
Review (Lecture 1): Time series modelling and forecasting

1. Plot the time series.
Look for trends, seasonal components, step changes, outliers.

2. Transform data so that residuals are stationary.

(a) Remove trend and seasonal components.

(b) Differencing.

(c) Nonlinear transformations (log,
√
·).

3. Fit model to residuals.

4. Forecast time series by forecasting residuals and inverting any
transformations.
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Review: Time series modelling and forecasting

Stationary time series models: ARMA(p,q).
• p = 0: MA(q),
• q = 0: AR(p).

We have seen that any causal, invertible linear process has:
an MA(∞) representation (from causality), and
an AR(∞) representation (from invertibility).

Real data cannot be exactly modelled using a finite number of parameters.

We choose p, q to give a simple but accurate model.
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Review: Time series modelling and forecasting

How do we use data to decide on p, q?
1. Use sample ACF/PACF to make preliminary choices of model order.
2. Estimate parameters for each of these choices.
3. Compare predictive accuracy/complexity of each (using, e.g., AIC).

NB: We need to compute parameter estimates for several different model
orders.
Thus, recursive algorithms for parameter estimation are important.
We’ll see that some of these are identical to the recursive algorithms for
forecasting.

4



Review: Time series modelling and forecasting

Model: ACF: PACF:

AR(p) decays zero for h > p

MA(q) zero for h > q decays

ARMA(p,q) decays decays
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Parameter estimation

We want to estimate the parameters of an ARMA(p,q) model.
We will assume (for now) that:
1. The model order (p and q) is known, and
2. The data has zero mean.

If (2) is not a reasonable assumption, we can subtract the sample mean ȳ,
fit a zero-mean ARMA model,

φ(B)Xt = θ(B)Wt,

to the mean-corrected time series Xt = Yt − ȳ,
and then use Xt + ȳ as the model for Yt.
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Parameter estimation: Maximum likelihood estimator

One approach:

Assume that {Xt} is Gaussian, that is, φ(B)Xt = θ(B)Wt, whereWt is
i.i.d. Gaussian.
Choose φi, θj to maximize the likelihood:

L(φ, θ,σ2) = f(X1, . . . , Xn),

where f is the joint (Gaussian) density for the given ARMA model.
(c.f. choosing the parameters that maximize the probability of the data.)
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Parameter estimation: Maximum likelihood estimator

Advantages of MLE:

Efficient (low variance estimates).
Often the Gaussian assumption is reasonable.
Even if {Xt} is not Gaussian, the asymptotic distribution of the estimates
(φ̂, θ̂, σ̂2) is the same as the Gaussian case.

Disadvantages of MLE:

Difficult optimization problem.
Need to choose a good starting point (often use other estimators for this).
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Preliminary parameter estimates

Yule-Walker for AR(p): Regress Xt onto Xt−1, . . . , Xt−p.
Durbin-Levinson algorithm with γ replaced by γ̂.

Yule-Walker for ARMA(p,q): Method of moments. Not efficient.

Innovations algorithm for MA(q): with γ replaced by γ̂.

Hannan-Rissanen algorithm for ARMA(p,q):
1. Estimate high-order AR.
2. Use to estimate (unobserved) noiseWt.
3. Regress Xt onto Xt−1, . . . , Xt−p, Ŵt−1, . . . , Ŵt−q.
4. Regress again with improved estimates ofWt.
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Yule-Walker estimation

For a causal AR(p) model φ(B)Xt = Wt, we have

E

⎛

⎝Xt−i

⎛

⎝Xt −
p

∑

j=1

φjXt−j

⎞

⎠

⎞

⎠ = E(Xt−iWt) for i = 0, . . . , p

⇔ γ(0) − φ′γp = σ2 and

γp − Γpφ = 0,

where φ = (φ1, . . . ,φp)′, and we’ve used the causal representation

Xt = Wt +
∞
∑

j=1

ψjWt−j .
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Yule-Walker estimation

Method of moments: We choose parameters for which the moments are
equal to the empirical moments.

In this case, we choose φ so that γ = γ̂.

Yule-Walker equations for φ̂:

⎧

⎨

⎩

Γ̂pφ̂ = γ̂p,

σ̂2 = γ̂(0) − φ̂′γ̂p.

These are the forecasting equations.
We can use the Durbin-Levinson algorithm.
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Yule-Walker estimation: Confidence intervals

If {Xt} is an AR(p) process, and n is large,

•
√

n(φ̂p − φp) is approximately N(0, σ̂2Γ̂−1
p ),

• with probability ≈ 1 − α, φp is in the ellipsoid
{

φ ∈ R
p :

(

φ̂p − φ
)′

Γ̂p

(

φ̂p − φ
)

≤
σ̂2

n
χ2

1−α(p)

}

,

where χ2
1−α(p) is the (1−α) quantile of the chi-squared with p degrees of freedom.

