‘ Durbin-Levinson I

¢O:07

¢1 — ¢117

nn

gbn _ ( ¢n—1 — gbnnggn—l
¢

§bn — <§bn17---7¢nn)/ ggn — <§bnn7---7§bn1)/a
Yo = (¥(1),...,7(n))’ ¥ = (y(n),...,y(1))".
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Durbin-Levinson: Example I

¢n—1 _ ¢nn§5n—1
Prn

This algorithm computes ¢1, @2, @3, . ..

Xy =Xi¢1, X§=(Xo,X1)¢p2, XJ= (X3 X2, X1)¢3,...
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Durbin-Levinson: Example I

¢1 — ¢117 ¢11 —

¢n _ ( ¢n—1 - §bnn¢n—1 ) 7 ¢nn _
Prn

=7(1)/~(0),

1(2)=~(1)
P22 () =(1)

2)—~(1)
. ( b1 — Poadus — 200)
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The innovations representation I

Instead of writing the best linear predictor as

g—kl — ¢n1Xn + ¢n2Xn—1 + -+ ¢nnX1,

we can write

P =0n1 (X — X071) +0n2 (X1 — X;f:f)+- A0 (X1 — X7

\ - 7

TV
innovation

This 1s still linear in X4, ..., X,,.

The innovations are uncorrelated:
Cov(X; — X771, X; — X!7") = 0fori # j.




Comparing representations: U, = X, — X" ! versus X,




Innovations Algorithm I

Xngl - Zﬁm (Xn+1 i XZJ& z) :
=1

NB: error in text.

n—z E ezz —7 nn ] j_|_1

Zenn ) z—l—l




‘ Innovations Algorithm: Example I

n—z § ‘97,7, —7 nn 7 j—i—l

P’r?—l-lzfy Zennz i4+1-

91,1:’7(1)/P10> P21:7(0)—9%,1P10
Ooo =(2)/P), 621 = (y(1)—011022P) /Py,

P; =~(0) — (QS,QPP T 9%,1P21)
033, 032, 031, Pf, .




Predicting 5 steps ahead using innovations I

The innovations representation for the one-step-ahead forecast is

P(Xn—|—1|X17 JRRR Xn) — Z an (Xn—l—l—z' - Xg;{_z) )
1=1

What is the innovations representation for P( X, 1| X1,..., X,)?

Fact: If h > 1and 1 <17 < n, we have
Cov(Xpin — P(Xpqn| X1, ..., Xngn—1), X;) = 0.

Thus, P(X,op — P(Xnan| X1, oo, Xpan—1)| X1, ..., Xy) =0.
That 1s, the best prediction of X, 1s the
best prediction of the one-step-ahead forecast of X, 5.




Predicting / steps ahead using innovations I

P<Xn—|—h|X17 K -;Xn>
= P (P(Xn4n| X1, o Xopn—1)| X1, ., X0)

n+h—1
P < Z Hn—l—h—l,z’ (Xn—l—h—z’ — X;Zi_;l;::—i_l) |X17 SR Xn)
=1

n+h—1
Fh—it1
E Onth—1,iP ((Xngn—i — X, 7~ 1yeey Xn)
i—1

n+h—1
2 : h—i+1
en—l—h—l,ip ((Xn—i—h—z' — Xgih_;—i_ 1y-- Xn)
1=h

n+h—1
n+h—i+1
E On+h—1.i (Xn—l—h—z' — X, h i )
i=h




Predicting / steps ahead using innovations I

P(Xps1|X1s oo, Xp) = D Oni (Xng1—i — X001 )
1=1

n+h—1
P(Xnnl X1, Xn) = D Onin1g (Xnsn—g — X503
j=h

n
::§£:9n+h_Lh_1+i(Xﬁ+l—i_WXg;;—J
1=1




Mean squared error of h-step-ahead forecasts I

From orthogonality of the predictors and the error,
E(Xpin — P(Xpan|X1,..., X)) P(Xpan|X1,...,Xn)) =0.

That is, B (X, 5 P(Xnsn] X1, -, Xn)) = E (P(Xpanl X1, ..., X,)?).

Hence, we can express the mean squared error as

" =E(Xpan — P(Xnqnl X1, .., X0))?

= 5(0) + E(P(Xnyn| X1, ..., X))
— 2E (Xn+hP(Xn+h‘X17 s 7Xn))

— fy(()) — K (P(Xn_|_h|X17 Ceey Xn))2 .
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Mean squared error of /-step-ahead forecasts I

But the innovations are uncorrelated, so

n 2
nh = V(0) = E(P(Xpqn| X1, ..., X5))

n+h—1
n+h—7—1
=7(0) —E E On+h—1, (Xn+h—j - X )
j=h

n+h—1 9
+h—j—1
- ’Y(O) _ Z 9727,+h—1,j E (Xn+h—j B Xg+h—§ )
j=h

n+h—1
_ Z 2 nt+h—j—1
— ’Y(O) o Hn-l-h—l,j Pn—l—h—j :
j=h

11



Example: Innovations algorithm for forecasting an MA(1) I

Suppose that we have an MA(1) process { X; } satisfying
Xt — Wt —|— (91Wt_1.

