Hartley and Andrew Zisserman

• If 𝐱, 𝐱′ are the images of a point 𝐗
before and after the pure rotation:

so that 𝐱′ = H𝐱 with H = KRK−1.



Properties of a conjugate rotation:

• This homography H = KRK−1 is a conjugate rotation.

• It has the same eigenvalues (up to scale) as the rotation 
matrix, i.e. {𝜇, 𝜇𝑒𝑖𝜃, 𝜇𝑒−𝑖𝜃}.

• 𝜇 is an unknown scale factor (if H is scaled such that 
detH = 1, then 𝜇 = 1).

• The angle of rotation between views may be computed 
directly from the phase of the complex eigenvalues of 
H.
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The Importance of the Camera Centre



Moving the camera centre (Motion parallax):

• No information on 3-space structure can be obtained by 
zooming and pure rotation, i.e. with fixed camera centres.
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The Importance of the Camera Centre

• Corresponding image points does depend on 
the 3-space structure if the camera centre is 
moved. 

• May often be used to 
(partially) determine the 
structure.

• More details in subsequent 
lectures.

Image source: “Multiple View Geometry in Computer Vision”, Richard Hartley and Andrew Zisserman



Applications and Examples
Example: Synthetic Views
• New images corresponding to different camera orientations 

(same camera centre) can be generated from an existing 
image by warping with planar homographies.
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Source image Fronto-parallel views of floor and wall
homographies

Image source: “Multiple View Geometry in Computer Vision”, Richard Hartley and Andrew Zisserman



Applications and Examples
Example: Synthetic Views

The algorithm is:

i. Compute the homography H which maps the image 
quadrilateral to a rectangle with the correct aspect 
ratio.

ii. Projectively warp the source image with this 
homography.
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Applications and Examples
Example: Planar Panoramic Mosaicing

• Images acquired by a camera rotating about its centre are 
related to each other by a planar homography. 

• A set of such images may be registered with the plane of 
one of the images by projectively warping the other images.
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Image source: “Multiple View Geometry in Computer Vision”, Richard Hartley and Andrew Zisserman



Applications and Examples
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Image source: “Multiple View Geometry in Computer Vision”, Richard Hartley and Andrew Zisserman



Applications and Examples
Example: Planar Panoramic Mosaicing

In outline the algorithm is:

i. Choose one image of the set as a reference.

ii. Compute the homography H (4-point) which maps one of 
the other images of the set to this reference image.

iii. Projectively warp the image with this homography, and
augment the reference image with the non-overlapping 
part of the warped image.

iv. Repeat the last two steps for the remaining images of the 
set.
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What does Calibration Give?
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• Suppose points on the ray are written as ෩𝐗 = 𝜆𝐝 in 
the camera Euclidean coordinate frame.

• Then, these points map to the point

• Conversely, the direction 𝐝 is obtained from the 
image point 𝐱 as 𝐝 = K−1𝐱.

• Note, 𝐝 = K−1𝐱 is in general not a unit vector.

up to scale.



What does Calibration Give?

• The angle between two rays, with directions 𝐝1, 𝐝2
corresponding to image points 𝐱1, 𝐱2 respectively, may 
be obtained:
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Image source: “Multiple View Geometry in Computer Vision”, Richard Hartley and Andrew Zisserman



What does Calibration Give?

• A camera for which K is known is termed calibrated, 
and thus the matrix K−⊤K−1 is known. 

• Then the angle between rays can be measured from 
their corresponding image points.

• A calibrated camera is a direction sensor, able to 
measure the direction of rays – like a 2D protractor.
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𝐧

What does Calibration Give?
• An image line 𝐥 defines a plane through the camera centre 

with normal direction 𝐧 = K⊤𝐥 measured in the camera’s 
Euclidean coordinate frame.
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Proof: 
• Points 𝐱 on the line 𝐥 back-project to 

directions 𝐝 = K−1𝐱.

• Which are orthogonal to the plane normal
n, and thus satisfy 𝐝⊤𝐧 = 𝐱⊤K−⊤𝐧 = 0. 

• Since points on 𝐥 satisfy 𝐱⊤𝐥 = 0, it follows 
that 𝐥 = K−⊤𝐧, and hence 𝐧 = K⊤𝐥.