• with probability ≈ 1 − α, φpj is in the interval

φ̂pj ± Φ1−α/2

σ̂√
n

(

Γ̂−1

p

)1/2

jj
,

where Φ1−α/2 is the 1 − α/2 quantile of the standard normal.
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Yule-Walker estimation: Confidence intervals

If {Xt} is an AR(p) process,

φ̂ ∼ AN

(

φ,
σ2

n
Γ−1

p

)

, σ̂2 P→ σ2.

φ̂hh ∼ AN

(

0,
1

n

)

for h > p.

Thus, we can use the sample PACF to test for AR order, and we can
calculate approximate confidence intervals for the parameters φ.
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Yule-Walker estimation

It is also possible to define analogous estimators for ARMA(p,q) models
with q > 0:

γ̂(j) − φ1γ̂(j − 1) − · · ·− φpγ̂(j − p) = σ2
q

∑

i=j

θiψi−j ,

where ψ(B) = θ(B)/φ(B).
Because of the dependence on the ψi, these equations are nonlinear in φi, θi.
There might be no solution, or nonunique solutions.
Also, the asymptotic efficiency of this estimator is poor: it has unnecessarily
high variance.
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Efficiency of estimators

Let φ̂(1) and φ̂(2) be two estimators. Suppose that

φ̂(1) ∼ AN(φ,σ2
1), φ̂(2) ∼ AN(φ,σ2

2).

The asymptotic efficiency of φ̂(1) relative to φ̂(2) is

e
(

φ, φ̂(1), φ̂(2)
)

=
σ2

2

σ2
1

.

If e
(

φ, φ̂(1), φ̂(2)
)

≤ 1 for all φ, we say that φ̂(2) is a more efficient

estimator of φ than φ̂(1).

For example, for an AR(p) process, the moment estimator and the
maximum likelihood estimator are as efficient as each other.

For an MA(q) process, the moment estimator is less efficient than the
innovations estimator, which is less efficient than the MLE.
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Yule Walker estimation: Example

AR(1): γ(0) =
σ2

1 − φ2
1

φ̂1 ∼ AN

(

φ1,
σ2

n
Γ−1

1

)

= AN

(

φ1,
1 − φ2

1

n

)

.

AR(2):

⎛

⎝

φ̂1

φ̂2

⎞

⎠ ∼ AN

⎛

⎝

⎛

⎝

φ1

φ2

⎞

⎠ ,
σ2

n
Γ−1

2

⎞

⎠

and
σ2

n
Γ−1

2 =
1

n

⎛

⎝

1 − φ2
2 −φ1(1 + φ2)

−φ1(1 + φ2) 1 − φ2
2

⎞

⎠ .
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Yule Walker estimation: Example

Suppose {Xt} is an AR(1) process and the sample size n is large.

If we estimate φ, we have

Var(φ̂1) ≈
1 − φ2

1

n
.

If we fit a larger model, say an AR(2), to this AR(1) process,

Var(φ̂1) ≈
1 − φ2

2

n
=

1

n
>

1 − φ2
1

n
.

We have lost efficiency.
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Yule Walker estimation: Example
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Yule Walker estimation: Example
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Maximum likelihood estimation

Suppose that X1, X2, . . . , Xn is drawn from a zero mean Gaussian
ARMA(p,q) process. The likelihood of parameters φ ∈ Rp, θ ∈ Rq,
σ2

w ∈ R+ is defined as the density of X = (X1, X2, . . . , Xn)′ under the
Gaussian model with those parameters:

L(φ, θ, σ2
w) =

1

(2π)n/2 |Γn|
1/2

exp

(

−
1

2
X ′Γ−1

n X

)

,

where |A| denotes the determinant of a matrix A, and Γn is the
variance/covariance matrix of X with the given parameter values.

The maximum likelihood estimator (MLE) of φ, θ, σ2
w maximizes this

quantity.
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Maximum likelihood estimation

We can simplify the likelihood by expressing it in terms of the innovations.

Since the innovations are linear in previous and current values, we can write
⎛

⎜
⎜
⎜
⎝

X1

...

Xn

⎞

⎟
⎟
⎟
⎠

︸ ︷︷ ︸

X

= C

⎛

⎜
⎜
⎜
⎝

X1 − X0
1

...