Given X1, Xo, ..., X,,, we wish to compute the best linear forecast of
Xn+1,using the innovations representation,

0, X1 = Z Oni (Xn+1—i - Xg;f—z) ’
i=1




Example: Innovations algorithm for forecasting an MA(1) I

An aside: The linear predictions are in the form

mn
el = E OniZni1—i
i=1

for uncorrelated, zero mean random variables Z;. In particular,

Xn—i—l — Zn—i—l + Z eniZn—i—l—ia
=1

where Z,, 11 = X, 11 — X1 (and all the Z; are uncorrelated).
This 1s suggestive of an MA representation. Why isn't it an MA?




Example: Innovations algorithm for forecasting an MA(1) I

The algorithm computes PP = (0), 01 1 (in terms of y(1));
Py, 055 (in terms of v(2)), 02 1; P3, 05 3 (in terms of v(3)), etc.




Example: Innovations algorithm for forecasting an MA(1) I

For an MA(1), v(0) = o2(1 + 6%), (1)

Thus: 61 1 = v(1)/P?;

020 =0,051=~(1)/Py;

033 =032 =0;031 =~(1)/P;§,etc.

Because y(n — i) # O only fori =n — 1,only 6,, 1 # 0.




Example: Innovations algorithm for forecasting an MA(1) I

For the MA(1) process { X;} satisfying
Xe =Wy +01Wy_q,

the innovations representation of the best linear forecast is

P =0, P =0n (X — X2

More generally, for an MA(q) process, we have 6,,; = 0 forz > q.
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Example: Innovations algorithm for forecasting an MA(1) I

For the MA(1) process { X; },
X7 =0, P =0 (Xn— X771

This 1s consistent with the observation that

Xnt1 = Znt+1 + Zenizn—l—l—ia
i=1

where the uncorrelated Z; are defined by Z; = X; — Xf ~1 for
t=1,....n+ 1.

Indeed, as n increases, P, ; — Var(W;) (recall the recursion for P;’ ),
and 0,,; = (1)/P77;’_1 — 0.
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‘ Recall: Forecasting an AR(p) I

For the AR(p) process { X} satisfying

VY
Xy = Z OiXe—i + Wh,
i—1

n—l—l Zgbz n+1—2

for n > p. Then
n—l—l Z ¢z n+1—1 + Zn—l—l:

where Z,,11 = X471 — X,ZZ’H.

The Durbin-Levinson algorithm is convenient for AR(p) processes.
The innovations algorithm is convenient for MA(q) processes.

12



‘ Linear prediction based on the infinite past I

So far, we have considered linear predictors based on n observed values of

the time series:

X’n

n—+m

— P(Xn—l—m|Xn7Xn—17 X °7X1)°

What if we have access to all previous values, X,,, X,,_1, X, _o,...7

Write

Xn—l—m — P(Xn—l—m‘Xna Xn—la X )

®.@)
= E i X1
i—1
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‘ Linear prediction based on the infinite past I

Xn—l—m — P<Xn—|—m|Xn7 Xn—1,-. ) — Z O‘z’Xn—l—l—z'-
1=1

The orthogonality property of the optimal linear predictor implies

~

E [(Xn+m _ Xn+m)Xn+1_i} —0, i=1,2,...

Thus, if { X} is a zero-mean stationary time series, we have

Y ayli— ) =v(m—1+1), i
j=1

18



‘ Linear prediction based on the infinite past I

If { X;} is a causal, invertible, linear process, we can write

Xn—l—m — Z ijn—l—m—j + Wn—l—ma Wn+m — Zﬂ-an—l—m—j + Xn—l—m-
j=1 j=1

In this case,

~

Xn+m — P(Xn—i—m‘Xna Xn—l: s
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‘ Linear prediction based on the infinite past I

The invertible (AR(c0)) representation gives the forecasts X Mo

20



‘ Linear prediction based on the infinite past I

To compute the mean squared error, we notice that

~

Xn—l—m — P(Xn—l—m|Xn7 Xn—1,-. ) —

21



‘ Linear prediction based on the infinite past I

That is, the mean squared error of the forecast based on the infinite history
is given by the initial terms of the causal (MA(oc0)) representation:

m—1

~ 2
E (Xn_|_m - Xn—l—m) — O',?U Z w;

j:

2

In particular, for m = 1, the mean squared error is o,,.

22



The truncated forecast I

For large n, truncating the infinite-past forecasts gives a good
approximation:

m—1 00
Xn—l—m — E 7Tan—|—m—j _ E 7Tan—I—m—j
71=1 j=m

n+m-—1

m—1
n
Xn—l—m__ Z n—i—m i Z 7T] N+m—7"
J=1

The approximation is exact for AR(p) when n > p, since 7; = 0 for 7 > p.

In general, it is a good approximation if the 7; converge quickly to O.
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‘ Example: Forecasting an ARMA (p,q) model I

Consider an ARMA(p,q) model:

P q
X — Z OiXi—; = Wi + Z O Wi_;.
i=1 i=1

Suppose we have X, Xo, ..., X,,, and we wish to forecast X,, 1 ,,.

n

We could use the best linear prediction, X 7. .