Image source: “Multiple View Geometry in Computer Vision”, Richard Hartley and Andrew Zisserman



The Image of the Absolute Conic

• Points on 𝝅∞ may be written as 𝐗∞ = 𝐝⊤, 0 ⊤, and are 
imaged by a general camera P = KR[I ∣ − ෨𝐂] as:

• This shows that the mapping between 𝝅∞ and an image
is given by the planar homography 𝐱 = H𝐝 with:

• This map is independent of the position of camera C, 
and depends only on the camera internal calibration 
and orientation w.r.t the world frame.

CS4277-CS5477 :: G.H. Lee 38



The Image of the Absolute Conic

• Now, since the absolute conic Ω∞ is on 𝝅∞ we can 
compute its image under H.

• And find that the image of the absolute conic (the 
IAC) is the conic 𝝎 = KK⊤ −1 = K−⊤K−1.

• Like Ω∞ the conic 𝝎 is an imaginary point conic 
with no real points.

• Nonetheless, we will see some of its practical uses 
later. 
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The Image of the Absolute Conic
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Proof: 

• Under a point homography 𝐱 ↦ H𝐱 a conic C maps as 
C ↦ H−⊤CH−1. 

• It follows that Ω∞, which is the conic C = Ω∞ = I on 
𝝅∞, maps to 𝜔 = KR −⊤I KR −1 = K−⊤RR−1K−1 =
KK⊤ −1. 

• So, the IAC is 𝝎 = KK⊤ −1.



The Image of the Absolute Conic

• A few remarks here:

i. The image of the absolute conic, 𝝎, depends only on 
the internal parameters K of the matrix P; it does not 
depend on the camera orientation or position.

ii. The angle between two rays we seen earlier can now be 
expressed with 𝝎, i.e.
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The Image of the Absolute Conic

➢This expression is unchanged under projective 
transformation of the image.
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Proof:
Let’s consider the numerator 𝐱1⊤𝝎𝐱2. Under any 
projective transformation 𝐱′ = H𝐱, the numerator 
becomes:

It can also be easily shown that H is also canceled out 
in the demoninator. 

(𝐱1⊤H⊤) H−⊤𝜔H−1 H𝐱2 = 𝐱1⊤𝝎𝐱2



The Image of the Absolute Conic
iii. A direct result of (ii) is: if two image points 𝐱1 and 𝐱2

correspond to orthogonal directions then

iv. We may also define the dual image of the absolute 
conic (the DIAC) as
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➢ This is a dual (line) conic, whereas 𝝎 is a point conic 
(though it contains no real points). 

➢ The conic 𝝎∗ is the image of Q∞
∗ and is given by 𝝎∗ =

PQ∞
∗ P⊤.



The Image of the Absolute Conic

v. Once 𝝎 (or equivalently 𝝎∗) is identified in an 
image, K can be identified uniquely via Cholesky 
factorization, i.e. 𝝎∗ = KK⊤. 

vi. The imaged circular points lie on 𝝎 at the points 
at which the vanishing line of the plane 𝝅
intersects 𝝎.
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➢ We saw in Lecture 2 that a plane 𝝅 intersects 𝝅∞
in a line, and this line intersects Ω∞ in two points 
which are the circular points of 𝝅.



Example: A Simple Calibration Device

• The image of three squares (on planes which are not 
parallel, but which need not be orthogonal) provides 
sufficiently many constraints to compute K.
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Image source: “Multiple View Geometry in Computer Vision”, Richard Hartley and Andrew Zisserman



Outline the calibration algorithm:

1. For each square, compute the homography H that 
maps its corner points, 0, 0 ⊤, 1, 0 ⊤, 0, 1 ⊤, 1, 1 ⊤, 
to their imaged points. 
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Example: A Simple Calibration Device

Remarks:

The alignment of the plane coordinate system with the 
square is a similarity transformation and does not 
affect the position of the circular points on the plane.



2. Compute the imaged circular points for the plane of that 
square as H 1,±𝑖, 0 ⊤; and writing H = [𝐡1, 𝐡2, 𝐡3], the 
imaged circular points are 𝐡1 ± 𝑖𝐡2.

3. Fit a conic ω to the six imaged circular points. 
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Example: A Simple Calibration Device

If 𝐡1 ± 𝑖𝐡2 lies on 𝝎 then 𝐡1 ± 𝑖𝐡2 ⊤𝝎(𝐡1 ± 𝑖𝐡2) = 0, 
and the imaginary and real parts give respectively:

which are linear in 𝝎, then the conic 𝝎 is determined up 
to scale from five or more such equations.