Xn − Xn−1
n

⎞

⎟
⎟
⎟
⎠

︸ ︷︷ ︸

U

where C is a lower triangular matrix with ones on the diagonal.
Take the variance of both sides to see that

Γn = CDC ′ where D = diag(P 0
1 , . . . , P n−1

n ).
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Maximum likelihood estimation

Thus, |Γn| = |C|2P 0
1 · · ·P n−1

n = P 0
1 · · ·P n−1

n and

X ′Γ−1
n X = U ′C′Γ−1

n CU = U ′C′C−T D−1C−1CU = U ′D−1U.

So we can rewrite the likelihood as

L(φ, θ, σ2
w) =

1
(

(2π)nP 0
1 · · ·P n−1

n
)1/2

exp

(

−
1

2

n
∑

i=1

(Xi − Xi−1
i )2/P i−1

i

)

=
1

(

(2πσ2
w)nr0

1 · · · r
n−1
n

)1/2
exp

(

−
S(φ, θ)

2σ2
w

)

,

where ri−1
i = P i−1

i /σ2
w and

S(φ, θ) =
n
∑

i=1

(

Xi − Xi−1
i

)2

ri−1
i

.
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Maximum likelihood estimation

The log likelihood of φ, θ, σ2
w is

l(φ, θ, σ2
w) = log(L(φ, θ, σ2

w))

= −
n

2
log(2πσ2

w) −
1

2

n
∑

i=1

log ri−1
i −

S(φ, θ)

2σ2
w

.

Differentiating with respect to σ2
w shows that the MLE (φ̂, θ̂, σ̂2

w) satisfies

n

2σ̂2
w

=
S(φ̂, θ̂)

2σ̂4
w

⇔ σ̂2
w =

S(φ̂, θ̂)

n
,

and φ̂, θ̂ minimize log

(

S(φ̂, θ̂)

n

)

+
1

n

n
∑

i=1

log ri−1
i .
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Maximum likelihood estimation

Minimization is done numerically (e.g., Newton-Raphson).

Computational simplifications:
• Unconditional least squares. Drop the log ri−1

i terms.
• Conditional least squares. Also approximate the computation of xi−1

i by
dropping initial terms in S. e.g., for AR(2), all but the first two terms in S

depend linearly on φ1, φ2, so we have a least squares problem.

The differences diminish as sample size increases. For example,
P t−1

t → σ2
w so rt−1

t → 1, and thus n−1
∑

i log ri−1
i → 0.
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Maximum likelihood estimation: Confidence intervals

For an ARMA(p,q) process, the MLE and un/conditional least
squares estimators satisfy

⎛

⎝
φ̂

θ̂

⎞

⎠−

⎛

⎝
φ

θ

⎞

⎠ ∼ AN

⎛

⎜
⎝0,

σ2
w

n

⎛

⎝
Γφφ Γφθ

Γθφ Γθθ,

⎞

⎠

−1
⎞

⎟
⎠ ,

where

⎛

⎝
Γφφ Γφθ

Γθφ Γθθ,

⎞

⎠ = Cov((X, Y ), (X, Y )),

X = (X1, . . . , Xp)
′ φ(B)Xt = Wt,

Y = (Y1, . . . , Yp)
′ θ(B)Yt = Wt.
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Integrated ARMAModels: ARIMA(p,d,q)

For p, d, q ≥ 0, we say that a time series {Xt} is an
ARIMA (p,d,q) process if Yt = ∇dXt = (1 − B)dXt is
ARMA(p,q). We can write

φ(B)(1 − B)dXt = θ(B)Wt.

Recall the random walk: Xt = Xt−1 + Wt.
Xt is not stationary, but Yt = (1 − B)Xt = Wt is a stationary process.
In this case, it is white, so {Xt} is an ARIMA(0,1,0).

Also, ifXt contains a trend component plus a stationary process, its first
difference is stationary.
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ARIMA models example

Suppose {Xt} is an ARIMA(0,1,1): Xt = Xt−1 + Wt − θ1Wt−1.
If |θ1| < 1, we can show

Xt =
∞
∑

j=1

(1 − θ1)θ
j−1

1 Xt−j + Wt,

and so X̃n+1 =
∞
∑

j=1

(1 − θ1)θ
j−1

1 Xn+1−j

= (1 − θ1)Xn +
∞
∑

j=2

(1 − θ1)θ
j−1

1 Xn+1−j

= (1 − θ1)Xn + θ1X̃n.

Exponentially weighted moving average.
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Identifying preliminary values of d: Sample ACF

Trends lead to slowly decaying sample ACF:
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Identifying preliminary values of d, p, and q

For identifying preliminary values of d, a time plot can also help.