For an AR(p) model (that is, ¢ = 0), we can write down the coefficients ¢,,.
Otherwise, we must solve a linear system of size n.

If n 1s large, the truncated forecasts X nim give a good approximation. To

compute them, we could compute 7; and truncate.

There is also a recursive method, which takes time O((n 4+ m)(p + q))...

24



Recursive truncated forecasts for an ARMA(p,q) model

0 fort <0,
X; forl <t<n.

~

Wy =0 fort<0. X/ =

Wi =X =1 Xylq = = 0 Xy,

—91~t711—---—9q1/~[/t71q fort=1,...,n.
Wt":O for t > n.
X? — ¢1X?—1 +°"+¢pX?—p+91th—l +"'+9thn—q
fort=n+1,...,n+m.
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‘ Example: Forecasting an AR(2) model I

Consider the following AR(2) model.

1
Xt + EXt_Q — Wt.

The zeros of the characteristic polynomial z2 + 1.21 are at +-1.17. We can

solve the linear difference equations vy = 1, ¢(B); = 0 to compute the

MA (o0) representation:
1
Yy = 51.1_'5 cos(mt/2).

Thus, the m-step-ahead estimates have mean squared error

E<Xn—|—m o
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‘ Example: Forecasting an AR(2) model I

AR(2): X, +0.8264 X, _, =W,
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‘ Example: Forecasting an AR(2) model I

AR(2): X, +0.8264 X _, =W,
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Example: Forecasting an AR(2) model

AR(2): X, +0.8264 X _, =W,

T T T

T T

T

o X

—©—- one-step prediction
95% prediction interval
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Example: Forecasting an AR(2) model

AR(2): X, +0.8264 X _, =W,

T T

o X
—©— prediction
95% prediction interval
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Review (Lecture 1): Time series modelling and forecasting I

1. Plot the time series.
Look for trends, seasonal components, step changes, outliers.

2. Transform data so that residuals are stationary.
(a) Remove trend and seasonal components.

(b) Differencing.

(c) Nonlinear transformations (log, v/-).

3. Fit model to residuals.

4. Forecast time series by forecasting residuals and inverting any

transformations.




‘ Review: Time series modelling and forecasting I

Stationary time series models: ARMA(p,q).
o p = 0: MA(q),
e ¢ = 0: AR(p).

We have seen that any causal, invertible linear process has:
an MA(oo) representation (from causality), and
an AR(co) representation (from invertibility).

Real data cannot be exactly modelled using a finite number of parameters.

We choose p, g to give a simple but accurate model.




‘ Review: Time series modelling and forecasting I

How do we use data to decide on p, g?

1. Use sample ACF/PACF to make preliminary choices of model order.
2. Estimate parameters for each of these choices.

3. Compare predictive accuracy/complexity of each (using, e.g., AIC).

NB: We need to compute parameter estimates for several different model
orders.

Thus, recursive algorithms for parameter estimation are important.

We’ll see that some of these are identical to the recursive algorithms for

forecasting.




‘ Review: Time series modelling and forecasting I

Model: ACF: PACF:
AR(p) decays zero for h > p
MA(q) zero for h > ¢q decays

ARMA(p,q) decays decays




‘ Parameter estimation I

We want to estimate the parameters of an ARMA(p,q) model.
We will assume (for now) that:

1. The model order (p and q) is known, and

2. The data has zero mean.

If (2) 1s not a reasonable assumption, we can subtract the sample mean 7,
fit a zero-mean ARMA model,

¢(B)X: = 0(B)Wr,

to the mean-corrected time series X; = Y; — v,
and then use X; + 7 as the model for Y.




Parameter estimation: Maximum likelihood estimator '

One approach:

Assume that { X} is Gaussian, that is, ¢(B)X; = 0(B)W;, where W, is
1.1.d. Gaussian.
Choose ¢;, 0; to maximize the likelihood:

L(¢7070_2) — f(Xh . °7Xn)7

where f is the joint (Gaussian) density for the given ARMA model.
(c.f. choosing the parameters that maximize the probability of the data.)




Parameter estimation: Maximum likelihood estimator I

Advantages of MLE:

Efficient (low variance estimates).
Often the Gaussian assumption is reasonable.
Even if { X} is not Gaussian, the asymptotic distribution of the estimates

(¢,0,52) is the same as the Gaussian case.

Disadvantages of MLE:

Difficult optimization problem.
Need to choose a good starting point (often use other estimators for this).




Preliminary parameter estimates I

Yule-Walker for AR(p): Regress X; onto X;_1,...,X;_,.
Durbin-Levinson algorithm with + replaced by 4.

Yule-Walker for ARMA(p,q): Method of moments. Not efficient.

Innovations algorithm for MA(q): with v replaced by ~.

Hannan-Rissanen algorithm for ARMA(p,q):
1. Estimate high-order AR.
2. Use to estimate (unobserved) noise W;.
3. Regress X; onto X;_1,...,X;_p, Wt—1, e Wt_q.
4. Regress again with improved estimates of W5.
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