4. Compute the calibration K from 𝝎 = KK⊤ −1 using 
the Cholesky factorization.
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Example: A Simple Calibration Device

Image source: “Multiple View Geometry in Computer Vision”, Richard Hartley and Andrew Zisserman

(a) Three squares provide a simple calibration object. The planes need not be 
orthogonal. (b) The computed calibration matrix using the algorithm mentioned 
earlier. The image size is 1024 × 768 pixels.



Vanishing Points
• Parallel lines in the world intersect in the image at a 

“vanishing point” 

• Geometrically, the vanishing point of a line is obtained by 
intersecting the image plane with a ray parallel to the 
world line and passing through the camera centre. 
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Image source: “Multiple View Geometry in Computer Vision”, Richard Hartley and Andrew Zisserman

World line

Ray parallel to 
world line

Image plane



Vanishing Points
• Thus, a vanishing point depends only on the direction of a 

line, not on its position. 

• Consequently, a set of parallel world lines have a common 
vanishing point.
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Image source: “Multiple View Geometry in Computer Vision”, Richard Hartley and Andrew Zisserman



Vanishing Points
• Algebraically, the vanishing point may be obtained 

as a limiting point as follows:

1. Points on a line in 3-space through the point 𝐀 and 
with direction 𝐃 = 𝐝⊤, 0 ⊤ are written as 𝐗(𝜆) =
𝐀 + 𝜆𝐃.
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Image source: “Multiple View Geometry in Computer Vision”, Richard Hartley and Andrew Zisserman



Vanishing Points
2. Under a projective camera P = K[I ∣ 𝟎], a point 𝐗(𝜆)

is imaged at:

3. Then, the vanishing point 𝐯 of the line is obtained as 
the limit:

CS4277-CS5477 :: G.H. Lee 57

where 𝐚 is the image of 𝐀. 

Note that 𝐯 depends only on the direction 𝐝 of the line, 
not on its position specified by 𝐀.

,



Vanishing Points
• In projective 3-space, the vanishing point is simply the image 

of the intersection of the plane at infinity 𝝅∞ and a set of lines 
with the same direction 𝐝, i.e.

• Note, lines parallel to the image plane are imaged as parallel 
lines since 𝐯 is at infinity in the image. 

• However, parallel image lines might not be the image of 
parallel scene lines since lines which intersect on the principal 
plane are imaged as parallel lines.
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Vanishing Points
Example: rotation estimation from vanishing points.

• Suppose two cameras have the same calibration matrix 
K, and the camera rotates by R between views.

• Let a scene line have vanishing point 𝐯𝑖 in the first view, 
and 𝐯𝑖′ in the second, where the directions are given by: 

• Two independent constraints on R are given by 𝐝𝑖′ = R𝐝𝑖, 
thus R can be computed from two such corresponding 
directions.
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,           (a unit vector).



Vanishing Points

Example: angle between two scene lines.

• Let 𝐯1 and 𝐯2 be the vanishing points of two lines in 
an image, and let 𝝎 be the image of the absolute 
conic in the image. 

• If 𝜃 is the angle between the two line directions, 
then
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Computing Vanishing Points
Chicken-and-egg problem:
1. Under known vanishing points, we can compute the 

corresponding set of imaged parallel scene lines.
2. Under known set of imaged parallel scene lines, we can 

compute the vanishing points.  
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Image source: “Multiple View Geometry in Computer Vision”, Richard Hartley and Andrew Zisserman

Problem: Both are unknown!



Computing Vanishing Points

• We’ll skip the details of computing vanishing points by 
just giving several references:

1. Grant Schindler, Frank Dellaert, “Atlanta world: An expectation 
maximization framework for simultaneous low-level edge 
grouping and camera calibration in complex man-made 
environments”, CVPR 2004.

2. Jean-Philippe Tardif, “Non-Iterative Approach for Fast and 
Accurate Vanishing Point Detection”, ICCV 2009. 

3. Gim Hee Lee, “ Line Association and Vanishing Point Estimation 
with Binary Quadratic Programming”, 3DV 2017.
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Vanishing Lines
• Parallel planes in 3-space intersect 𝝅∞ in a common 

line, and the image of this line is the vanishing line of 
the plane.

• Geometrically the vanishing line is constructed by 
intersecting the image with a plane parallel to the scene 
plane through the camera centre.
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Image source: “Multiple View Geometry in Computer Vision”, Richard Hartley and Andrew Zisserman



Vanishing Lines
• Vanishing line depends only on the orientation of the 

scene plane; it does not depend on its position. 