Too little differencing: not stationary.
Too much differencing: extra dependence introduced.

For identifying p, q, look at sample ACF, PACF of (1 − B)dXt:

Model: ACF: PACF:

AR(p) decays zero for h > p

MA(q) zero for h > q decays

ARMA(p,q) decays decays
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Diagnostics

How do we check that a model fits well?

The residuals (innovations, xt − xt−1
t ) should be white.

Consider the standardized innovations,

et =
xt − x̂t−1

t
√

P̂ t−1
t

.

This should behave like a mean-zero, unit variance, iid sequence.

• Check a time plot
• Turning point test
• Difference sign test
• Rank test
• Q-Q plot, histogram, to assess normality
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Model Selection

We have used the data x to estimate parameters of several models. They all
fit well (the innovations are white). We need to choose a single model to
retain for forecasting. How do we do it?

If we had access to independent data y from the same process, we could
compare the likelihood on the new data, Ly(φ̂, θ̂, σ̂2

w).

We could obtain y by leaving out some of the data from our model-building,
and reserving it for model selection. This is called cross-validation. It
suffers from the drawback that we are not using all of the data for parameter
estimation.

8



Model Selection: AIC

We can approximate the likelihood defined using independent data:
asymptotically

− lnLy(φ̂, θ̂, σ̂2
w) ≈ − lnLx(φ̂, θ̂, σ̂2

w) +
(p + q + 1)n

n − p − q − 2
.

AICc: corrected Akaike information criterion.

Notice that:
•More parameters incur a bigger penalty.
•Minimizing the criterion over all values of p, q, φ̂, θ̂, σ̂2

w corresponds to
choosing the optimal φ̂, θ̂, σ̂2

w for each p, q, and then comparing the
penalized likelihoods.

There are also other criteria: BIC.
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Pure seasonal ARMAModels

For P, Q ≥ 0 and s > 0, we say that a time series {Xt} is an
ARMA(P,Q)s process if Φ(Bs)Xt = Θ(Bs)Wt, where

Φ(Bs) = 1 −
P

∑

j=1

ΦjB
js,

Θ(Bs) = 1 +
Q

∑

j=1

ΘjB
js.

It is causal iff the roots of Φ(zs) are outside the unit circle.
It is invertible iff the roots of Θ(zs) are outside the unit circle.
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Pure seasonal ARMAModels

Example: P = 0, Q = 1, s = 12. Xt = Wt + Θ1Wt−12.

γ(0) = (1 + Θ2
1)σ

2
w,

γ(12) = Θ1σ
2
w,

γ(h) = 0 for h = 1, 2, . . . , 11, 13, 14, . . ..

Example: P = 1, Q = 0, s = 12. Xt = Φ1Xt−12 + Wt.

γ(0) =
σ2

w

1 − Φ2
1

,

γ(12i) =
σ2

wΦi
1

1 − Φ2
1

,

γ(h) = 0 for other h.
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Pure seasonal ARMAModels

The ACF and PACF for a seasonal ARMA(P,Q)s are zero for h ̸= si. For
h = si, they are analogous to the patterns for ARMA(p,q):

Model: ACF: PACF:

AR(P)s decays zero for i > P

MA(Q)s zero for i > Q decays

ARMA(P,Q)s decays decays
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Multiplicative seasonal ARMAModels

For p, q, P, Q ≥ 0 and s > 0, we say that a time series {Xt} is a
multiplicative seasonal ARMA model (ARMA(p,q)×(P,Q)s)
if Φ(Bs)φ(B)Xt = Θ(Bs)θ(B)Wt.

If, in addition, d, D > 0, we define themultiplicative seasonal
ARIMA model (ARIMA(p,d,q)×(P,D,Q)s)

Φ(Bs)φ(B)∇D
s ∇dXt = Θ(Bs)θ(B)Wt,

where the seasonal difference operator of orderD is defined by

∇D
s Xt = (1 − Bs)DXt.
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Multiplicative seasonal ARMAModels

Notice that these can all be represented by polynomials

Φ(Bs)φ(B)∇D
s ∇d = Ξ(B), Θ(Bs)θ(B) = Λ(B).

But the difference operators imply that Ξ(B)Xt = Λ(B)Wt does not define
a stationary ARMA process (the AR polynomial has roots on the unit
circle). And representing Φ(Bs)φ(B) and Θ(Bs)θ(B) as arbitrary
polynomials is not as compact.

How do we choose p, q, P, Q, d, D?

First difference sufficiently to get to stationarity. Then find suitable orders
for ARMA or seasonal ARMA models for the differenced time series. The
ACF and PACF is again a useful tool here.
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