• Since lines parallel to a plane intersect the plane at 𝝅∞, 
the vanishing point of a line parallel to a plane lies on 
the vanishing line of the plane.
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Image source: “Multiple View Geometry in Computer Vision”, Richard Hartley and Andrew Zisserman



Vanishing Lines

• If the camera calibration K is known, then a scene 
plane’s vanishing line may be used to determine 
information about the plane.

• We will look at three examples.
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Vanishing Lines
Case 1:

• The plane’s orientation relative to the camera may be 
determined from its vanishing line.

• A plane through the camera centre with normal 
direction 𝐧 intersects the image plane in the line 𝐥 =
K−⊤𝐧.

• Consequently, 𝐥 is the vanishing line of planes 
perpendicular to 𝐧. 

• Thus, a plane with vanishing line 𝐥 has orientation 𝐧 =
K⊤𝐥 in the camera’s Euclidean coordinate frame.
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Vanishing Lines

Case 2:

• The plane may be metrically rectified given only its 
vanishing line. 

• Since the plane normal is known from the vanishing 
line, the camera can be synthetically rotated by a 
homography so that the plane is fronto-parallel (i.e.
parallel to the image plane).
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Vanishing Lines
Case 3:

• The angle between two scene planes can be 
determined from their vanishing lines. 

• Suppose the vanishing lines are 𝐥1 and 𝐥2, then the 
angle 𝜃 between the planes is given by
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Exercise: Prove it!



Computing Vanishing Lines
• A common way to determine a vanishing line of a scene 

plane is:

1. Determine vanishing points for two sets of lines 
parallel to the plane, and then 

2. Construct the line through the two vanishing points.
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Image source: “Multiple View Geometry in Computer Vision”, Richard Hartley and Andrew Zisserman



Orthogonality Relationships:
Vanishing Points and Lines

The orthogonality relationships among vanishing points 
and lines can be used to determine 𝝎:

i. The vanishing points of lines with perpendicular directions 
satisfy

ii. If a line is perpendicular to a plane, then their respective 
vanishing point v and vanishing line l are related by

iii. The vanishing lines of two perpendicular planes satisfy 
𝐥1⊤𝝎∗𝐥2 = 0.
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and inversely



Affine 3D Measurements
• Given the vanishing line of the ground plane 𝐥 and 

the vertical vanishing point v.

• Then the relative length of vertical line segments 
can be measured provided their end point lies on 
the ground plane.
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Image source: “Multiple View Geometry in Computer Vision”, Richard Hartley and Andrew Zisserman



Affine 3D Measurements
• Given: The vanishing line of the ground plane 𝐥 and 

the vertical vanishing point 𝐯 and the top (𝐭1, 𝐭2)
and base (𝐛1, 𝐛2) points of two line segments. 

• Compute: The ratio of lengths of the line segments 
in the scene.
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Image source: “Multiple View Geometry in Computer Vision”, Richard Hartley and Andrew Zisserman



Affine 3D Measurements
1. Compute the vanishing point 𝐮 = (𝐛1 × 𝐛2) × 𝐥.

2. Compute the transferred point ǁ𝐭1 = (𝐭1 × 𝐮) × 𝐥2, where 
𝐥2 = 𝐯 × 𝐛2.

3. Represent the four points 𝐛2, ǁ𝐭1, 𝐭2 and 𝐯 on the image 
line 𝐥2 by their distance from 𝐛2, as 0, ǁ𝐭1, 𝐭2 and 𝐯, 
respectively.
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Image source:  “Multiple View Geometry in Computer Vision”, Richard Hartley and Andrew Zisserman



Affine 3D Measurements

4. Compute a 1D projective transformation H2×2 mapping 
homogeneous coordinates (0, 1) → (0, 1) and (v, 1) →
(1, 0) (which maps the vanishing point 𝐯 to infinity).
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A suitable matrix is given by:



Affine 3D Measurements
• The (scaled) distance of the scene points ෩𝐓1 and 𝐓2 from 
𝐁2 on 𝐋2 may then be obtained from the position of the 
points H2×2 ǁt1, 1 ⊤ and H2×2 t2, 1 ⊤. 

• Their distance ratio is then given by:                                .
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Image source:  “Multiple View Geometry in Computer Vision”, Richard Hartley and Andrew Zisserman



Height Measurements using 
Affine Properties

• Given the vanishing line of the ground plane 𝐥 (cyan 
line) and the vertical vanishing point 𝐯 (not shown).

• And using the known height of the filing cabinet, the 
absolute height of the two people are measured.
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Image source:  “Multiple View Geometry in Computer Vision”, Richard Hartley and Andrew Zisserman
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